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Abstract

Safe path planning in autonomous driving is a complex
task due to the interplay of static scene elements and un-
certain surrounding agents. While all static scene elements
are a source of information, there is asymmetric importance
to the information available to the ego vehicle. We present
a dataset with a novel feature, sign salience, defined to in-
dicate whether a sign is distinctly informative to the goals
of the ego vehicle with regards to traffic regulations. Us-
ing convolutional networks on cropped signs, in tandem
with experimental augmentation by road type, image coor-
dinates, and planned maneuver, we predict the sign salience
property with 76% accuracy, finding the best improvement
using information on vehicle maneuver with sign images.

1. Introduction

Autonomous vehicles need to share the road with multi-
ple decision making agents, each with their own goals and
different directions of motion. Traffic signs play an im-
portant role in regulating the motion of all agents on the
road. They are easy to notice and provide safety critical
information in an intuitive and succinct manner to drivers
and pedestrians. Traffic sign detection and recognition has
thus received significant attention in recent research on au-
tonomous driving and advanced driver assistance systems
(ADAS). Several datasets have been released, with bound-
ing boxes ([27] [8] [21] [33] [29] [17] [14] [26]), pixel level
masks ([33]), as well as fine-grained category labels for traf-
fic signs ([27] [8] [21] [33] [14] [26]). These in turn have
allowed researchers to leverage modern CNN based detec-
tors and classifiers for traffic sign detection and recognition
([30] [4] [2]).

While detection and recognition of traffic signs are im-
portant tasks, they aren’t sufficient to inform an autonomous
vehicle how to operate in a traffic scene. Crucially, an au-
tonomous vehicle needs the ability to determine whether a
traffic sign is salient or applicable to its planned path. This
is a challenging task due to several factors:

• Scene complexity: City streets are complex environ-
ments. Consider the montage shown in Figure 1; in
addition to being a visual maze on its own (between
lane flows, non-perpendicular intersections, and train
tracks) the scene contains excessive sign information,
where the controller must know which signs are meant
to inform its own lane and not follow the signs in-
tended for others.

• Asymmetric importance of scene elements: While
there is information available in every pixel visible to
a vehicle, autonomous or manually-driven, certain por-
tions of a given scene are more important in path plan-
ning. As a motivating example, being aware of a speed
limit sign directed at cross traffic certainly informs a
driver of expected behavior of other vehicles in the
scene, but is less relevant to the driver’s plans than an
imminent stop sign, as illustrated in Figure 2.

• Extraneous traffic signs: In other cases, the sign
which is easiest to detect may not necessarily be in-
structive for the ego vehicle. Consider Figures 3 and
4, where the closest sign on the right, while in a typ-
ically informative location, actually provides informa-
tion to a different lane than the ego vehicle, and fol-
lowing such instructions may prove dangerous and un-
expected to surrounding drivers.

• Non-local context cues: The context cues to deter-
mine whether a traffic sign applies to the ego-vehicle
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can often be non-local to the traffic sign itself. These
non-local cues could ego-vehicle’s lane, its planned
route, and in some cases (such as yield signs) even the
locations of surrounding agents.

This paper represents a first step towards traffic sign
salience recognition. We define a sign to be salient if the
visible sign provides an instruction intended for the ego ve-
hicle location before the next decision point, independent of
the actions of other agents and instructions provided to other
lanes. To facilitate further research on traffic sign salience
recognition, we present the LAVA traffic sign dataset with
traffic sign bounding boxes, fine-grained traffic sign cate-
gory labels, as well as binary labels indicating traffic sign
salience. Additionally we provide auxiliary meta-data for
each scene including roadway type, and the next planned
maneuver for the ego-vehicle. Finally, we present analy-
sis on traffic sign salience recognition using a CNN based
classifier that takes into account the appearance of traffic
signs, their locations in a given scene, the roadway type
(e.g. highway, intersection, on-ramp, school-zone etc.), and
the planned route of the ego-vehicle.

2. Related Research
2.1. Sign Detection

The task of monocular sign detection is well-established
and well-addressed in the field, with prime evidence in the
nearly-perfect precision-recall curves associated with the
German Traffic Sign Detection Benchmark public results
[27]. Recent approaches of significant performance across
multiple datasets include:

• A cascaded R-CNN with multiscale attention [30],
with data augmentation to balance class prevalence of
commonly-missed small signs. This method is de-
signed to address false detections due to illumination
variation and bad weather.

• A sparse R-CNN with residual connections in the
ResNest backbone and a self-attention mechanism [4],
designed to be robust to foggy, frosty, and snowy im-
ages.

In our work, we assume prior knowledge of the detected
sign location, as would be given using any of the above
methods.

2.2. Sign Classification

While sign classification in itself is not necessary in
our model of sign importance, the problem has been ad-
dressed to high levels of accuracy in [2], the top performer
on the German Traffic Sign Recognition Benchmark, us-
ing a CNN with three spatial transformers. Our work pre-

dicts sign salience using standard convolutional filter fea-
tures extracted from the cropped sign image, but ongo-
ing SOA approaches to sign recognition can provide im-
proved backbone features to salience classification, since a
sign’s appearance can certainly affect its relevance (e.g. a
stop sign detected while the ego vehicle is on a freeway is
likely meant for off-freeway traffic and is therefore irrel-
evant). Further, sign classification can be combined with
sign salience for downstream control, such that the control
module can understand first which signs are important, and
second what expected behaviors those important signs are
indicating.

2.3. Traffic Sign Datasets

The traffic sign datasets listed in Table 1 facilitate re-
search in the above tasks of traffic sign detection and classi-
fication. In this table, we highlight the relative size of these
datasets, as well as any unique annotated features beyond
the traffic sign class and bounding box image coordinates.

2.4. Traffic Signs in Planning and Control

Most current consumer-market vehicles offer little path
planning for traffic regulations apart from maintaining lane,
maintaining reasonable speed, and avoiding collision, hence
advisory restricting the use of these features to freeways-
only. Autonomous vehicles are expected to come with min-
imum safety guarantees, but the verification and explain-
ability of such systems is difficult to address with common
end-to-end learning approaches. Integration of algorithms
which address traffic regulations can provide the determin-
istic and explainable action qualities important to public ac-
ceptance and safety. As explained by Fulton et al. [9], “Au-
tonomous systems that rely on formally constrained RL for
safety must correctly map from sensory inputs into the state
space in which safety specifications are stated. I.e., the sys-
tem must correctly couple visual inputs to symbolic states.”
A recent approach to address this explainability, Cultrera
et al. [6] use end-to-end visual attention model which al-
lows identification of what parts of the image the model
has deemed most important. The specific importance of
regulatory scene understanding has proven useful in tra-
jectory prediction by Greer et al. [10], using a weighted
lane-heading loss to ascribe importance to lane-following.
Learned attention to the static scene has been demonstrated
effective by Messaoud et al. [20], showing that end-to-end
approaches to trajectory prediction which take in only agent
motion are missing valuable information from the regula-
tions of the static scene.

As an example of a recent model which acknowledges
the importance of sign-adherence capabilities, [11] use an
end-to-end learning approach to control using navigational
commands, but note a shortcoming: “Traffic rules such as
traffic lights, and stop signs are ignored in the dataset, there-



Figure 1: In this montage, a vehicle drives through a complex scene containing a heavy amount of signs of varying salience
to the intended path. There are signs in the field of view which instruct the lanes to the left and right of the ego lane, as well
as the cross-traffic at the intersection. While informative about the possible paths of other agents, these signs do not provide
direction to the vehicle in proposing its own path through the intersection.

Dataset Number of Images Country Features
German Traffic Sign Detection Benchmark [27] 50,000+ Germany

Mapillary [8] 100,000 World
LISA Traffic Sign Dataset [21] 7,855 USA occlusion, on-side-road
Tsinghua-Tencent 100K [33] 100,000 China pixel-level mask

CURE-TSD [29] 1.7M Belgium
LiU Traffic Signs Dataset [17] 3,488 Sweden occlusion

Chinese Traffic Sign Database [14] 6,164 China
Russian Traffic Sign Images Dataset [26] 104,358 Russia

LISA Amazon-MLSL Vehicle Attributes Dataset [16] 14,112 USA 10s video context, occlusion, salience

Table 1: Comparison of traffic sign datasets. All datasets contain at least images, class labels, and information about the
image location and size of the bounding box for the region of interest, in addition to any unique features listed. The LAVA
dataset (bottom row) is notable for its inclusion of 10 second video context, and importantly is the only dataset which contains
a binary label indicating sign salience.

fore, our trained model will not be able to follow traffic
lights or stop at stop signs.” Some regulations can be ad-
dressed by algorithms (rule-based or learned) which are tai-
lored to specific signs. Alves et al. [1] explore planning un-
der traffic sign regulations by modelling and implementing
three Road Junction rules involving UK stop and give-way
signs.

While this work is the first to ascribe and predict sign
salience, Guo et al. [12] create a dataset and learning ar-
chitecture to promote descriptive understanding of signs
beyond common detection and recognition. Their model
is intended to output a semantic, verbal description which
connects the texts and symbols on a sign. In contrast, our
method does not seek to understand the semantic meaning



Figure 2: In a model designed to detect and classify signs
for safe autonomous driving, being aware of the stop sign
is much more important than the cross-traffic speed limit.
A model should be able to weigh missed detections accord-
ingly, as made possible with the sign salience property. By
the proposed definition, the stop sign is salient while the
speed limit sign is not.

Figure 3: In this scenario, two possible sign detections are
made, but while the detection on the right is easier, it pro-
vides no value to the ego vehicle in understanding allow-
able maneuvers in the upcoming intersection. Detecting this
sign is less critical, but existing traffic sign datasets do not
contain features with this information. Additionally, were
the autonomous vehicle to mistakenly associate this “Must
Turn Right” sign as salient to its lane, it would make an il-
legal maneuver by following its instruction. Only the white
regulatory sign located across the intersection is salient.

of the sign, but rather whether the sign is important to the
attention of the vehicle. These features are clearly infor-
mative to one another, but while their output is intended
to influence navigational decisions, our output is better fit
for loss-weighting schemes in safety-critical detections and

Figure 4: While most speed limit signs apply to all lanes
in the direction of travel, this exit speed limit applies only
to the lane to the right of the ego vehicle. An autonomous
vehicle must have the ability to determine whether this sign
is salient to its lane, and select its speed accordingly. The
detected signs in this scene are not salient.

recognitions.

2.5. Road Object Salience

Identifying salient objects has been explored in connec-
tion with driver behavior analysis; knowing where a driver
is looking can be a predictor of scene salience, but alterna-
tively, knowing salient objects prior to observing gaze can
inform an intelligent vehicle of possible gaps in the driver’s
attention. Dua et al. [7] create the DGAZE dataset to map
driver gaze in scene images, connecting gaze to driver fo-
cus and attention, topics extensively studied in connection
to safe, highly-automated driving in the recent survey by
Kotseruba and Tsotsos [15]. Lateef et al. [18] use a GAN to
predict important objects in driving scenes, with data from
existing driving datasets labeled using a salience mecha-
nism which weights object classes from the semantic seg-
mentation of the scene, building a Visual Attention Driving
Database. Su et al. [28] show that salience is a property
which can transfer from non-driving-related tasks to driv-
ing tasks, learning attention on CityScapes from standard
salient object detection (SOD) datasets. Pal et al. [22] show
that combining static scene information with driver gaze in-
formation in their SAGE-Net can propose important regions
of attention.

Li et al. [19] define the task of risk object identifica-
tion, under the hypothesis that objects influencing drivers’
behavior are risky. Though their work is intended to cover
a more general scope of objects than traffic signs, signs that
we determine to be salient do hold a similar property; that
is, were the sign not present, it is possible that the driver’s
behavior would change. However, there are cases where
the sign is intended to create an awareness of surround-
ing scene elements, in which case the sign would still be



salient by our definition, but not necessarily a risk object.
Zhang et al. [31] agree to the importance of salience analy-
sis, stating “A vehicle driving along the road is surrounded
by many objects, but only a small subset of them influence
the driver’s decisions and actions. Learning to estimate the
importance of each object on the driver’s real-time decision-
making may help better understand human driving behav-
ior and lead to more reliable autonomous driving systems.”
Their work builds this estimation using interaction graphs
which allow for the importance of scene elements to change
depending on interactions observed between other scene el-
ements (without involvement of the ego-vehicle). Our work
is completely driver-centric; that is, we consider here signs
which address the ego vehicle independent of the actions of
other scene agents.

3. LAVA Dataset for Salient-Sensitive Traffic
Signs

The LISA Amazon-MLSL Vehicle Attributes (LAVA)
Dataset [16] includes a collection of traffic signs bounded
and labeled in images taken from a front-facing camera, in-
cluding 10 second video clips for full scene and trajectory
context, accompanied by INS data. The data has been col-
lected from the greater San Diego area, curated in a manner
which includes a diversity of road types, traffic conditions,
weather, and lighting. The traffic signs are categorized as
stop, yield, do not enter, wrong way, school zone, railroad,
red and white regulatory, white regulatory, construction and
maintenance, warning, no turn, one way, no turn on red,
do not pass, speed limit, guide, service and recreation, and
undefined. The frequency of the sign types are described in
Table 2. Signs are given a tag if electric (0.18%) or occluded
(11.86%), and each sign is assigned an is salient property
with respect to the position of the ego vehicle (66.42%). For
experimentation, we divide the 14,112 samples into 11,289
training instance, 1,411 validation instances, and 1,412 test
instances, ensuring no scene is divided between sets.

3.1. Automatic Road Type Classification

Reducing video and image data to mid-level semantic
drive information has been shown to be important in under-
standing naturalistic drive data [25]. Similarly, we posit that
information such as road scene and drive maneuver may
contain important contextual information related to sign
salience. Beyond traffic sign information explained above,
we further classify each image scenes found in the LAVA
dataset into 12 possible classes: highway, city street, resi-
dential, roundabout, intersection, construction zone, tunnel,
freeway entrance, freeway exit, and unknown. This classi-
fication is performed automatically as follows:

• Road Type by Global Coordinates: LAVA sensor data
includes latitude and longitude coordinates associated

Sign Type Frequency
Stop 725
Yield 72

Do Not Enter 134
Wrong Way 51
School Zone 172

Railroad 7
Red & White Regulatory 710

White Regulatory 3,048
Construction & Maintenance 773

Warning 2,364
No Turn 419

No Turn on Red 224
One Way 109

Do Not Pass 9
Speed Limit 563

Guide 249
Service & Recreation 2

Undefined 833

Table 2: Sign type frequencies in the LAVA dataset. The
data is non-uniformly distributed, reflecting an approximate
real-world distribution of signs within the region of collec-
tion.

with each frame. Using Nominatim’s reverse geocod-
ing [5], we find the name and OpenStreetMap [OSM]
ID of the current street. OSM provides categories of
motorway, primary, secondary, tertiary, trunk, residen-
tial, roundabout, and pedestrian. We map primary,
secondary, tertiary, and trunk to city street, motorway
to highway, residential to residential, roundabout to
roundabout, and pedestrian to parking lot. This ex-
cludes the classes of intersection, construction zone,
tunnel, school zone, freeway entrance, and freeway
exit.

• Road Type by Object Detection: We use CenterNet
[32] trained on NuScenes [3] for detecting traffic signs,
lights and traffic cones in the scene. If an image is de-
tected to contain two or more traffic cones, it is clas-
sified as construction zone. Similarly, if one or more
stop sign is detected, or three or more traffic lights are
detected, the image is classified as an intersection.

• Road Type by Class Change: Using a contextual 10
second clip, if the frame class begins as highway and
transitions to city street, the images of the clip are re-
labeled as freeway entrance. Similarly, in the reverse
case, the images are re-labeled as freeway exit.

The frequency with which signs are found on a particular
road type are summarized in Table 3.



Road Type Frequency
Highway 1,788

City Street 8,285
Residential 1,243
Roundabout 17
Intersection 972

Construction Zone 300
Freeway Entrance 228

Freeway Exit 207
Unknown 1,072

Table 3: Road type frequencies per sign in the LAVA
dataset.

Maneuver Frequency
Forward 8,593

Stop 4,535
Turn Left After Stopping 18

Turn Right After Stopping 41
Turn Left 476

Turn Right 449

Table 4: Maneuver frequencies per sign in the LAVA
dataset.

3.2. Maneuver Classification

For each frame in the LAVA dataset, we analyze the fol-
lowing 10 seconds of vehicle speed and yaw data for rule-
based classification of the intended driving maneuver as
Forward, Stop, Turn Left After Stopping, Turn Right Af-
ter Stopping, Turn Left, and Turn Right. The frequency of
maneuvers are described in Table 4.

4. Sign Salience Prediction
4.1. On-Right Classifier Baseline

While a random classifier would give an expected ac-
curacy of 50%, we consider a reasonable trivial classifier
which is better-grounded in traffic sign priors. This clas-
sifier assigns salience to signs which are located on or to
the right of center, and non-salience to signs which are lo-
cated left of center. This is consistent with typical drive-
on-the-right traffic flow in the US, and should be adjusted
for countries which drive on the left when comparing across
datasets.

4.2. ResNet50 Model

We begin from the hypothesis that visual information can
be used as a preliminary indicator of sign salience. The
convolutional model uses the ResNet50 [13] convolutional
architecture typically found in sign recognition. It takes a

cropped sign region as input, and outputs a binary label for
salience. We use an Adam optimizer with an initial learning
rate of 10−3 and a batch size of 64.

4.3. Road Type Augmentation

To improve performance beyond the ResNet50 model,
we consider the effects of road type on expected sign
salience. Certain road types are less likely to see particu-
lar relevant signs; for example, a stop sign is unlikely to
appear on a freeway, and a 65 MPH speed limit is unlikely
to appear in a school zone. For this reason, if the features
of such a sign are found in the convolutional layers, it is
likely that the detected sign belongs to a different road or
lane than that of the ego vehicle (perhaps past an off-ramp
or overpass).

To test this hypothesis, we augment the model by ap-
pending a one-hot encoded vector representing the per-
ceived road type to the flattened convolutional output prior
to the fully-connected layer. We then add a ReLU acti-
vation, followed by another fully-connected layer, another
ReLU, and a final fully-connected layer before the softmax
binary output activation. Until the last binary activation, we
maintain 2,048 nodes at each fully-connected layer.

4.4. Image Coordinate Augmentation

Another feature which may improve model performance
is the information contained in the pixel size and location
of the detected bounding box within the scene image. In
general, salient signs are found to the right of center and
above the ego vehicle, as illustrated in Figure 5, and there is
a relationship between the size of the sign and its location
which can provide information about the 3D depth of the
sign. This depth information provides further context to the
model about where the sign may be located relative to the
ego vehicle.

We augment the model by appending the top-left coor-
dinate (x, y) of the bounding box (normalized to the image
width and height), the bounding box width w, and bound-
ing box height h to the flattened convolutional output prior
to the fully-connected layer. Similar to the above road type
augmentation, we then add a ReLU activation, followed by
another fully-connected layer, another ReLU, and a final
fully-connected layer before the softmax binary output ac-
tivation. Until the last binary activation, we maintain 2,048
nodes at each fully-connected layer.

We further note that there is a relationship between ex-
pected sign location and road type, as illustrated by the
heatmaps in Figure 6. This motivates experiments with a
combined model, in which both road type and image coor-
dinate features augment the convolutional output before the
fully-connected layers.



(a)

(b)

Figure 5: Heatmaps illustrating frequency with which a
pixel is occupied by (a) a salient sign or (b) a non-salient
sign.

4.5. Maneuver Augmentation

A vehicle’s intended motion contains information about
which signs will be relevant. For example, if a vehicle is
planning a right turn, it will likely be in a right lane, and a
sign which reads “Right Lane Must Turn Right” would be
salient. Models which generate control for autonomous ve-
hicles are of course unaware of the future trajectory, but it
is reasonable that such model uses a series of planned ma-
neuvers to navigate toward its goal. Accordingly, though
the LAVA dataset does contain specific trajectory informa-
tion, we use the coarse maneuver classification instead, as
this is a reasonable substitute for the vehicle’s intended path
without assuming a particular trajectory.

As in the previous augmentations, we integrate this clas-
sification into a one-hot encoded vector, appended to the
feature set just before the fully-connected layers. We per-
form experiments in combining image, maneuver, road
type, and image coordinate features, summarized in Table
5. Convolutional methods and augmentations outperform
the trivial classifier, achieving approximately 10% improve-
ment. Image coordinates (which indicate the location and
distance of the sign relative to the ego vehicle position)

Model Accuracy
On-Right Baseline 0.6650

ResNet50 0.7422
Maneuver Augmentation 0.7599
Road Type Augmentation 0.7153
Coordinate Augmentation 0.7231
Coordinate & Road Type 0.7188
Coordinate & Maneuver 0.7252

Coordinate & Road Type & Maneuver 0.7358

Table 5: Classification accuracy of the sign salience models.

do not appear to enhance beyond the ResNet50 baseline,
though we expect that as the dataset grows, the performance
of these models will improve as more examples of pos-
sible sign positions are used in training. From results on
this dataset, augmentation with the vehicle’s maneuver in-
formation shows the strongest results in determining sign
salience.

5. Conclusion & Future Research

In this work, we presented

• an analytical dimension of sign salience to weigh im-
portance of particular traffic signs in path planning

• a traffic sign dataset which contains information on
this property, with ability to infer road type and ma-
neuver intent, and

• analysis of models for prediction of sign salience.

The property of sign salience is intended for use in down-
stream path planning, where it could strategically penalize
missed sign detections, sign classifications, and control de-
cisions in salience-aware models. Extensions of the work
include the conversion of salience from a binary to scalar
property, and methods of determining scalar salience using
subjective labelling between drivers. Sign salience is of fur-
ther importance to driver-assistance systems which seek to
understand human readiness and attention [23], and systems
with augment a driver’s scene awareness to the full surround
[24]. The LAVA dataset continues to grow, with an expected
volume for future work which is four times the size avail-
able to this study.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Heatmaps illustrating frequency with which a pixel is occupied by a salient sign (left) or non-salient sign (right)
for city streets (a), construction zones (b), freeway entrances (c), freeway exits (d), highways (e), intersections (f), residential
(g), and unknown (h).
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