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ABSTRACT

APE-V: ATHLETE PERFORMANCE EVALUATION USING VIDEO

Athletes typically undergo regular evaluations by trainers and coaches to assess performance

and injury risk. One of the most popular movements to examine is the vertical jump — a sport-

independent means of assessing both lower extremity risk and power. Specifically, maximal effort

countermovement and drop jumps performed on bilateral force plates provide a wealth of metrics;

however, detailed evaluation of this movement requires specialized equipment (force plates) and

trained experts to interpret results, limiting its use. Computer vision techniques applied to videos

of such movements are a less expensive alternative for extracting such metrics. Blanchard et al. [1]

collected a dataset of 89 athletes performing these movements and showcased how OpenPose could

be applied to the data. However, athlete error calls into question 46.2% of movements — in these

cases, an expert assessor would have the athlete redo the movement to eliminate the error. Here,

I augmented [1] with expert labels of error and established benchmark performance on automatic

error identification. In total, 14 different types of errors were identified by trained annotators.

My benchmark models identified errors with an F1 score of 0.710 and a Kappa of 0.457 (Kappa

measures accuracy over chance).

ii



ACKNOWLEDGEMENTS

I am grateful to the contributions of Prof. Raoul Reiser in providing the necessary expert

guidance required for identifying the jump motion errors in the videos, and the eventual devel-

opment of rules to define the same. I am also grateful for the work of Michael Boyle during the

error annotations and posing as the second annotator for the subset of videos, to get the required

Kappa confidence scores for the annotations. I am grateful to Dhruva Patil for putting in the time

for actively guiding me during the research process. Lastly, I would like to thank Prof. Aparna

Bharati and my advisor Prof. Nathaniel Blanchard for making sure I performed the research tasks

thoroughly and correctly, and provided a complete analysis of the works that were performed.

iii



DEDICATION

I would like to dedicate this thesis to my parents Rohit and Pradnya.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Errors in jump motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 4 Experiments & Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Network Architecture and Multi-view Fusion . . . . . . . . . . . . . . . . 20

Chapter 5 Results and Analysis: Train models on OpenPose skeleton outputs . . . . . . 22

5.1 OpenPose experiments with Center View Videos . . . . . . . . . . . . . . 22

5.2 OpenPose experiments with Left View Videos . . . . . . . . . . . . . . . 23

5.3 OpenPose experiments with Right View Videos . . . . . . . . . . . . . . . 24

5.4 OpenPose experiments with Combined View Videos . . . . . . . . . . . . 26

5.5 OpenPose: Comparison between best models trained on data from Confi-

dent Frames and Confident Keyframes . . . . . . . . . . . . . . . . . . . 28

5.6 Validating usage of Confident Frames from OpenPose Skeleton Outputs . . 30

Chapter 6 Conclusion, Limitations and Future Work . . . . . . . . . . . . . . . . . . . 31

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



LIST OF TABLES

3.1 Dataset sub-categories used for APE-V experiments. . . . . . . . . . . . . . . . . . . 12

3.2 Video Dataset summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Errors in jump motion. 14 annotated errors (sub-categories) in the evaluative jumps,

along with the number of samples in the dataset. 10 errors are annotated for both jump

types, while 4 errors are specific to the drop jump. Errors in bold are the 6 primary

errors used to train the classification models. . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Hyperparameter Search Space for LSTM network architectures. . . . . . . . . . . . . 20

5.1 Best LSTM model architecture for "OpenPose Center: Confident Frames". . . . . . . . 23

5.2 Best LSTM model architecture for "OpenPose Center: Confident Keyframes". . . . . . 24

5.3 Best LSTM model architecture for "OpenPose Left: Confident Frames". . . . . . . . . 25

5.4 Best LSTM model architecture for "OpenPose Left: Confident Keyframes". . . . . . . 25

5.5 Best LSTM model architecture for "OpenPose Right: Confident Frames". . . . . . . . 26

5.6 Best LSTM model architecture for "OpenPose Right: Confident Keyframes". . . . . . 27

5.7 Best LSTM model architecture for "OpenPose Combined: Confident Frames". . . . . . 27

5.8 Best LSTM model architecture for "OpenPose Combined: Confident Keyframes". . . . 28

5.9 Comparison between best models trained on data from Confident Frames (CF) —

which are selected based on confidence threshold of 0.3 — and Confident Keyframes

(CKF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.10 I verify the use of Threshold 0.3 across all experiments for extracting the OpenPose

skeleton outputs. Comparison is made based on the Cohen Kappa score. The values

in bold signify the best results in that experiment, and the corresponding column gives

the threshold used for pose data. [CF: Confident Frames, CKF: Confident Keyframes] . 30

vi



LIST OF FIGURES

1.1 Athletes can be evaluated for performance and injury risk via countermovement and

drop jumps. However, athlete error makes some jumps non-interpretable. In the pur-

suit of a system to automatically provide feedback to athletes, I annotate a dataset

of correct and incorrect jumps and train machine learning models to automatically

identify when jumps have been performed incorrectly. In the ‘Incorrect’ example, the

participant lands on one foot, rather than both; a proper landing is exemplified with

the ‘Correct’ example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Countermovement Jump – ’original jump’ and ’jump with pose detection’. . . . . . . . 8

3.2 Drop Jump – ’original jump’ and ’jump with pose detection’. . . . . . . . . . . . . . . 9

3.3 The dataset contains videos from multiple views. Three viewpoints of a jump help in

providing models with more information on the movement of the participant. . . . . . 10

3.4 Important Events of an Evaluative Jump. The ’Start of Jump’ is different for both jump

types, while other events of the jump are similar. . . . . . . . . . . . . . . . . . . . . 13

3.5 Understanding Cohen’s Kappa. It is used as a measure for the agreement between two

raters, and is useful in this case for evaluating if the rules defined for annotating the

errors in the jumps can be used universally as a standard without changes in annotation

outcomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Steps to extract pose data from video. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Steps to extract keyframes from video. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



Chapter 1

Introduction

Athletes of any caliber, from professionals to first time amateurs, try to limit injury while

maximizing training/exercise. At the professional level, this balance is facilitated by trainers and

coaches who perform expert-level assessments of athletes [2, 3] and customize training plans [4,

5]. Amateur athletes do not have access to the same equipment [1, 6] or personnel employed by

professional athletes [7]. However, RGB cameras are ubiquitous — a computer vision system

that performs personalized assessments using only RGB cameras would scale to athletes of all

means. As an initial step toward such a system, I provide expert annotations to assist athlete

performance evaluation and establish a baseline system which automatically assesses if athletes

perform movements correctly.

RGB video is a promising modality for athlete evaluation — videos of movements are com-

monly used by clinicians to assess injury risk [8] and to perform evaluations [9–13]. Estimating

pose and joints from video is now ubiquitous in computer vision [9–12], and such information

is even extractable from in-motion athletes (for example, joints can be estimated while an athlete

swims [10, 11]).

Blanchard et al. [1] published a video dataset of 89 athletes performing countermovement and

drop jumps. Such movements are regularly used by professional trainers to evaluate athlete perfor-

mance. However, performance evaluation was not the original intent of the dataset — Blanchard

et al. [1] were explicitly interested in assessing jumps for ACL injury risk. Since performance

evaluation was not the intent, 46.2% of the jumps featured errors that make them unsuitable for

evaluating performance [14].

I present APE-V — Athlete Performance Evaluation using Video — a performance-centric

augmentation of [1] containing fine-grained annotations of errors found in the dataset. During

evaluations [15,16], athletes are instructed to do some athletic motion [17], and an equipment or a

set of equipments then capture variables from the action performed [18,19] – these variables are in-
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Figure 1.1: Athletes can be evaluated for performance and injury risk via countermovement and drop jumps.

However, athlete error makes some jumps non-interpretable. In the pursuit of a system to automatically pro-

vide feedback to athletes, I annotate a dataset of correct and incorrect jumps and train machine learning

models to automatically identify when jumps have been performed incorrectly. In the ‘Incorrect’ exam-

ple, the participant lands on one foot, rather than both; a proper landing is exemplified with the ‘Correct’

example.

terpreted by experts to determine the performance progress of the athletes. The collected variables

depend on the athletes correctly performing their evaluative actions [20] — errors would invalidate

evaluative measurements [14]. For the dataset, these actions include the countermovement and the

drop jumps. The APE-V pipeline is designed to detect the improper techniques used by athletes

while performing the jumps, so that only properly performed jumps are included in an athlete’s

assessment. Specifically, I provide expert annotations of 14 error types for the countermovement

and drop jump videos.

The main goal of the dataset and its annotations is to assist in checking the progress of an athlete

by analyzing the body’s physical state, and to decide the possible changes in that athlete’s training

schedule based on their body evaluation results. This can be achieved by training appropriate

machine learning models with the evaluative jump videos in the dataset and their corresponding

curated error annotations (See Chapter 3). I conduct hyperparameter optimization for architectures
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and report results for the best models. Note, all evaluations are done using cross-validation, with

no overlap between athletes in the training and test set, thereby establishing a person-independent

assessment pipeline.

This is the first work to provide expert annotations of 14 kinds of athlete errors found in coun-

termovement and drop jumps. I establish benchmarks showcasing the feasibility of automatic,

person-independent assessment of athlete movements.
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Chapter 2

Related Work

Athlete performance evaluations are conducted by trainers and coaches. However, traditionally,

these evaluations require specialized equipment (e.g., force plates, leap measurement software, and

agility ladders [21–23]). Force plates are one of the most common methods for such evaluations,

as they can measure power and force outputs during the evaluative jumps such as the countermove-

ment jump [24–27]. Studies have also been conducted using vertical jumps, to assess the Change

of Direction Speed (CODS) along with interlimb asymmetries [28–30].

The knee valgus angle has been studied during the drop jump evaluations [31–35] – knee valgus

creates extra pressure on the lateral knee compartment, which might cause tears in the cartilage

or lateral meniscus [36]. It creates a greater risk in athletes for suffering the anterior cruciate

ligament (ACL) injury [37, 38]. Limb asymmetries tend to persist even after recovery from the

ACL injury [39], and appropriate measures need to be taken during training to protect the athletes

from re-injury.

Various screening methods have been used to analyze these jumps, like the Landing Error Scor-

ing System (LESS) [40] — which looks at the mechanics of the bilateral jump landing [8, 40–42],

and the Functional Movement Screen (FMS) — which evaluates fundamental movement patterns

in individuals with no pain complaints or musculoskeletal injury [43]. LESS was developed to

identify athletes with higher risk of injury, which can be utilized during a team screening session

to save time and resources, and is shown to be accurate and reliable. Videos [8] for multiple angles

of athlete jumps were recorded, and LESS scores were assigned in conjunction with the erroneous

movement patterns across the multiple planes of motion. LESS evaluations showed that ACL in-

jury risk could be visually identified from movement alone. This gives us confidence that injury

risk and performance assessments can be done using only a visual medium.

Recent automated techniques used to analyze athlete motion include Einfalt et al.’s [9] tech-

nique of using 2D human pose sequences as a representation of the actual motion. They demon-
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strated two approaches for event detection in pose sequences — using multiple fixed cameras

and domain information of sport, or using sequence recordings of athlete’s motion from a single

camera. Yagi et al. [44] provided a method to estimate movement of runners from video – by

generating a panoramic image of the 100-m track using image stitching, and estimating runner

positions in that image using leg joint information – to get additional information like per stride

length and speed transition of the runner. Sha et al. [45] proposed a method to locate a swimmer

in video throughout the frame sequence, and also to detect the stroke rate of that swimmer in mo-

tion. This was done by knowing the root position of the swimmer – using pool boundaries and

lane ropes – and combining individual body parts detections, like elbows, hands, and head, so that

noisy underwater detections were avoided. The stroke cycle could similarly be approximated by

using the trajectory of elbows. Li et al. [10] presented their work in automatically detecting and

examining player actions in sports video sequences for indexing these videos according to actions,

and getting kinematic measurements of these actions for improving athlete performance. Colyer et

al. [46] have discussed the different methods involving extraction of kinematic information from

images. The limitations of current systems are highlighted – like requiring markers, controlled

conditions and longer processing times – and state-of-the-art automatic markerless systems from

computer vision and machine learning are introduced.

El-Sallam et al. [13] provided a markerless system for athlete performance optimization in the

sports of pole vault, javelin throw, and jumping. They used multiple calibrated cameras for multiple

view captures. This method segmented the subject’s body from video, and a 3D representation of

the body was then reconstructed using silhouettes, which was tracked over the frames in video.

This method is extensible to other sports which do not explicitly need body joint detection, but

can benefit from detection of the athlete body as a whole. Another markerless method of human

motion tracking was developed by Saini et al. [47]. Their method was based on “Hierarchical

Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO)” – the primary purpose was

to detect the pose and position of the subject from video, by comparing a rendered body model with

the image in a video frame. Particle Swarm Optimization (PSO) continuously tried to improve a
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solution with respect to a quality measure, but would undergo premature convergence to a local

optima when applied to problems like pose tracking, due to the high dimensionality of the search

space. H-MCPSO solved this issue by dividing the original population into a master swarm and

sub-swarms – to maintain population diversity – and the master swarm evolved independently

using viable candidates supplied by itself and the sub-swarms.

Elhayek et al. [48] suggested a method for capturing multiple 3D human skeletal movements,

even with cluttered and moving backgrounds in videos captured from regular-use camera setups

like mobile phones. This method required fewer and possibly asynchronous cameras. For single

camera scenarios, Mehta et al. [49] combined a CNN-based pose regressor and kinematic skeleton

fitting to propose a real-time 3D skeletal pose estimation method. This method created a 3D repre-

sentation of the real-time motion of the subject in a video by reconstructing a 3D skeleton based on

joint predictions. In addition to 3D skeletal information, Cao et al. [50, 51] developed an efficient

tool to detect 2D poses of multiple subjects in an image. They used Part Affinity Fields (PAFs)

to establish pairwise relationships between body parts using their location and orientation. The

technique of Elhayek et al. [52] combined a stable skeleton motion capture method and 2D joint

detection using ConvNet for a kinematic skeleton model. Lienhart et al. [11] designed a method

to efficiently mine and get explanatory and performance relevant information from noisy pose data

of individual sport video recordings, for performance evaluation of athletes. Einfalt et al. [12]

have discussed automatic event detection during athlete motion for athlete performance analysis,

using stride, jump and landing related events from athlete recordings of long and triple jump. They

used 2D poses of athletes to get abstract information from videos, for inferring important events in

athlete motion.

For identifying lower-body injury risk in athletes, Blanchard et al. [1] released a multi-angle

video dataset of female athletes performing two specific athletic movements: countermovement

and drop jumps. These evaluative jumps are used for research in sports medicine for identifying

athleticism and factors in an athlete’s jump motion indicating ACL injury risk. The dataset is

targeted towards Computer Vision researchers, who could build accurate models and track key
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movements in these jumps, for evaluating injury risk in the participants. One of the main features

of this dataset is that the collection mechanism can be easily replicated, as it is inexpensive when

compared with the high-end approaches that require non-portable setups.

My work specifically looks at RGB video recordings of athletes performing two evaluative

jumps: the countermovement and the drop jumps. The dataset consists of videos in which partici-

pants perform these evaluative jumps [1]. Unlike previous work, I observed that athletes sometimes

err when performing these movements; I provide expert-level annotation of such errors (See Chap-

ter 3) and train computer vision models to identify them. Long term, such models will be essential

for ensuring that performance or risk assessments are accurate, and no measures are estimated

from faulty data.
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Chapter 3

Dataset

Here, I augment the dataset originally collected by Blanchard et al. [1] with novel labels to

adapt it for athlete evaluation. The original dataset can be found in [1], although notably it was ex-

panded post-publication (from 55 athletes to 89). The dataset includes 89 participants performing

evaluative jumps regularly used by professional trainers to detect risks of injury in athletes. The

two types of jumps used are countermovement and drop jumps, as described below and shown in

Figures 3.1 and 3.2.

Figure 3.1: Countermovement Jump – ’original jump’ and ’jump with pose detection’.

Countermovement Jump - The countermovement jump [53] is a simple and reliable measure of

lower-body power. The jump helps coaches in determining performance changes [54] and fa-
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tigue levels. Performances in the countermovement jump are linked with maximal speed, maximal

strength, and explosive strength. The countermovement jump consists of three phases [53], which

are performed without pausing. It begins with the participant standing straight on the force plate,

with eyes in the front. The participant then undergoes an unweighting phase, after which there is a

braking phase. At this point, the participant’s knee angle is at about a 90 degrees, which is subject

to each individual. A successive propulsive phase puts the participant in the flight phase, while

fully extending their legs and using the momentum to jump higher. The athlete then lands as close

to the jumping off point as possible, thus completing one complete motion of the jump.

Figure 3.2: Drop Jump – ’original jump’ and ’jump with pose detection’.

Drop Jump - The drop jump [55] is designed to examine athlete reactivity. It is considered a fast

stretch-shortening movement [56]. One of the main measures of the test is how quickly the athlete

can move from absorption to propulsion. It also provides a qualitative indication of an athlete’s

lower limb alignment [57] in the frontal plane, with a straightforward drop-jump and subsequent
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and immediate vertical jump. The drop jump has phases similar to the countermovement jump. It

begins from an elevated platform. The first phase is the drop phase, in which the participant jumps

onto the force plate. As the athlete drops to the ground, they should land with their knees slightly

bent. This is the braking phase, also called as the deceleration phase. The propulsive, flight and

landing phases are similar to the countermovement jump.

The participants were provided with basic instructions for performing the jumps by showing

them examples for the same. All jumps performed by these athletes have been included in the

dataset. The first 47 participants performed 10 jumps each on an average — 5 each for the counter-

movement and drop jumps. The participants after that performed only one of these jumps, with a

jump count of 3 on an average. This dataset includes videos from three different angles — center,

left and right, as shown in Figure 3.3 — providing the possibility of training models on multiple

sources of information.

Figure 3.3: The dataset contains videos from multiple views. Three viewpoints of a jump help in providing

models with more information on the movement of the participant.

The videos have been manually annotated with 14 errors found in these evaluative jumps,

and I will go through those errors later in Chapter 3.1. Two subsets have been created from the

original dataset for training the baseline models. The first subset includes body skeletons of athletes

generated using OpenPose [51], with video frames in which the hips, knees and ankles are more
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confidently detected – above a confidence threshold of 0.3. A confidence value is provided as

output by the OpenPose model for every joint detected in a body. A higher confidence value for

a detected joint could be attributed to OpenPose being able to more accurately detect that joint.

Hence, using a threshold to select the frames from a video would give as output only those frames

in which the joints are detected well, providing a better training data for the models. After training

models on the data extracted with the confidence threshold of 0.3, I re-trained architectures of the

best models of each experiment with data extracted using confidence thresholds of 0.1, 0.2, 0.4 and

0.5, and the results are presented in Chapter 5. This was done to validate if data extracted using

threshold 0.3 gave better performing models than those trained with the other thresholds.

LSTM models are trained using x and y coordinates of the detected hips, knees and ankles in

these videos. Training on this subset would provide insight into using specific but important points

in video frames – whether these are enough information to train a model to confidently detect errors

in the jump motion. The second subset is generated on similar lines, but includes only keyframes

from the videos present in the first subset. This was done to see if models would perform better

even if lesser but targeted temporal information was provided. The dataset categories are illustrated

in Table 3.1. There are a total of 582 jumps in the dataset - 346 samples of the countermovement

jump, and 236 samples of the drop jump. The dataset summary is as shown in Table 3.2. There

are four important events that take place in every jump, as shown in Figure 3.4, three videos being

associated with every jump – one each for the center, left and right views.

3.1 Errors in jump motion

I found 14 types of errors in the videos — errors are broken down in Table 3.3. Note that

each jump may have multiple errors. For selecting these specific errors, I first went through the

videos and found anomalies in them. Then, I went over the jump evaluation literature and had a

discussion with an expert from the Health and Exercise Department to focus only on the errors

which could directly be identified using the visual ’change of movement’. These errors are spread

across the jump. A correct evaluative jump performed by a participant has a few characteristics;

11



Table 3.1: Dataset sub-categories used for APE-V experiments.

DATASET CATEGORY FEATURES TRAINING

OPENPOSE [51]

SKELETON OUTPUTS:

CONFIDENTLY

DETECTED FRAMES

SKELETON OUTPUTS

GENERATED USING

OPENPOSE [51]. FRAMES

STORED IN WHICH HIPS,

KNEES AND ANKLES

DETECTED WITH CONFIDENCE

ABOVE 0.3.

TRAIN LSTM MODELS USING X

AND Y COORDINATES OF THE

DETECTED HIPS, KNEES AND

ANKLES, ACROSS VIDEO TEMPORAL

INFORMATION.
OPENPOSE [51]

SKELETON OUTPUTS:

KEYFRAMES

SKELETON OUTPUTS

GENERATED USING

OPENPOSE [51]. FRAMES

STORED IN WHICH HIPS,

KNEES AND ANKLES

DETECTED WITH CONFIDENCE

ABOVE 0.3, WHICH ARE THEN

FILTERED TO KEEP ONLY

KEY-FRAMES.

Table 3.2: Video Dataset summary.

TOTAL NO. OF JUMPS 582

NO. OF COUNTERMOVEMENT JUMPS 346

NO. OF DROP JUMPS 236

TOTAL NO. OF PARTICIPANTS 89

NO. OF PARTICIPANTS PERFORMING COUNTERMOVEMENT AND DROP JUMPS 47

NO. OF PARTICIPANTS PERFORMING ONLY COUNTERMOVEMENT JUMPS 41

NO. OF PARTICIPANTS PERFORMING ONLY DROP JUMPS 1

NO. OF CAMERA VIEWS FOR EACH VIDEO 3

TOTAL NO. OF VIDEOS 1746

CAMERA SETTINGS: NO FIXED CAMERA ANGLE AND HEIGHT.
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Figure 3.4: Important Events of an Evaluative Jump. The ’Start of Jump’ is different for both jump types,

while other events of the jump are similar.

I used these characteristics to identify pivotal errors in jumps. First, the participant assumes a

straight posture while looking forward [58], jumping high enough after an initial squat, and then

landing back in a similar position from which they started [59]. During these jump motions the

participant might not start with the correct position, or, they might perform an irregular landing.

Additionally, for the drop jump, the participant drops from a box onto the force plate [55]. A well

executed drop culminates with both feet touching simultaneously [60], followed by a quick reflex

jump. Associated errors include jumping instead of dropping or lingering on the force plate for too

long, rather than immediately jumping.

The most impactful errors are emphasized in bold in Table 3.3. The other eight errors tend to

be more subtle deviations from the correct body movement, which provide supporting information

regarding motion flaws in the jumps. In the long term, these annotations are essential for proper

assessment, but for now, I do not consider jumps with only subtle deviations to be erroneous.

The following rules have been used to annotate the errors:

• Category: Initial incorrect position common to both jumps [58, 61].

– Feet less than shoulder width apart: If feet of participant are closer to each other

than half of the hip-width of the participant.

• Category: Initial incorrect position, during drop jump [60, 62].

13



– Jumped upward from box, rather than forward: If jump is visually more upwards.

– Asymmetric landing after jump: If one foot hits the force plate before the other.

• Category: Intermediate incorrect motion, during drop jump [63].

– Squat too low: If participant squats below their knee.

– Heels touch force plate: If either heel touches the force plate for more than a couple

seconds.

• Category: First or final landing on force plate, common to both jumps.

– Knee collapse: If knees move visually more inwards when participant lands on force

plate.

– Both feet not on respective platforms: If either foot is not on respective force plate on

landing.

– Land off-balance: If participant lands off-balance or partially on the feet.

• Category: During jump, common to both jumps [59].

– Off-balance: If participant has an excess sideways body motion during jump.

– Body twists, landing at different angle: If participant rotates about a vertical axis during

jump and lands at different angle.

• Category: Final landing error, common to both jumps [64].

– Landing at different position from initial landing: If either feet land a slight distance

away from their respective starting position.

– Excessive hip and knee flexion before returning to upright standing position: If

squat is lower than knee position.

– Take additional steps to maintain balance: If balance lost on landing and participant

takes additional steps to maintain balance.
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Figure 3.5: Understanding Cohen’s Kappa. It is used as a measure for the agreement between two raters,

and is useful in this case for evaluating if the rules defined for annotating the errors in the jumps can be used

universally as a standard without changes in annotation outcomes.

– Feet less than shoulder width apart: Similar to starting position.

The labels for the videos are modified to train binary classifiers — videos which have any of

the 6 primary errors [Errors in bold, Table 3.3] are labeled with a ’1’, and the rest are labeled with

a ’0’.

Inter-observer agreement - To be certain that the annotations were correctly labeled after follow-

ing the defined set of rules, I chose to use the Cohen’s Kappa scores for checking the inter-observer

agreement. Cohen’s kappa [65–67] is used as a measure for the agreement between two raters, and

is useful in this case for evaluating if the rules defined for annotating the errors in the jumps can

be used universally as a standard without changes in annotation outcomes; to ensure there was

agreement within and across error types. One observer, other than myself, annotated an example

set of 100 videos (17% of dataset) using the above set of rules. These annotations were then scored

based on Figure 3.5, considering the chance agreement. Equations 3.1 refer to Cohen’s Kappa

calculations. Chance agreement accounts for the fact that raters might sometimes guess on some

variables based on uncertainty – being unsure. Any score above 0.6 shows substantial agreement

between the raters, although a score of 1 is always preferred. Across all errors, the average Kappa

was 0.89 (Max Kappa is 1.00), indicating very high agreement.
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Table 3.3: Errors in jump motion. 14 annotated errors (sub-categories) in the evaluative jumps, along with

the number of samples in the dataset. 10 errors are annotated for both jump types, while 4 errors are specific

to the drop jump. Errors in bold are the 6 primary errors used to train the classification models.

ERRORS

(OVERALL

CATEGORIES)

JUMP

TYPE

SR.

NO.

ERRORS

(SUB-CATEGORIES)

INTER-

OBSERVER

AGREEMENT

(SUBSET OF

100 VIDEO

SAMPLES)

NO. OF

SAMPLES

IN

DATASET

KAPPA

(K)

SAMPLES

IN

SUBSET

START

POSITION

BOTH 1 FEET LESS THAN

SHOULDER WIDTH APART

1.00 7 30

INITIAL

POSITION,

AFTER START

DROP

JUMP

2 JUMPED UPWARD FROM

BOX, RATHER THAN

FORWARD

1.00 2 22

3 ASYMMETRIC LANDING

AFTER JUMP

1.00 3 15

FIRST

LANDING ON

FORCE PLATE

DROP

JUMP

4 SQUAT TOO LOW 1.00 14 37

5 HEELS TOUCH FORCE

PLATE

0.90 14 83

FIRST OR

FINAL

LANDING ON

FORCE PLATE

BOTH

6 KNEE COLLAPSE 0.72 19 64

7 BOTH FEET NOT ON

RESPECTIVE PLATFORMS

1.00 1 5

8 LAND OFF-BALANCE 0.91 12 49

DURING JUMP BOTH

9 OFF-BALANCE 0.75 8 79

10 BODY TWISTS, LANDING

AT DIFFERENT ANGLE

0.75 16 74

FINAL

LANDING ON

FORCE PLATE

BOTH

11 LANDED AT DIFFERENT

POSITION FROM INITIAL

LANDING

0.81 42 133

12 EXCESSIVE HIP AND

KNEE FLEXION BEFORE

RETURNING TO UPRIGHT

STANDING POSITION

0.88 16 78

13 TAKE ADDITIONAL STEPS

TO MAINTAIN BALANCE

0.73 7 94

14 FEET LESS THAN

SHOULDER WIDTH APART

1.00 1 3
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P0 = Number inAgreement / Total

Pcorrect = (A+B/A+B + C +D) ∗ (A+ C/A+B + C +D)

Pincorrect = (C +D/A+B + C +D) ∗ (B +D/A+B + C +D)

Pe = Pcorrect + Pincorrect

k(Kappa) = P0 − Pe / 1− Pe

(3.1)
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Chapter 4

Experiments & Method

I conducted baseline experiments to investigate the usability of the dataset and its correspond-

ing annotations. I focused on two major questions: is video information enough to facilitate detec-

tion of errors during motion of evaluative jumps? And, if video information is good enough, what

kinds of features (raw video or pose) provide optimal performance?

Two categories of subsets for the data have been processed, as shown in Table 3.1. A set of

experiments is performed on the participant lower-body joint data extracted from the videos using

OpenPose [51]. The joint data is extracted using the following steps:

1. Video is read using the OpenCV [68] function ’VideoCapture’.

2. Output video file is created, using required ’fps’ and dimensions of frames in the video.

3. Pose is detected in a frame using the OpenPose [51] trained model ’pose_iter_440000.caffemodel’.

A threshold of 0.3 is used for confidence in the pose detection (See Chapter 3). This thresh-

old ensures that most of the less confident pose estimations are eliminated, to provide a more

stable temporal data on pose estimation for the participant jumps.

4. Six joints are considered when looking at the 0.3 threshold: Right Hip, Right Knee, Right

Ankle, Left Hip, Left Knee, and Left Ankle. If atleast 3 of these joints are detected with a

0.3 confidence or more by OpenPose [51], then the frame is kept, else it is discarded.

5. This process repeats for all frames in a video, and the kept frames are stored in the output

video file. The steps are summarized in Figure 4.1.

6. An extra step is performed for the second set of data, in which keyframes are selected as a

subset from the confidently detected frames.

(a) For getting keyframes, frames are first converted to blurred gray frames.
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(b) If the frame is the first of the video, it is saved in a variable.

(c) Difference between the previous and the current blurred gray frames is calculated.

(d) Number of non-zero pixels in the image difference are calculated.

(e) Using these non-zero pixels, the baseline of the data is defined.

(f) Indexes of the peaks are then extracted: These are indexes of frames with the non-zero

pixel count above a specified threshold.

(g) These indexes are then used to identify and store the keyframes. The steps are summa-

rized in Figure 4.2.

Figure 4.1: Steps to extract pose data from video.

Figure 4.2: Steps to extract keyframes from video.

Multiple experiments on Long Short-Term Memory (LSTM) networks were employed on spe-

cific types of input data to obtain view-specific detection results; model training on individual view

data – center, left or right.

4.1 Training procedure

A standard training procedure was followed across all experiments. The experiments were

designed to run hyperparameter search from the given set of hyperparameters [Table 4.1]. Hy-
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Table 4.1: Hyperparameter Search Space for LSTM network architectures.

LEARNING

RATE

TRAINABLE

LAYERS

HIDDEN

NODES

BATCH SIZE EPOCHS

0.0001 - 0.1 1 - 4 10-200 [8, 16, 24, 32, 40, 48,

56, 64, 128, 256]

10-200

peropt [69] with the Tree Parzen Estimator (TPE) algorithm was used for this purpose. For each

hyperparameter combination, the models were trained and evaluated using 5-fold cross validation.

K-fold cross validation helps to evaluate a given model on the entire dataset, providing more robust

measures of performance for small datasets. As features in the video frames might be similar for a

particular participant, the data is distributed into folds based on participants and not jumps. Due to

this, there is a difference in the number of jumps in the training and validation set for each of these

folds, as all participants have not performed the same number of jumps. Each model trained on

(K-1) partitions, during cross validation, is then evaluated for validation loss at every epoch. The

model corresponding to the lowest validation loss is saved. Note that not all participants performed

the same number of jumps.

Models saved for each of these data folds at the end of the training cycle were then evaluated

using Cohen’s Kappa score and F1 score (positive error class). These values were used for se-

lecting the best models during hyperparameter search. The data is unevenly distributed — 46%

positive class, and 54% negative class. Cohen’s Kappa represents how well a model performs when

compared to a model that randomly predicts an output (i.e., accuracy above chance). A positive

score for Kappa indicates that the model performs better than chance. After individual models are

trained for each of the five data folds, metric scores were averaged across folds.

4.2 Network Architecture and Multi-view Fusion

The experiments used Long Short-Term Memory (LSTM) networks, which were trained from

scratch on pose estimation joint data. This information was extracted from the evaluative jump

videos using OpenPose [51], as discussed in Chapter 3. The LSTM-based architecture was chosen
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to learn the order dependence between items in a long data sequence, and is suitable for the task

of detecting changes in athlete motion through the video frames. The models were trained on data

subsets presented in Table 3.2. Each model goes through a 5-fold cross validation. The training

data undergoes scaling using the ’MinMaxScaler’, and then the training dataloader is defined. The

scaler which is fit on the training data is then used to scale the validation data, followed by defining

the validation dataloader.

The LSTM model architecture takes in joint coordinates of the six important joints — hips,

knees, and ankles — for every selected frame across the video, with a label 1 (Error) or 0 (No

error) annotated for every such sequence. Each model trained on individual data folds is then

evaluated on Cohen’s Kappa score and F1 score (positive error class). After individual models are

trained for each of the five data folds, the metric scores are averaged, and these are presented as

the final scores.

To understand if a model trained on multiple sources of information for the same task could

perform better than the individual models, I perform experiments by combining the best models

trained on individual view data. Specifically, the classification layer of the best models trained

on each of these views was replaced with a separate classifier layer at the end of the combined

architecture. This new layer was trained for a few epochs, and the trained model was then evaluated

in the same manner as the individual models described in Chapter 4.1.
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Chapter 5

Results and Analysis: Train models on OpenPose

skeleton outputs

For the experiments described above using different data modalities and architectures, I ob-

tain evaluation results on the novel annotated dataset for the task of erroneous jump evaluation. I

specifically focus on answering questions such as which type of data input and architecture per-

forms better and how does view information affect detection results.

The experiments were designed on the assumption that lower body joint coordinates detected

on athletes performing the evaluation jumps were enough information to train a machine learning

model to distinguish between erroneous jumps and those useful for athlete evaluation. OpenPose

[51] detected joint coordinates for hips, knees, and ankles, for the full length of the videos or

selected frames, were then used to train an LSTM model.

Three individual models were trained on lower body joint data from the center, left, and right

view videos. There were two types of input sequences for these models. The first category of data

were frames for which OpenPose was highly confident in detecting lower body joints, when run

on the entire video. The second category had keyframes extracted from the frames where pose was

confidently detected. About 100 models were trained during each of these experiments. For the

view fusion model, I combined the individual models trained on the different views for each type

of data input.

5.1 OpenPose experiments with Center View Videos

This set of experiments is performed with the lower body joint data extracted from the center

view videos.

OpenPose Center: Confident Frames - The architecture of the best model trained on the confident

frames has just 1 hidden layer with 50 LSTM units in that layer. It gives a F1 positive class score
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of 0.6291, and a Cohen Kappa score of 0.3737. Table 5.1 shows the best model obtained from this

experiment.

Table 5.1: Best LSTM model architecture for "OpenPose Center: Confident Frames".

NO. OF HIDDEN LAYERS 1

NO. OF HIDDEN UNITS IN EACH LAYER 50

BATCH SIZE 40

LEARNING RATE 0.0038

TESTING LOSS 0.0165

TESTING ACCURACY 69.2%

TRUE POSITIVE 30

TRUE NEGATIVE 50

FALSE POSITIVE 12

FALSE NEGATIVE 23

F1 SCORE (+VE CLASS: ERROR IN JUMP) 0.6291

F1 SCORE (-VE CLASS: NO ERROR IN JUMP) 0.7371

COHEN KAPPA SCORE 0.3737

OpenPose Center: Confident Keyframes - The architecture of the best model trained on the

confident keyframes has 2 hidden layers with 60 LSTM units in each layer. It gives a F1 positive

class score of 0.5142, and a Cohen Kappa score of 0.2677. Table 5.2 shows the best model obtained

from this experiment.

5.2 OpenPose experiments with Left View Videos

This set of experiments is performed with the lower body joint data extracted from the left view

videos.

OpenPose Left: Confident Frames - The architecture of the best model trained on the confident

frames has 4 hidden layers with 80 LSTM units in each layer. It gives a F1 positive class score of

23



Table 5.2: Best LSTM model architecture for "OpenPose Center: Confident Keyframes".

NO. OF HIDDEN LAYERS 2

NO. OF HIDDEN UNITS IN EACH LAYER 60

BATCH SIZE 40

LEARNING RATE 0.0019

TESTING LOSS 0.0178

TESTING ACCURACY 64.6%

TRUE POSITIVE 27

TRUE NEGATIVE 49

FALSE POSITIVE 13

FALSE NEGATIVE 26

F1 SCORE (+VE CLASS: ERROR IN JUMP)) 0.5142

F1 SCORE (-VE CLASS: NO ERROR IN JUMP)) 0.6975

COHEN KAPPA SCORE 0.2677

0.5083, and a Cohen Kappa score of 0.2241. Table 5.3 shows the best model obtained from this

experiment.

OpenPose Left: Confident Keyframes - The architecture of the best model trained on the confident

keyframes has 2 hidden layers with 95 LSTM units in each layer. It gives a F1 positive class score

of 0.5090, and a Cohen Kappa score of 0.2497. Table 5.4 shows the best model obtained from this

experiment.

5.3 OpenPose experiments with Right View Videos

This set of experiments is performed with the lower body joint data extracted from the right

view videos.

OpenPose Right: Confident Frames - The architecture of the best model trained on the confident

frames has 2 hidden layers with 165 LSTM units in each layer. It gives a F1 positive class score

of 0.6349, and a Cohen Kappa score of 0.3560. Table 5.5 shows the best model obtained from this

experiment.
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Table 5.3: Best LSTM model architecture for "OpenPose Left: Confident Frames".

NO. OF HIDDEN LAYERS 4

NO. OF HIDDEN UNITS IN EACH LAYER 80

BATCH SIZE 56

LEARNING RATE 0.0099

TESTING LOSS 0.0142

TESTING ACCURACY 62.2%

TRUE POSITIVE 26

TRUE NEGATIVE 46

FALSE POSITIVE 15

FALSE NEGATIVE 27

F1 SCORE (+VE CLASS: ERROR IN JUMP) 0.5083

F1 SCORE (-VE CLASS: NO ERROR IN JUMP) 0.6818

COHEN KAPPA SCORE 0.2241

Table 5.4: Best LSTM model architecture for "OpenPose Left: Confident Keyframes".

NO. OF HIDDEN LAYERS 2

NO. OF HIDDEN UNITS IN EACH LAYER 95

BATCH SIZE 8

LEARNING RATE 0.0069

TESTING LOSS 0.0842

TESTING ACCURACY 63.4%

TRUE POSITIVE 26

TRUE NEGATIVE 47

FALSE POSITIVE 15

FALSE NEGATIVE 27

F1 SCORE (+VE CLASS: ERROR IN JUMP)) 0.5090

F1 SCORE (-VE CLASS: NO ERROR IN JUMP)) 0.6920

COHEN KAPPA SCORE 0.2497
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Table 5.5: Best LSTM model architecture for "OpenPose Right: Confident Frames".

NO. OF HIDDEN LAYERS 2

NO. OF HIDDEN UNITS IN EACH LAYER 165

BATCH SIZE 32

LEARNING RATE 0.0081

TESTING LOSS 0.0217

TESTING ACCURACY 67.8%

TRUE POSITIVE 32

TRUE NEGATIVE 47

FALSE POSITIVE 15

FALSE NEGATIVE 21

F1 SCORE (+VE CLASS: ERROR IN JUMP) 0.6349

F1 SCORE (-VE CLASS: NO ERROR IN JUMP) 0.7163

COHEN KAPPA SCORE 0.3560

OpenPose Right: Confident Keyframes - The architecture of the best model trained on the con-

fident keyframes has only 1 hidden layer with 25 LSTM units in that layer. It gives a F1 positive

class score of 0.6253, and a Cohen Kappa score of 0.3372. Table 5.6 shows the best model obtained

from this experiment.

5.4 OpenPose experiments with Combined View Videos

This set of experiments is performed with the lower body joint data extracted from all the view

videos – center, left and right.

OpenPose Combined: Confident Frames - The best models trained on the confident frames of

each of the views – center, left and right – have been used to create an ensemble architecture for

this experiment. It gives a F1 positive class score of 0.7104, and a Cohen Kappa score of 0.4567.

Table 5.7 shows the best model obtained from this experiment.

OpenPose Combined: Confident Keyframes - The best models trained on the confident keyframes

of each of the views – center, left and right – have been used to create an ensemble architecture for
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Table 5.6: Best LSTM model architecture for "OpenPose Right: Confident Keyframes".

NO. OF HIDDEN LAYERS 1

NO. OF HIDDEN UNITS IN EACH LAYER 25

BATCH SIZE 24

LEARNING RATE 0.0056

TESTING LOSS 0.0282

TESTING ACCURACY 67.0%

TRUE POSITIVE 32

TRUE NEGATIVE 46

FALSE POSITIVE 16

FALSE NEGATIVE 21

F1 SCORE (+VE CLASS: ERROR IN JUMP)) 0.6253

F1 SCORE (-VE CLASS: NO ERROR IN JUMP)) 0.7099

COHEN KAPPA SCORE 0.3372

Table 5.7: Best LSTM model architecture for "OpenPose Combined: Confident Frames".

BATCH SIZE 16

LEARNING RATE 0.0054

TESTING LOSS 0.0446

TESTING ACCURACY 72.4%

TRUE POSITIVE 39

TRUE NEGATIVE 45

FALSE POSITIVE 17

FALSE NEGATIVE 14

F1 SCORE (+VE CLASS: ERROR IN JUMP) 0.7104

F1 SCORE (-VE CLASS: NO ERROR IN JUMP) 0.7425

COHEN KAPPA SCORE 0.4567
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this experiment. It gives a F1 positive class score of 0.6581, and a Cohen Kappa score of 0.4065.

Table 5.8 shows the best model obtained from this experiment.

Table 5.8: Best LSTM model architecture for "OpenPose Combined: Confident Keyframes".

BATCH SIZE 16

LEARNING RATE 0.0043

TESTING LOSS 0.0413

TESTING ACCURACY 70.8%

TRUE POSITIVE 33

TRUE NEGATIVE 49

FALSE POSITIVE 12

FALSE NEGATIVE 20

F1 SCORE (+VE CLASS: ERROR IN JUMP)) 0.6581

F1 SCORE (-VE CLASS: NO ERROR IN JUMP)) 0.7444

COHEN KAPPA SCORE 0.4065

5.5 OpenPose: Comparison between best models trained on

data from Confident Frames and Confident Keyframes

From Table 5.9, it is observed that the models trained on Confident Frames performed better

than the models trained on Keyframes extracted from that data, with Kappa scores considered as

the baseline. These results show that the frames in which skeleton data was confidently detected

provided more meaningful information for improved model performance. I also observe that the

ensemble model using all three view data as input gives better performance than the individual

models. I get the best overall model when training with the combined view data, each with Confi-

dent Frames extracted at threshold 0.3 – Accuracy: 72.4 %, F1 positive class score: 0.7104, Kappa:

0.4567. This could be because the individual best models trained on Confident Frames did better
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(or only slightly worse) in all the experiments. Also, the best model trained on these individual

views came with the right view data of the Confident Frames (with a Kappa of 0.3560).

When combining the best models trained on each of the individual view data, and using this

ensemble architecture to predict an output, I feel that the concatenated features given as output

from each of these individual models provide a better contextual information to the classifier. This

result shows two things:

1. It is possible to train a simple LSTM model with pose estimates detected from the evaluative

jumps using any individual view data.

2. If more views of the same jump are available, the individual models trained on these other

views could be combined to provide better overall performance.

Table 5.9: Comparison between best models trained on data from Confident Frames (CF) — which are

selected based on confidence threshold of 0.3 — and Confident Keyframes (CKF).

EXPERIMENT TEST

ACC. %

CONFUSION

MATRIX

F1 SCORE:

ERROR IN

JUMP

F1 SCORE:

NO ERROR

IN JUMP

COHEN

KAPPA

TP TN FP FN

C
F

CENTER 69.2 ±8.01 30 50 12 23 0.629 ±0.10 0.737 ±0.07 0.374 ±0.16

LEFT 62.2 ±4.60 26 46 15 27 0.508 ±0.21 0.682 ±0.04 0.224 ±0.13

RIGHT 67.8 ±3.63 32 47 15 21 0.635 ±0.06 0.716 ±0.03 0.356 ±0.08

COMBINED

VIEW

72.4 ±4.72 39 45 17 14 0.710 ±0.05 0.743 ±0.05 0.457 ±0.09

C
K

F

CENTER 64.6 ±6.80 27 49 13 26 0.514 ±0.26 0.698 ±0.10 0.268 ±0.18

LEFT 63.4 ±5.73 26 47 15 27 0.509 ±0.24 0.692 ±0.06 0.250 ±0.16

RIGHT 67.0 ±3.61 32 46 16 21 0.625 ±0.08 0.710 ±0.02 0.337 ±0.09

COMBINED

VIEW

70.8 ±6.83 33 49 12 20 0.658 ±0.10 0.744 ±0.06 0.407 ±0.15
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5.6 Validating usage of Confident Frames from OpenPose Skele-

ton Outputs

I selected frames where the pose detection model had a confidence of c or higher in its pre-

dictions, as confident frames for the experiments described in Chapter 3. To obtain the confidence

threshold, I performed additional experiments. I trained the same architecture with the subset of

data extracted using different thresholds. The architecture and hyperparameters remained constant,

and only the data changed. This helped me to evaluate the effect of different thresholds used for

obtaining a good set of video pose features from raw video frames.

From the comparison in Table 5.10, it is observed that models performed best with joint data

extracted with a confidence threshold of 0.3. This threshold eliminates many noisy frames with

fluctuating pose estimations for the lower body joints, while retaining ample information to train

good models for any of the three views.

Table 5.10: I verify the use of Threshold 0.3 across all experiments for extracting the OpenPose skeleton

outputs. Comparison is made based on the Cohen Kappa score. The values in bold signify the best results

in that experiment, and the corresponding column gives the threshold used for pose data. [CF: Confident

Frames, CKF: Confident Keyframes]

EXPERIMENT COHEN KAPPA

THRESHOLD

0.1

THRESHOLD

0.2

THRESHOLD

0.3

THRESHOLD

0.4

THRESHOLD

0.5

C
F

CENTER 0.117 0.248 0.374 0.285 0.239

LEFT 0.153 0.155 0.224 0.153 0.175

RIGHT 0.130 0.314 0.356 0.224 0.325

C
K

F

CENTER 0.138 0.231 0.268 0.191 0.203

LEFT 0.246 0.191 0.250 0.194 0.142

RIGHT 0.195 0.234 0.337 0.296 0.178

30



Chapter 6

Conclusion, Limitations and Future Work

In this work, I presented expert-level error annotations for a jump video dataset [1] to facilitate

fitness assessment from RGB video. Further, I provided baselines showcasing that, while these

annotations include relatively fine-grained phenomena, it is feasible to identify them with computer

vision techniques. I present automated approaches to detect and screen out improper techniques

present in jumps of three views — center, left, and right — performed for athlete evaluation, so that

time and expertise can be allocated for assessing only the correctly performed jumps, and feedback

can be provided for improving jump motion of those which are discarded.

Overall, I have shown two things:

1. The curated expert-level annotations of errors in the evaluative jumps performed by athletes,

and the rules defined for these annotations, could be considered as a standard for labeling

videos collected for athlete performance evaluation.

2. Classification models could be easily trained with a video of an athlete’s motion and its

corresponding error annotations.

While the set of experiments described here solely rely on pose estimations extracted using

OpenPose [51], I plan to perform further experiments on the complete video frames. This would

help to discern if more features from a video frame help improve the overall model performance,

or if lesser data points from the frames – like in the pose experiments – are the course forward for

training models with the presented type of data and annotations. One of the experiments in the

pipeline is to use a pretrained CNN model like ResNet18 [70] to extract features from the video

frames, and then train an LSTM architecture on the extracted features. Another set of experiments

would make use of fine-tuning the original version of the TSM [71] action recognition model, to

see if a widely used action recognition model is capable of learning and building on the presented

dataset.
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Along with the possibilities of easier athlete assessment, there are a few drawbacks to the

implementations in the current pipeline. The dataset has 582 jumps from 89 participants, and

these jumps only include female athletes – as they are at a higher risk of injury [72–76]. A larger

dataset could be collected in its place which would include athletes across genders, ages and races.

This could provide the models with more variety of data with respect to the athletes, eventually

improving the generalizability of the models, and could help in determining if this pipeline actually

helps in identifying and eliminating the bad jumps used for performance evaluations.

Lastly, the data preprocessing step uses OpenPose [51], which provides the skeleton outputs of

participants performing the evaluative jumps on which the models are trained. While OpenPose

skeleton outputs provide decent approximations of the actual participant joints, there is still a lot

of scope for improvement. The models are trained on these skeleton outputs – the more accurate

the skeleton outputs, higher the possibility of improved models. Hence, improved skeleton data

approximations is the next step for getting better overall model performance. Alternatives like

AlphaPose [77] could be used in place of OpenPose.

Accurately evaluating athletes based on movements recorded with ubiquitous RGB cameras

has a multitude of implications for fitness recommendations. Ideally, accurate evaluations can

enable widespread access to state-of-the-art fitness recommendations. Although this work does

not focus on injury prevention, an implicit side effect of appropriate fitness recommendations is

the limitation of overextension, which can lead to injury. I anticipate that the resources presented

in this work are essential for future investigations for performance assessments with the dataset.
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