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Abstract

Portrait mode is widely available on smartphone cam-
eras to provide an enhanced photographic experience. One
of the primary effects applied to images captured in por-
trait mode is a synthetic shallow depth of field (DoF). The
synthetic DoF (or bokeh effect) selectively blurs regions in
the image to emulate the effect of using a large lens with a
wide aperture. In addition, many applications now incor-
porate a new image motion attribute (NIMAT) to emulate
background motion, where the motion is correlated with es-
timated depth at each pixel. In this work, we follow the trend
of rendering the NIMAT effect by introducing a modification
on the blur synthesis procedure in portrait mode. In partic-
ular, our modification enables a high-quality synthesis of
multi-view bokeh from a single image by applying rotated
blurring kernels. Given the synthesized multiple views, we
can generate aesthetically realistic image motion similar to
the NIMAT effect. We validate our approach qualitatively
compared to the original NIMAT effect and other similar
image motions, like Facebook 3D image. Our image motion
demonstrates a smooth image view transition with fewer ar-
tifacts around the object boundary.

1. Introduction

Unlike digital single-lens reflex (DSLR) and mirrorless
cameras, smartphone cameras cannot produce a natural
shallow depth of field (DoF) due to the camera’s small aper-
ture and simple optical system. Instead, many smartphones
(e.g., iPhone 12, Google Pixel 4, Samsung Galaxy) emulate
a shallow DoF via a portrait mode setting that processes the
image at capture time. These methods typically isolate the
subject from the background and then blur the background
to emulate the swallow DoF [26]. An example is shown in
the first row of Fig.[I]

Most smartphone cameras apply the synthetic bokeh ef-
fect using a common image processing framework. This
traditional procedure takes an input image with minimal
DoF blur and an estimated depth map to determine the blur
kernel size at each pixel (i.e., defocus map). In some cases,
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Figure 1: This figure shows a comparison between differ-
ent image motion effects. We also show the output of the
traditional bokeh synthesis. Our approach takes the sharp
image (i.e., deep DoF) to generate the image motion. Other
approaches start with the blurry input (i.e., shallow DoF)
to synthesize the image motion. Note: this figure is an-
imated; click on the image to start the animation. It
is recommended to open this PDF in Adobe Acrobat
Reader to work properly.

a segmentation mask is also used to avoid blurring pixels
that belong to the people and their accessories. Fig.[2]shows
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Figure 2: This figure shows a typical synthetic shallow depth of field (DoF) processing framework. This framework takes
three inputs: single image, estimated depth map, and segmentation mask. Given the inputs, the synthetic DoF unit produces
the desired image. The image, depth map, and segmentation mask are taken from the dataset in [26].

an illustrative example of the common synthetic bokeh
framework.

Recently, Abuolaim et al. proposed a new image mo-
tion attribute (NIMAT) effect [1f] that generates multiple
sub-aperture views based on DoF blur and dual-pixel (DP)
image formation. Abuolaim et al.’s method produces mul-
tiple views from a single input image captured by a DSLR
camera and has a natural shallow DoF. Their DP- and DoF-
based view synthesis is designed to generate pixel motion
correlated to the defocus blur size at each pixel. How-
ever, obtaining an image with a natural shallow DoF using
a smartphone camera is difficult, as mentioned earlier. In-
spired by NIMAT []1], we provide a similar effect by modi-
fying the traditional synthetic bokeh framework. Our mod-
ification enables synthesizing shallow DoF along with gen-
erating multiple views by applying a rotated blurring kernel.
In our proposed framework, the defocus blur kernel shape
is determined based on the sub-aperture image formation
found in DP sensors. To our knowledge, we are the first
to introduce this novel synthetic bokeh and DP-/DoF-based
multi-view synthesis. Fig. [T]shows a comparison of differ-
ent image motion approaches. It also provides the output
of the traditional bokeh synthesis in the first row. Recall
that other image motion approaches do not synthesize the
bokeh effect. As a result, our method combines image mo-
tion and synthetic DoF into a single step. As demonstrated
in Fig. [T] our image motion exhibits a smooth view transi-
tion with fewer artifacts around the object boundary com-
pared to other approaches.

2. Related Work

Synthetic bokeh The bokeh effect in photography is an
aesthetic quality of the blur that renders the main subject of
the taken photo in focus while the background details fall

out of focus. As mentioned earlier, standard smartphone
cameras cannot produce such bokeh photographs due to the
small size of the aperture and short focal length used in al-
most all smartphone cameras. Due to this limitation, a large
body of work has targeted ways to emulate a shallow DoF
image for smartphone cameras (e.g., [[12l/13}{16,24-2628]]).

Prior methods require either up-down translation of the
camera (e.g., [13]]) or benefits from the parallax caused by
accidental handshake during capturing (e.g., [12}28]]). How-
ever, both strategies may lead to undesirable results as they
rely on a specific type of movement that is not always ap-
plied in real scenarios. As a result, having low parallax lim-
its these methods’ ability to work properly.

Another strategy requires multi-image capturing, or
stereo imaging, to estimate image depth from defocus cues
extracted from these multiple images, or stereo pairs, of the
same scene [9} (11,1241 125/27,[30]. However, this strategy
results in ghosting effects and cannot work properly with
non-static objects.

Instead of relying on multi-image capture, monocular
single-image depth estimation methods are adopted to pre-
dict depth information using either inverse rendering [[7,/15]]
or supervised machine learning [8}/14//18,21]]. Given the es-
timated depth map, synthetic rendering of shallow DoF im-
ages is then a straightforward process. However, the quality
of this synthetic bokeh effect is tied to the accuracy of the
estimated depth map. In recent years, learning-based depth
estimation methods have achieved impressive results; how-
ever, like most deep learning-based techniques, such learn-
ing depth estimators often suffer from poor generalization
to images taken under conditions beyond training examples.
Thus, synthesized shallow DoF images could suffer from
obvious artifacts around the main object’s edges.

To mitigate failure cases in single-image depth estima-
tion, a few methods propose to replace the depth estimation
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Figure 3: An overview of our proposed framework for multi-view synthesis based on rotated DP blur kernels. This framework
takes three inputs: single image, estimated depth map, and segmentation mask. Given the inputs, the multi-view synthesis
unit produces n views based on the number of rotated point spread functions (PSFs). The image, depth map, and segmentation

mask are taken from the dataset in [26]].

process with some constraints in the scene to improve the
results. For example, by dealing only with photos of people
against a distant background, bokeh effects can be gener-
ated without a need for a depth map estimation [22,23].
With this reasonable constraint, synthetic shallow DoF can
be achieved by first segmenting out the human subject. This
is typically performed using a trained convolutional neu-
ral network. Next, the background can be blurred using a
global blur kernel. While effective, this approach assumes a
constant difference in depth between the main subject (i.e.,
people) and the background. In addition, this approach re-
quires a deep network to segment people from images prop-
erly.

Unlike all methods above, in this paper, our goal is to
produce an image motion effect similar to the NIMAT ef-
fect [[1]. A high-quality bokeh synthesis is an extra by-
product output.

DP sensor DP sensors were developed as a means to im-
prove the camera’s autofocus system. The DP design pro-
duces two sub-aperture views of the scene that exhibit dif-
ferences in phase that are correlated to the amount of defo-
cus blur. Then, the phase difference between the left and
right sub-aperture views of the primary lens is calculated
to measure the blur amount. The phase information is also
used to adjust the camera’s lens such that the blur is mini-
mized. While intended for autofocus [3}5]], the DP images
have been found useful for other tasks, such as depth map
estimation [[10120,29]], defocus deblurring [2//4./6], and syn-
thetic DoF [26]).

3. Defocus-Based Multi-View Synthesis

In this section, we describe our framework for multi-
view synthesis based on rotated DP blur kernels. An
overview of the proposed framework is shown in Fig. [3]
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Figure 4: Thin lens model illustration and dual-pixel (DP)
image formation. The circle of confusion (CoC) size is cal-
culated for a given scene point using its distance from the
lens, camera focal length, and aperture size. Note: we ac-
knowledge that this figure was adapted from [4]

First, we introduce the thin lens model used to determine
the blur kernel size at each pixel. Then, the DP point spread
function (PSF) is described in Sec.[3.2] Afterward, Sec.[3.3]
introduces the defocus blur procedure. Lastly, Sec. [3.4] ex-
plains the process of multi-view synthesis via rotated PSFs.

3.1. PSF Size Based on the Thin Lens Model

The size of the PSFs at each pixel in the image can be cal-
culated using the depth map. Therefore, we model camera
optics using a thin lens model that assumes negligible lens
thickness, helping to simplify optical ray tracing calcula-
tions [[19]]. This model can approximate the circle of confu-
sion (CoC) size for a given point based on its distance from
the lens and camera parameters (i.e., focal length, aperture
size, and focus distance). This model is illustrated in Fig. EL
where f is the focal length, s is the focus distance, and d is
the distance between the scene point and camera lens. The
distance between the lens and sensor s’, and the aperture
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Figure 5: Circle of confusion (CoC) formation in DP sensors. (a) Traditional sensor and (c) DP sensor. (b) and (d) are the
CoC formation on the 2D imaging sensor of two scene points, P1 and P2. On the two DP views, the half-CoC flips direction
if the scene point is in front or back of the focal plane. Note: we acknowledge that this figure was adapted from [III]
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where I is the f-number ratio. Then, the CoC radius r of a
scene point located at distance d from the camera is:
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3.2. PSF Shape Based on DP Image Formation
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Once the radius of the PSF is calculated at each pixel
(Sec.3I), we need to decide the PSF shape to be applied.
In this section, we adopt a DP-based PSF shape for DP view
synthesis.

We start with a brief overview of DP sensors. A DP sen-
sor uses two photodiodes at each pixel location with a mi-
crolens placed on the top of each pixel site, as shown in
Fig. 5lc. This design was developed by Canon to improve
camera autofocus by functioning as a simple two-sample
light field camera. The two-sample light-field provides two
sub-aperture views of the scene and, depending on the sen-
sor’s orientation, the views can be referred to as left/right
or top/down pairs; we follow the convention of prior pa-
pers and refer to them as the left/right pair. The
light rays coming from scene points that are within the cam-
era’s DoF exhibit little to no difference in phase between
the views. On the other hand, light rays coming from scene
points outside the camera’s DoF exhibit a noticeable defo-
cus disparity in the left-right views. The amount of defocus
disparity is correlated to the amount of defocus blur.

Unlike traditional stereo, the difference between the
DP views can be modeled as the latent sharp image be-
ing blurred in two different directions using a half-circle

(c) All-in-focus input

(d) Our synthetic bokeh

Figure 6: Our synthetic bokeh results given an input all-in-
focus image. The images used in this figure are from the
synthetic DoF dataset [26)].

PSF [20]. This is illustrated in the resultant CoC of Fig. [3}
d. The ideal case of a half-circle CoC on real DP sensors
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Figure 7: Results from our DP-view synthesis framework based on defocus blur in DP sensors. (a) Our synthetic DP views.
(b) Real DP views. Our framework can produce DP views that have defocus disparity similar to the one found in real DP
sensors. The image on the left is from the synthetic DoF dataset [26]]. Note: the DP views are animated; click on the image
to start the animation. It is recommended to open this PDF in Adobe Acrobat Reader to work properly.

is only an approximation due to constraints of the sensor’s
construction and lens array. These constraints allow a part
of the light ray bundle to leak into the other-half dual pixels
(see half CoC of left/right views in Fig.[5}d).

Unlike other approaches [4][20]], we provide a simplified
model of the DP PSF using a disk C shape that is element-
wise multiplied by a ramp mask as follows:

H, =CoM,;, st H; >0, wichHl =1, &

where o denotes element-wise multiplication, M; is a 2D
ramp mask with a constant intensity fall-off towards the
right direction, and H; is the left DP PSF. One interesting
property of the DP sensors is that the right DP PSF H,. is
the H; that is flipped around the vertical axis — namely, Hlf :

H, = H/. (5)

Another interesting property of the DP PSFs is that the
orientation of the “half CoC” of each left/right view reveals
if the scene point is in front or back of the focal plane [I}
4,20]. Following the prior work of modeling directional
blur using DP image formation, we also select the DP-based
“half CoC” PSF model to capture the directional blur in this
paper. However, this directional blur PSF does not have
to be DP-based and can be any generic PSF that involves
blurring and shifting the image content. Therefore, we test
other non-DP-based directional PSF in Sec.

3.3. Applying Synthetic Defocus Blur

In our framework, we use an estimated depth map to ap-
ply synthetic defocus blur in the process of generating a

shallow DoF image. To blur an image based on the com-
puted CoC radius r, we first decompose the image into dis-
crete layers according to per-pixel depth values, where the
maximum number of layers is set to 500 (similar to [17])).
Then, we convolve each layer with the DP PSF (Sec. H),
blurring both the image and mask of the depth layer. Next,
we compose the blurred layer images in order of back-to-
front, using the blurred masks. For an all-in-focus input
image I, we generate two images — namely, the left I; and
right I,. sub-aperture DP views — as follows (for simplicity,
let I; be a patch with all pixels from the same depth layer):

Il = Is * Hl, (6)
I, =1I,«H,, (7

where * denotes the convolution operation. The final output
image I, (i.e., synthetic shallow DoF image) that is pro-
duced by the traditional portrait mode can be obtained as

follows:
Il + Ir

I, = 5 ()
Fig.[6]shows the results of the generated synthetic bokeh
image I, using our proposed framework. Furthermore, our
synthetically generated DP views exhibit defocus disparity
similar to what we find in real DP data, where the in-focus
regions show no disparity and the out-of-focus regions have
defocus disparity. We provide in Fig. [7] an animated com-
parison between our generated DP views and real DP views
extracted from a Canon DSLR camera.

3.4. Multi-View Synthesis

The main idea of this work is to generate multiple views
from an all-in-focus image with its corresponding depth
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Figure 8: A comparison between different image motion approaches. This image motion is produced by animating the
synthetic output views of each approach. Two cases of scene depth variation are provided: a small depth variation in the first
row and a large one in the second row. Our proposed image motion produces a pleasant motion transition and fewer artifacts
compared to others. The images used in this figure are from the synthetic DoF dataset [26]. Note: the synthetic output
views are animated; click on the image to start the animation. It is recommended to open this PDF in Adobe Acrobat

Reader to work properly.

map. Therefore, we can generate an aesthetically realis-
tic image motion by synthesizing a multi-view version of
a given single image. As discussed in Sec. the DP
two sub-aperture views of the scene depending on the sen-
sor’s orientation and, in this work, our formation contain

left/right DP pairs, and consequently, our framework syn-
thesizes the horizontal DP disparity as shown in Fig.[7] We
can synthesize additional views with different “DP dispar-
ity” by rotating the PSFs during the multi-view synthesis
process as shown in Fig. [3] For example, eight views can be



generated by performing a 45° clockwise rotation step three
times (i.e., 45°, 90°, 135°). Then, we generate our effect by
alternating the output views to produce the image motion.

4. Experiments
4.1. Results Using DP PSF

Following the qualitative comparison procedure intro-
duced in [1]], we provide the animated image motion (or
NIMAT effect) of different approaches in Fig. [8] In par-
ticular, we compare ours with the results from [[1] and the
Facebook 3D image. As mentioned earlier and unlike other
approaches, our proposed framework starts with the deep
DoF image (i.e., almost all-in-focus) to produce the syn-
thetic bokeh (or synthetic shallow DoF) image and the mul-
tiple DoF/DP-based views. Therefore, we provide the syn-
thetic bokeh image as input to other approaches. This sec-
tion also introduces the NIMAT-like effect from the com-
mon Facebook 3D image by uploading a single image and
rendering the 3D version. Then, we save multiple frames at
different view directions following the circular pixel motion
transition found in the NIMAT effect [[T]].

The results in this section show two cases of scene depth
variations — namely, a small depth variation (Fig. [§] first
row) and a large one (Fig. (8} second row). While the Face-
book 3D image motion is sufficient in the first row, it suffers
from few artifacts around the foreground object boundary
(e.g., the wall behind the person’s head and arm). As for
the NIMAT effect results from [1]] in the first row, the im-
age motion is barely noticeable in the background due to
the small blur size that is a result of the small scene depth
variation.

The second row of Fig. [§]shows the large depth varia-
tion case, where the blur size varies from small to large. In
this case, the Facebook 3D image exhibits noticeable and
unpleasing artifacts (e.g., missing pixels). While the NI-
MAT effect from [1]] produces pleasing image motion, we
can still spot few artifacts that do not exist in ours. Note
that we are aware the Facebook 3D image is not made for
the same purpose, but we rendered it with the same motion
transition settings of the NIMAT effect for comparison pur-
poses.

4.2. Results Using Other PSFs

As mentioned earlier in Sec. the directional PSF
used to render the NIMAT effect can be any generic PSF
that involves blurring and shifting the image content. In
Fig.[9] we show the NIMAT effect rendered using two dif-
ferent PSF shapes — namely, DP-based PSF (Fig. E[ ¢) and
transitional blurring 2D ramp mask with a constant inten-
sity fall-off towards the opposite direction (i.e., Ramp PSF
in Fig. [0 d). These results demonstrate that other non-DP-
based PSF can be utilized to render the NIMAT effect as

(a) NIMAT — DP PSF (click) (b) NIMAT — Ramp PSF (click)

(c) DP PSF

(d) Ramp PSF

Figure 9: A comparison between different PSFs used to ren-
der the NIMAT effect. The two PSFs (i.e., DP PSF and
Ramp PSF) are able to render smooth image motion. How-
ever, different motion transitions and artifacts can be intro-
duced by using different PSFs. Note: the synthetic output
views are animated; click on the image to start the an-
imation. It is recommended to open this PDF in Adobe
Acrobat Reader to work properly.

long as it satisfies the conditions of having a transnational
and blurring operator. Nevertheless, different motion transi-
tions and artifacts can be introduced by using different PSFs
as shown in Fig.[9]

5. Conclusion

In this work, we proposed a modification to the DoF syn-
thesis associated with most smartphones’ portrait mode fea-
ture. This modification can be easily integrated into the tra-
ditional DoF synthesis unit and enables the generation of
multiple sub-aperture views along with the synthetic bokeh
photo. With this modification, we are also able to produce
an aesthetic image motion effect similar to the novel NI-
MAT effect from . For our multi-view synthesis, we in-
troduced the novel idea of convolving the input image with
the rotated blurring kernels based on the DoF blur and DP
image formation. We validated our approach qualitatively
and demonstrated that it produces smooth motion transition
in the NIMAT effect with fewer artifacts compared to oth-
ers. We aim to encourage work in this new research direc-
tion that presented a new pleasing effect of image motion.
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