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Abstract

An image processing unit (IPU), or image signal pro-
cessor (ISP) for high dynamic range (HDR) imaging usu-
ally consists of demosaicing, white balancing, lens shading
correction, color correction, denoising, and tone-mapping.
Besides noise from the imaging sensors, almost every step
in the ISP introduces or amplifies noise in different ways,
and denoising operators are designed to reduce the noise
from these sources. Designed for dynamic range compress-
ing, tone-mapping operators in an ISP can significantly am-
plify the noise level, especially for images captured in low-
light conditions, making denoising very difficult. Therefore,
we propose a joint multi-scale denoising and tone-mapping
framework that is designed with both operations in mind for
HDR images. Our joint network is trained in an end-to-end
format that optimizes both operators together, to prevent the
tone-mapping operator from overwhelming the denoising
operator. Our model outperforms existing HDR denoising
and tone-mapping operators both quantitatively and quali-
tatively on most of our benchmarking datasets. Code avail-
able at: Joint-Multi-Scale-Tone-Mapping-and-Denoising-
for-HDR-Image-Enhancement.

1. Introduction
HDR image enhancement is a complex task consisting

of two major sub-tasks, namely image tone mapping and
image denoising. In a typical ISP for HDR images, tone-
mapping operators (TMOs) and image denoising operators
are separate components. A tone-mapping operator aims to
compress the dynamic range of the HDR image by bright-
ening the low-lights and dimming the high-lights so that
the HDR content can be viewed on low-dynamic-range dis-
plays preserving its perceptual contrast. Many HDR im-
ages are captured under low-exposure settings or low-light
conditions, to capture and preserve a wider dynamic range
without over-exposing the highlight regions. As a result,
noise in HDR images can be a very challenging problem
for any existing denoising algorithms designed for standard-
dynamic-range (SDR) images. Meanwhile, denoising often

requires the inputs to be in a linear color space, which can
hardly hold true due to the multi-exposure HDR capture and
non-linear tone-mapping.

With the denoising and tone-mapping treated as sepa-
rate modules in conventional ISPs, it is natural for us to
wonder which operator should be applied first. Denoising
after TMOs [15] can pose significant challenges to denois-
ing, since TMOs are usually highly non-linear and tends
to amplify the noise. Denoising before TMOs, in contrast,
may cause the remaining noise after denoising being signif-
icantly amplified by the subsequent TMOs, requiring extra
denoising steps. Therefore, it makes sense for us to de-
sign the denoising and tone-mapping jointly. Meanwhile,
we observe that both denoising and TMOs can benefit from
multi-scale processing. For instance, tone-mapping can be
achieved by adjusting the brightness to the high- and low-
frequency component of the HDR image differently [10],
and denoising on decomposed multi-scale inputs also re-
ceives better results than the single-scale counterpart [41].

Thus, in this paper, we propose to jointly optimize the
two operators within a multi-scale network for HDR im-
age enhancement and showcase that our proposed frame-
work achieves better results than state-of-the-art HDR
tone-mapping methods and separately performed denoising
and tone-mapping procedures on recent HDR benchmark
datasets both quantitatively and qualitatively. Our key con-
tributions are the following:

• We propose a novel learned differentiable single image
denoising module based on discrete cosine transform
(DCT);

• We propose a multi-scale image enhancement frame-
work that jointly optimizes the TMOs and denoising
operators for HDR image enhancement;

• We investigate the effect of different orderings of the
TMOs and denoising operators and demonstrate that
having TMOs applied first yields better final results.
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2. Related Work

2.1. HDR Image Tone Mapping

Tone-mapping algorithms can be categorized into
learning-based methods and traditional methods depend-
ing on whether training is needed. With the advancement
in deep learning, learning-based TMOs are become more
advantageous, especially in challenging cases. Within the
learning-based category, methods can be further divided
into supervised [7, 49, 32, 47, 6, 26, 59, 42, 48, 51, 12, 61,
44, 38, 33, 25, 22], semi-supervised [52], and unsupervised
[57, 27, 16, 60, 46, 37, 23], depending on whether ground-
truth is provided during training. In general, most super-
vised TMOs outperform semi-supervised and unsupervised
TMOs, while the latter requires fewer paired training sam-
ples and thus can be easily implemented in a wide range of
applications.

In particular, multi-scale structures such as the Laplacian
pyramid has been used by many learning-based image en-
hancement algorithms including [9], [29], and [1].

In our work, we adopt the CSRNet [20] as our back-
bone tone-mapping network for its decent performance,
lightweight, and fully convolutional structure that makes it
compatible with any size input.

2.2. HDR Image Denoising

Deep learning has been applied extensively to the image
denoising field [43], outperforming many of the traditional
denoising algorithms. Based on the number of images used
as input for a given scene, these deep learning-based image
denoising methods can be categorized into single-image de-
noising and multi-image denoising. Single-image denoising
[55, 56, 17, 8, 30, 35, 3, 36, 45, 2, 21, 24] aims to denoise a
target scene with only a single shot from the scene. On the
other hand, multi-image denoising [14] aims to denoise a
target scene by utilizing multiple shots from the same scene.
A common strategy in multi-image denoising utilizes im-
ages from a shot burst, providing a richer spatial-temporal
context for the model. However, this requires image regis-
tration preprocessors for aligning and merging multiple im-
ages from a shot burst, which can cause other artifacts and
is usually computationally intensive.

Based on whether a multi-scale structure is used, denois-
ing methods can also be classified into single-scale methods
and multi-scale methods. Multi-scale denoising has been an
effective strategy for extracting and providing multi-scale
information to the denoising models [35, 3, 45].

In our work, we adopt a single-image multi-scale de-
noising framework and propose a novel deep DCT denois-
ing module inspired by the traditional DCT denoising algo-
rithm.

2.3. Joint Tone Mapping and Denoising for HDR
Images

For a noisy raw HDR image, different modules in an ISP
will have different effects on the noise distribution. Mod-
ules such as demosaicing and tone-mapping can sometimes
boost the noise significantly if not designed wisely. There-
fore, some recent works try to combine denoising with these
modules, to get a better measurement of the noise distribu-
tion and provide more intermediate information to the de-
noising algorithm. [13, 28, 11, 34] proposed to jointly per-
form image demosaicing and image denoising. However, a
major drawback of these methods is that since demosaicing
is usually performed at the beginning of an ISP, the remain-
ing noise after the joint denoising can still be amplified by
the following operations, especially those highly non-linear
ones such as tone mapping. As a result, extra denoising
modules are often needed to clean up the noise remaining
from these operations. A joint tone mapping and denois-
ing framework, on the other hand, does not have such a
drawback since TMOs are usually placed near the end of an
ISP pipeline. Moreover, by jointly optimizing two modules,
the TMO can provide information and context on where the
noise gets amplified more. [15] has proved the effective-
ness of applying joint tone mapping and denoising on HDR
contents.

In our work, we extend the idea of joint tone mapping
and denoising to a multi-scale framework, where the TMOs
and denoising operators are jointly optimized at multiple
scales in a Laplacian pyramid.

3. Proposed Method
In this section, we will present our joint multi-scale tone

mapping and denoising framework for an HDR image in
detail. The overall structure of our proposed framework is
shown in Figure 1.

3.1. Deep DCT Denoising for a Single HDR Image

We will first introduce our deep DCT denoising network
designed for single HDR image denoising. The architec-
ture of our deep DCT denoising algorithm for a single HDR
image is shown in Figure 1.

DCT denoising was first proposed in 2011 by [54] and
was widely used because of its simplicity and effectiveness.
Later in 2017, [41] extended the DCT denoising algorithm
to a multi-scale setting. The deep DCT denoising network
we propose is a learnable DCT denoising algorithm that
combines the simplicity of the traditional DCT denoising
algorithm and the effectiveness of modern deep neural net-
works.

In traditional DCT denoising algorithms, a preset thresh-
old is chosen to zero out DCT coefficients below the thresh-
old in order to create sparsity in the DCT domain of lo-



Figure 1: Our proposed HDR image enhancement framework. The upper portion of the figure shows a high-level workflow
of our framework and the multi-scale structure. The lower portion of the figure shows more details of the tone-mapping
module and the denoising module.

cal image tiles. However, this operation is not differen-
tiable and thus is not suitable for our learning-based frame-
work. Therefore, instead of applying a learned threshold
to the DCT coefficients, we multiply the DCT coefficients
with learned re-weighting maps with re-weighting values
between 0 and 1. In a re-weighting map, a value close to 0
is equivalent to the case where the corresponding DCT co-
efficient is below the threshold, while a value close to 1 is
equivalent to the case where the DCT coefficient is above
the threshold. Using re-weighting maps not only allows for
differentiable parameters but also provides more flexibility
to the denoising module, leading to better denoising perfor-
mance.

The input to our DCT denoising module is a 3-channel
noisy image patch in RGB. As the first step in the denoising
module, the input image patch will be split into overlapping
tiles in size of 16 × 16, which will then be reshaped into a
stack of tiles. We adopt 16×16 as the size of all local image
tiles following [54]. Organizing the tiles this way allows us
to perform the DCT easily for every tile. These noisy DCT
tiles will then be passed to a 5-layer CNN to estimate a de-
noising multiplier within the DCT domain, which will then
be multiplied element-by-element by the noisy DCT tiles
to get the same number of denoised DCT tiles. These de-
noised DCT tiles will then go through an inverse discrete
cosine transform (IDCT), as well as a tile-averaging opera-
tion, to reconstruct the denoised output image patch. Note
that the tile-averaging operation here is a simple averaging
operation applied to the overlapping pixels among neigh-
boring tiles. For example, if a pixel in the output image
patch is overlapped by 4 neighboring tiles that reconstruct
this output image patch, the value for this pixel will then be

the average of the 4 values of the corresponding locations
in these 4 overlapping tiles.

Our DCT denoising process can be represented by Equa-
tion 1, where Cnoisy and Cdenoised represent the DCT coef-
ficients of the noisy input and the denoised output, respec-
tively. F represents the non-linear function learned by the
5-layer CNN for estimating the denoising multipliers, and
⊙ represents element-by-element multiplication. Note that
the 5-layer CNN here for estimating the denoising multipli-
ers contains only 1 × 1 2D convolutional layers. We made
this design choice intentionally because we believe that in
the DCT domain, the coefficients at different frequencies
should be considered separately, while coefficients at the
same frequency should be grouped together. Thus, convo-
lutional kernels that are commonly used in the image do-
main, such as a 3× 3 2D convolutional layer, would not be
suitable here.

Cdenoised = Cnoisy ⊙F(Cnoisy) (1)

3.2. Joint Multi-Scale Tone-mapping and Denoising
Framework

The other important component of our proposed frame-
work is its joint multi-scale tone-mapping and denoising
framework. The overall structure of our framework and a
closer look at the multi-scale structure are shown in Figure
1.

Multi-scale structures have been used extensively in
many image processing and computer vision tasks for their
effectiveness in producing finer results than their single-
scale counterparts. Some [3, 45] incorporate the multi-scale
aspect by simply downsampling the input a few times, and



then processing each scale separately, while others [35, 41]
utilize domain transformations such as the discrete wavelet
transform (DWT) and DCT.

In our proposed framework, we utilize the Laplacian
pyramid to obtain multiple scales of an input image. To be
specific, a noisy input RGB image will first be divided into
half-overlapping image patches of size 224 × 224 pixels.
Then every image patch will be decomposed into four Gaus-
sian pyramid layers (g0, g1, g2, g3), From there, three Lapla-
cian layers (l0, l1, l2) will be computed from the neighbor-
ing Gaussian layers, which then forms a four-layer Lapla-
cian pyramid along with the Gaussian base layer (g3 or l3).

From the Laplacian pyramid, the Laplacian layers l0, l1,
and l2 will be passed to their corresponding tone mapping
networks, followed by their corresponding deep DCT de-
noising modules, while the base layer (g3 or l3) will only
be tone-mapped. We don’t denoise the base layer because
most high-frequency noise will be separated to the upper
layers and it is unnecessary for a denoising operator in the
base layer. This can help reduce the model size and speed
up inference.

These tone-mapped and denoised output Laplacian lay-
ers will then be combined to reconstruct the corresponding
tone-mapped and denoised output RGB image patch, fol-
lowing the inverse process of obtaining the Laplacian pyra-
mid. Finally, all the output image tiles will be combined
into a single output RGB image using a modified raised-
cosine filter, following the same way of merging overlap-
ping image tiles in [40]. As shown in our results, this modi-
fied raised-cosine filter does a very good job merging image
tiles without showing any obvious artifacts.

3.3. Training Scheme and Loss Functions

To better optimize both the tone-mapping networks and
the denoising modules, we adopt a three-phase training
scheme in our experiments. To be specific, we train the
model in three consecutive phases, namely tone-mapping
training, denoising training, and joint training.

In each training phase, a different part of the joint frame-
work will be trained and different loss functions will be used
to serve each training purpose.

The first training phase, i.e. the tone-mapping training
phase, focuses on pre-training the tone-mapping networks.
In this phase, the denoising modules will be temporarily
moved out of the joint framework, meaning that each layer
in the pyramid will only go through a tone-mapping net-
work. The loss function for this phase is computed accord-
ing to Equations 2 and 3, where Ll0 , Ll1 , Ll2 , Ll3 are the L1
loss computed at each Laplacian layer, and l

(1)
i and li rep-

resent, respectively, the tone-mapped Laplacian layer and
the corresponding Laplacian layer from the tone-mapped
ground-truth image. Here, λ0, λ1, λ2, and λ3 are hyper-
parameters, and the selected values for them can be found

in Section 4.1.

Lp1 = λ0L
(1)
l0

+ λ1L
(1)
l1

+ λ2L
(1)
l2

+ λ3L
(1)
l3

(2)

L
(1)
li

= |l(1)i − li|, i = 0, 1, 2, 3 (3)

The second phase, i.e. the denoising phase, focuses on
pre-training the denoising networks. The denoising mod-
ules are added back to the joint framework during this
phase, while the pre-trained tone-mapping networks are
fixed. The loss function for this phase is computed accord-
ing to Equations 4-6, where Ll0 , Ll1 , Ll2 are the L1 loss
computed at each Laplacian except for l3, and l

(0)
i and l

(2)
i

represent, respectively, the input Laplacian layer and the
tone-mapped denoised Laplacian layer. Ldenoise measures
the denoising loss by computing the L1 loss between the
reconstructed denoised output and the clean ground-truth
image without tone-mapping (Ymerged). Here, we use R
to represent the reconstruction operator. Again, λ0, λ1, λ2,
and λd are hyper-parameters, and the selected values for
them can be found in Section 4.1.

Lp2 = λ0L
(2)
l0

+ λ1L
(2)
l1

+ λ2L
(2)
l2

+ λdLdenoise (4)

L
(2)
li

= |l(2)i − li|, i = 0, 1, 2 (5)

Ldenoise = |R(l
(2)
0 , l

(2)
1 , l

(2)
2 , l

(0)
3 )− Ymerged| (6)

The last phase, i.e. the joint training phase, trains both
the tone-mapping networks and the denoising modules to-
gether. The loss function for this phase is simply an L1
loss computed between the reconstructed output from the
tone-mapped denoised Laplacian layers and the clean tone-
mapped ground-truth image Yfinal, as shown in Equation
7.

Lp3 = |R(l
(2)
0 , l

(2)
1 , l

(2)
2 , l

(1)
3 )− Yfinal| (7)

4. Experiments
In this section, we will demonstrate the effectiveness of

our proposed framework through both qualitative and quan-
titative evaluation on several HDR image datasets.

4.1. Training Settings and Dataset

Our experiments are run on a single Nvidia Tesla GPU.
Detailed training settings for the three training phases for
our joint framework are summarized in Table 1. Adam op-
timizers with β1 = 0.9 and β2 = 0.999 are adopted for
all 3 training phases. We empirically choose the hyper-
parameters in the loss functions (Equation 2 and Equation
4) to be λ0 = 2, λ1 = 2, λ2 = 2, λ3 = 1, λd = 1.

We use the Google HDR+ dataset [19] as our training
dataset, as it provides both the merged intermediate ground-
truth image ( denoised using burst captures) and the final



Input DSLR TBEFN Zero-DCE++ FFDNet+GC DFTL (Ours) TFDL (Ours) Ground-truth

Input DSLR TBEFN Zero-DCE++ FFDNet+GC DFTL (Ours) TFDL (Ours) Ground-truth

Figure 2: Qualitative comparisons between methods on examples from the HDR+ testing set. Four sub-regions selected
from each example are zoomed in 10 times to show more details. Images here have been down-sampled for better viewing
experience.

Input DSLR TBEFN Zero-DCE++ FFDNet+GC DFTL (Ours) TFDL (Ours) GT

Input DSLR TBEFN Zero-DCE++ FFDNet+GC DFTL (Ours) TFDL (Ours) GT

Figure 3: Qualitative comparisons between methods on examples from the LOL dataset (the first row) and SCIE dataset (the
second row). Four sub-regions selected from each example are zoomed in 5 times to show more details.

Phase Batch Size Learning Rate Epochs
1 16 1e-5 500
2 16 1e-5 500
3 16 1e-6 1000

Table 1: Training settings for the three phases.

ground-truth image (denoised and tone-mapped) for calcu-
lating our loss functions. From the HDR+ dataset, we ran-
domly select 2000 scenes for training, 200 scenes for vali-
dation, and 1300 scenes for testing and benchmarking.

The input images we used from the HDR+ dataset are the
reference frames from the N input burst photos of each indi-
vidual scene, and the merged intermediate ground-truth im-
ages are the intermediate raw results of aligning and merg-
ing their corresponding input burst. For simplicity, we pre-
processed the raw input images and raw merged interme-
diate images by demosaicing, color correction, and gamma
correction to convert them to sRGB color space before us-
ing them. Note that the ground-truth images in the HDR+
dataset are obtained through a series of processing steps in
the finishing pipelines besides denoising and tone-mapping.
However, including all the finishing steps in our frame-
work would overly complicate our method, so the rest of



the processing steps in the finishing pipeline are not ex-
plicitly performed in our framework when obtaining the fi-
nal tone-mapped and denoised output, and we can assume
that these operations are implicitly learned through the tone-
mapping modules and denoising modules in our joint multi-
scale framework.

Since the provided final ground-truth images are
cropped, we need to align the input images and the merged
intermediate ground-truth images with their final counter-
parts. For convenience, we used the Scale-Invariant Feature
Transform (SIFT) [4] to align and crop the input and inter-
mediate images as a prepossessing step.

Our joint framework takes input with a size of 224 ×
224 pixels, so we cannot use the full images to train our
model. Instead, we split all 2000 input images into tiles of
size 224× 224 pixels, along with their intermediate merged
ground-truth image and final ground-truth image.

4.2. Results

4.2.1 Full-Reference Comparison

To quantitatively evaluate the performance of our proposed
joint tone-mapping and denoising framework, we measured
the SSIM, PSNR, LPIPS [58], and Tone-Mapping Quality
Index (TMQI) [53] on the HDR+ testing set (1300 scenes),
as well as the LOL training dataset (485 scenes) [50] and
part 1 of the SCIE dataset (360 scenes) [5]. Note that our
models are neither trained nor fine-tuned on any subsets of
the LOL dataset or the SCIE dataset. For the HDR+ dataset,
we used the reference frame as the input and for the SCIE
dataset, we used the first image (the image with the low-
est exposure) of every scene as the input. We tested sev-
eral state-of-the-art image enhancement methods including
DSLR[33], TBEFN[37], and Zero-DCE++[31] as a com-
parison to our method, and we also compared the denois-
ing performance of our method to one of the state-of-the-art
denoising methods named FFDNet[56]. Note that among
these methods, DSLR, TBEFN, and FFDNet are super-
vised methods, while Zero-DCE++, an extension to its orig-
inal version Zero-DCE[16], is trained through unsupervised
learning. Note that for DSLR, TBEFN, Zero-DCE++, and
FFDNet, we used their corresponding pre-trained versions
in all our experiments without fine-tuning. For FFDNet,
since it is merely a denoising algorithm, we paired it with a
standard gamma correction (GC) with γ set to 2.2.

To see whether performing tone-mapping or denois-
ing first would produce better results, we also trained
our models in both configurations. For convenience, we
use “DFTL” (denoise first, tone-map last) to represent the
model where tone-mapping is performed after denoising,
and “TFDL” (tone-map first, denoise last) to represent the
model where tone-mapping is performed before denoising.
The results are summarized in Table 2, Table 3, and Table 4.
From these quantitative results, we can see that our method

outperforms the other methods on most of the benchmark-
ing datasets, and is significantly advantageous on the HDR+
testing set. This is likely due to the fact that, among these
datasets we tested, images from the HDR+ testing set con-
tain heavy noise, while images from the LOL dataset and
SCIE dataset contain only minimal noise.

Methods SSIM PSNR LPIPS TMQI
DSLR 0.500 17.358 0.412 0.761

TBEFN 0.496 13.871 0.379 0.749
Zero-DCE++ 0.472 15.761 0.396 0.746
FFDNet + GC 0.526 16.989 0.459 0.680
DFTL (Ours) 0.668 19.905 0.349 0.759
TFDL (Ours) 0.698 20.168 0.293 0.761

Table 2: Quantitative comparison on HDR+ testing set. The
best results are printed in boldface. The second best results
are underlined.

Methods SSIM PSNR LPIPS TMQI
DSLR 0.674 14.541 0.388 0.718

TBEFN - - - -
Zero-DCE++ - - - -
FFDNet + GC 0.542 12.721 0.475 0.686
DFTL (Ours) 0.517 11.727 0.352 0.767
TFDL (Ours) 0.502 11.491 0.329 0.778

Table 3: Quantitative comparison on the LOL dataset. The
best results are printed in boldface. The second best results
are underlined. Since TBEFN and Zero-DCE++ are trained
on this dataset, we remove them from this comparison.

Methods SSIM PSNR LPIPS TMQI
DSLR 0.529 13.094 0.385 0.706

TBEFN - - - -
Zero-DCE++ - - - -
FFDNet + GC 0.524 13.656 0.450 0.531
DFTL (Ours) 0.529 12.347 0.383 0.665
TFDL (Ours) 0.517 12.210 0.385 0.646

Table 4: Quantitative comparison on part 1 of the SCIE
dataset. The best results are printed in boldface. The second
best results are underlined. Since TBEFN and Zero-DCE++
are trained on this dataset, we remove them from this com-
parison.

For qualitative comparison, examples from the HDR+
testing set with zoomed-in views are shown in Figure 2. We



Input DSLR TBEFN Zero-DCE++ FFDNet+GC DFTL (Ours) TFDL (Ours)
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Input DSLR TBEFN Zero-DCE++ FFDNet+GC DFTL (Ours) TFDL (Ours)

Input DSLR TBEFN Zero-DCE++ FFDNet+GC DFTL (Ours) TFDL (Ours)

Figure 4: Qualitative comparisons between methods on examples from the MEF dataset (top two rows) and LIME dataset
(bottom two rows). Four sub-regions selected from each example are zoomed in 5 times to show more details.

also show examples from the LOL dataset and part 1 of the
SCIE dataset in Figure 3 to demonstrate the effectiveness
of our methods on an unseen dataset. From these repre-
sentative examples, we can see that both of our methods
outperform the other methods in the comparison in terms
of both tone-mapping and denoising. Compared to TBEFN
and Zero-DCE++, DSLR does a better job of tone-mapping

the image to a natural brightness level, especially in the
extreme low-light scenes. However, all these three meth-
ods suffer from the amount of noise in the input. In terms
of denoising, FFDNet does a pretty good job at removing
heavy noise in the input, but it may overly blur the image
and smooth out important details or high-frequency infor-
mation. Our methods significantly outperform other meth-



Methods MACs(G) Params(M)
DSLR 5.876 14.931

TBEFN 3.682 0.683
Zero-DCE++ 0.530 0.011
FFDNet + GC 10.721 0.855
DFTL (Ours) 10.582 39.806
TFDL (Ours) 10.582 39.806

Table 5: Comparison on model sizes and computational
complexity. Smallest values are labeled in blue, and great-
est values are labeled in red.

ods on both the HDR+ dataset and the LOL dataset, in terms
of both the tone-mapping quality and denoising quality. To
be specific, our methods can tone-map the low-light inputs
to appropriate brightness levels while maintaining natural
contrasts. Moreover, our methods effectively remove the
noise while keeping most of the important details intact.

4.2.2 No-Reference Comparison

To further showcase the effectiveness of our methods on un-
seen datasets, we also tested our models on two more pop-
ular datasets, namely the MEF dataset [39] and the LIME
dataset [18]. Since these datasets do not contain paired
ground-truth images, we only show outputs from our mod-
els as well as the other methods in Figure 4 for a qualita-
tive comparison. From these no-reference results, we can
see that our results have better contrast, look more natural,
and are aesthetically more pleasing, compared to the results
from other methods.

4.2.3 Computational Complexity Comparison

In order to compare the efficiency of these methods, we
also measured the model size and computational complex-
ity of each model and summarized the results in Table 5.
To be specific, we measured the number of MAC (multiply-
accumulate operations) as well as learnable parameters in
these models with a 3-channel input image in size 224×224.
We can see from the table that, although our joint frame-
work performs well in both the quantitative and qualita-
tive comparisons, it does have a trade-off in its model size.
However, considering that our method performs both tone-
mapping and denoising at the same time and that denoising
algorithms are often computationally intensive, this trade-
off should be worthy.

5. Conclusions
In this paper, we have proposed a composite HDR image

enhancement model that jointly performs HDR image tone-
mapping and image denoising in a multi-scale framework.

Based on the testing results on the HDR+ dataset shown
in the previous section, our joint multi-scale tone mapping
and denoising model for HDR image enhancement outper-
forms other state-of-the-art image enhancement methods
both quantitatively and qualitatively. Our experiments on
the ordering of the tone-mapping operator (TMO) and the
denoising operator demonstrate that applying tone mapping
before denoising yields slightly better results in our joint
image enhancement framework. In the future, we plan to
exploit the combination of multi-image tone-mapping and
multi-image denoising for HDR images.
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