
Multimodal Data Augmentation for Visual-Infrared Person ReID
with Corrupted Data

Arthur Josi, Mahdi Alehdaghi, Rafael M. O. Cruz, and Eric Granger
{arthur.josi.1, mahdi.alehdaghi.1}@ens.etsmtl.ca, {rafael.menelau-cruz, eric.granger}@etsmtl.ca

Laboratoire d’imagerie, de vision et d’intelligence artificielle (LIVIA)
Dept. of Systems Engineering, ETS Montreal, Canada

Abstract

The re-identification (ReID) of individuals over a com-
plex network of cameras is a challenging task, especially
under real-world surveillance conditions. Several deep
learning models have been proposed for visible-infrared (V-
I) person ReID to recognize individuals from images cap-
tured using RGB and IR cameras. However, performance
may decline considerably if RGB and IR images captured at
test time are corrupted (e.g., noise, blur, and weather con-
ditions). Although various data augmentation (DA) meth-
ods have been explored to improve the generalization ca-
pacity, these are not adapted for V-I person ReID. In this
paper, a specialized DA strategy is proposed to address
this multimodal setting. Given both the V and I modali-
ties, this strategy allows to diminish the impact of corrup-
tion on the accuracy of deep person ReID models. Cor-
ruption may be modality-specific, and an additional modal-
ity often provides complementary information. Our mul-
timodal DA strategy is designed specifically to encourage
modality collaboration and reinforce generalization capa-
bility. For instance, punctual masking of modalities forces
the model to select the informative modality. Local DA is
also explored for advanced selection of features within and
among modalities. The impact of training baseline fusion
models for V-I person ReID using the proposed multimodal
DA strategy is assessed on corrupted versions of the SYSU-
MM01, RegDB, and ThermalWORLD datasets in terms of
complexity and efficiency. Results indicate that using our
strategy provides V-I ReID models the ability to exploit both
shared and individual modality knowledge so they can out-
perform models trained with no or unimodal DA. GitHub
code: https://github.com/art2611/ML-MDA.

1. Introduction
Real-world monitoring and surveillance application

(e.g., individuals in airport, and vehicles in traffic) rely

on challenging tasks, like object detection [55, 51], track-
ing [29], and re-identification (ReID) [24, 50]. The aim
of person ReID is to recognize individuals over a set of
distributed non-overlapping cameras. State-of-art systems
for person re-identification (e.g., deep Siamese networks)
typically learn an embedding through various metric learn-
ing losses, which aim at making similar image pairs (with
the same identity) closer to each other and dissimilar im-
age pairs (with different identities) more distant from each
other. Despite the recent advances with deep learning (DL)
models, person ReID remains a challenging task due to the
non-rigid structure of the human body, the different view-
points/poses with which a person can be observed, image
corruption, and the variability of capture conditions (e.g.,
illumination, scale, contrast) [3, 31].

Visible-infrared (V-I) person ReID aims to recognize in-
dividuals of interest across a network of RGB and IR cam-
eras. IR cameras are often employed in conjunction with
RGB cameras for, e.g., night time recognition in outdoor
environments. Most approaches for V-I person ReID fo-
cus on the cross-modal matching problem. This paper fo-
cuses on person ReID systems that allow for fusion of vis-
ible and infrared modalities based on a joint representation
space. Although several techniques have been proposed for
dynamic and attention-based fusion [23, 41], few V-I per-
son ReID methods have been proposed for RGB-IR fusion
[35]. In this setting, it is difficult to extract discriminant
modality-specific features when one modality becomes cor-
rupted, while conserving the shared modality features [2].

In real-world surveillance applications, the accuracy of
person ReID models often declines when image data is cor-
rupted by noise, occlusions, saturation, blur, weather con-
ditions, etc. [5]. Several strategies have been developed
to improve the generalization performance of person ReID
models in response to corrupted image data. Using more
complex DL models, trained with more data have been
shown to improve the performances in object detection [32],
and image classification [47] tasks. For instance, using
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transformer-based models may be more suitable to tackle
corruption [19, 5]. However, using more complex models,
like vision-transformers [12] limits real-time ReID applica-
tions. In addition, using more diverse training data can help
[47], and therefore data augmentation (DA) [5] methods
may improve performance, without increasing the models
complexity, and while avoiding the costs of data collection
and annotation [40].

In this paper, we propose a MDA strategy to improve
the accuracy of V-I person ReID systems. Chen et al. [5]
recently proposed a DA learning strategy, called the Con-
sistent ID Loss, with Inference before BNNeck, and Local-
based Augmentation (CIL). It is mainly based on local
DA, and provides improvements in accuracy for unimodal
(RGB) person ReID. However, the multimodal aspect has
not been explored in the literature to tackle corruptions.
Yet, such approach might be helpful to tackle corruption
as modalities are not similarly affected by corruptions and
can still benefit by DA strategies [14].

To manage corrupted image data in multimodal settings,
a multimodal DA (MDA) strategy is introduced, allowing to
leverage the complementary knowledge among modalities,
while dynamically balancing the importance of individual
modality in the final predictions. Consequently, the strategy
should reduce the corruption impact. Having in mind the
multimodal person ReID aspect, and regarding that person
ReID datasets were only used for cross-modal ReID, pro-
tocols are provided along with a comprehensive study over
three V-I person ReID datasets, SYSU-MM01 [46], RegDB
[35] and (less explored) ThermalWORLD [25]. Finally, as
the focus is made on corruption robustness for the multi-
modal setting, the corruption benchmark proposed by [5] is
extended to the infrared thermal modality.

Our main contributions are summarized as follows. (1)
A MDA strategy is proposed to improve the accuracy of
DL models for V-I person ReID. To optimize the collabora-
tion among modalities, discriminant joint feature represen-
tations in the DL model, our MDA strategy relies on local
occlusions and global modality masking data augmentation.
(2) A comprehensive V-I multimodal experimental protocol
is proposed to evaluate the impact on performance of clean
and corrupted image data using the well-known SYSU-
MM01, RegDB, and ThermalWORLD datasets. Corrup-
tions from [5] are extended to the infrared domain to anal-
yse multimodal data corruption impact. (3) An extensive
set of experiments is conducted, showing that the used V-
I fusion model outperforms the related state-of-art models.
The limitations of unimodal models are shown by compar-
ing a basic fusion model learned with the adapted DA to the
unimodal state-of-art person ReID models.

2. Related Work
A) Multimodal person ReID. Most approaches for person
ReID in the last decade [50] focus on the unimodal (RGB)
[38, 27] and cross-modal [13, 1, 52] settings. Few focused
on combining multimodal information, despite the poten-
tial to improve performance in the joint representation set-
ting [2]. For example, Chen et al. extracted contours from
the RGB modality and used a two-stream CNN architec-
ture to combine information [4]. Bhuiyan et al. proposed to
use pose information to gate the flow of visual information
through a CNN backbone [3]. These approaches used the
knowledge extracted from the main modality, which would
be similarly affected by image corruption.

Some approaches sought to leverage the complementar-
ity of RGB and depth modalities for an accurate person
ReID [36, 26, 30]. However, Nguyen et al. [35] represents
the only approach where visible and infrared modalities are
integrated into a joint representation space. Infrared and vi-
sual features are concatenated from embeddings extracted
independently trained CNNs, and used for pairwise match-
ing at test time. This simple model attained an impressive
performances on the RegDB dataset. However, RegDB data
is captured with only one camera per modality, and RGB-
IR cameras are co-located, with only a single tracklet of ten
images per modality and individual. For these reasons, the
RegDB dataset is less consistent with a real-world scenario.
In fact, the development of person ReID models that are ef-
fective in uncontrolled real-world scenario remains an open
problem [17].
B) Corruption and data augmentation strategies. Data
augmentation (DA) consists in multiplying the available
training dataset by punctually applying transformations on
training images, like flips, rotations, and scaling [7]. This
way, a model usually benefits from increased robustness
to image variations, and improved generalization perfor-
mance. According to Geirhos et al. [10], training a model
on a given corruption is not often helpful over other types
of degradation. Yet, [39] showed that a well-tuned DA can
help the model to perform well over multiple types of image
corruption, through Gaussian and Speckle noise augmenta-
tion. Hendrycks et al. proposed the Augmix strategy [20],
where various transformations are randomly applied to an
image, and then mix multiple of those augmented images.
Random Erasing punctually occludes parts of the images
by replacing pixels with random values [53]. Those strate-
gies allow a large variety of augmented image, simulating
eventually real-world data, and hence inducing higher gen-
eralization performance.

Focusing on person ReID, Chen et al. [5] proposed both
a corrupted RGB dataset (adapted from [18]) and the CIL
learning strategy to improve systems performance under
corrupted data. Their strategy is partly based on two lo-
cal DA methods – self-patch mixing and soft random eras-



Figure 1. Training architecture considered for V-I person ReID. It
learns a joint multimodal representation by concatenating features
produced by independent I and V ResNet-18 CNN backbones.

ing. The former replaces some of the pixels in a patch with
random values, while the latter superposes a randomly se-
lected patch from an image at a random position on this
same image. Gong et al. [11] show interesting improve-
ments through local and global grayscale patch DA on
RGB images. The previous strategies are limited to sin-
gle modality stream models, even though the latter shows
how greyscale data may reinforce the visible modality fea-
tures using DA. MDA strategies have presented encour-
aging results for image-text emotion recognition [48] or
vision-language representation learning [14]. However, to
our best knowledge, our work is first to propose MDA with
V-I person ReID applications.

3. Proposed Strategies

Our strategy is based on co-learning, allowing each
modality stream to adapt to the other [2]. Using our MDA
strategy, we expect to adapt DL models from one modal-
ity stream to another, and consequently provide better ro-
bustness to corrupted multimodal data. The low-cost multi-
modal architecture that we considered for V-I person ReID
is based on two parallel ResNet-18 [15] backbones pre-
trained on ImageNet [8]. Rather than having a large single
stream model, such architecture might allow us to present a
competitive model both in size and efficiency. After the two
backbones, each stream has an average pooling and a batch
normalization layer. The final prediction is obtained by con-
catenating features from each embedding, right before pre-
senting it to a fully connected layer (Fig. 1). Embeddings
are concatenated during the test phase for pairwise similar-
ity matching, from which the final ranking is obtained.
A) Multimodal patch mixing and soft random-erasing.
Making a multimodal model focus on modality-specific fea-
tures is challenging, as the model usually mainly focuses on
shared features [2]. Augmenting data with local occlusions
may help the model to emphasize modality-specific feature

importance, as some features will be available only from
one or the other modality.

Multimodal soft Random Erasing (MS-REA): The soft
random erasing (S-REA) [5] might play this role, as it oc-
cludes parts of the RGB image punctually, potentially let-
ting the opportunity for the hetero modality to close this
occlusion gap. For S-REA, a proportion of the pixels in a
given patch are given random values. To make the model
close the occlusion gap in a bi-directional manner, the MS-
REA is proposed (Fig. 2), applying grayscaled random
pixel values on a given path of the thermal modality, as well
as the random values pixel values on the RGB modality.
Grayscale values respect the infrared thermal image defini-
tion as IR thermal is encoded on one channel, potentially
aligning better with real-world corruptions.

Multimodal Patch Mixing (M-PATCH): Our M-PATCH
DA inspired by the Self Patch (S-PATCH) DA [5]. Through
M-PATCH, the idea is to extract a patch from each modality
and superimpose it on the hetero-modality. The IR modal-
ity receives the RGB patch from the same individual, and
vice versa. As the patches come from the same individual,
the model has the option to rely on the patch features to dis-
criminate. Three variants are explored which have different
disturbance levels. From the less disturbing to the most dis-
turbing, the first variation is extracting the patch from the
Same part of the image, and applying it at the Same loca-
tion on both modalities (-SS). The second extracts from the
Same location but apply at Different locations (-SD), and
the third extracts from Different locations and also apply
at Different locations (-DD) (Fig. 2). The M-PATCH ap-
proach might gather the best of both RandomPatch [54] and
S-PATCH [5] strategies. RandomPatch is strongly disturb-
ing, and the model is forced to focus on out-of-patch fea-
tures as the patch gathers information related to a different
individual. S-PATCH less disturbing – it allows the model
to focus on in-patch features as it contains features related
to the same individual. Ours also allows in-patch feature se-
lection by using the same individual, but provides more dis-
turbance since the patch comes from the hetero modality.
This approach may reinforce the model’s shared features
finding, while also pushing the model to exchange informa-
tion across modalities.
B) Modality masking. A modality might be punctually un-
available or primarily uninformative. Though, the model
has to know how to cancel a modality so that this one
should not have a high impact in the final prediction. The
modality masking approach is expected to make the model
learns such behavior, by punctually replacing one or another
modality with an entirely blank image. Instead of masking
the multimodal representation as it has been done in [9], a
representation is extracted from the masked input, so the
model has to learn how to cancel its influence on the final
results. This masking DA is expected to complement the



Figure 2. Left present data augmentation methods from [5]. Center are our augmentation methods extensions from those, along with the
proposed Modality Masking approach. Right shows visualizations of activation maps from corrupted a sample and from differently trained
models. (1) Pair input data, RGB corrupted through Gaussian noise and IR through saturation. (2) Augmix. (3) Multimodal Patch Mixing.
(4) Modality Masking. (5) Multimodal soft random erasing. The discriminability increases from left to right.

previously presented DA. The M-PATCH and MS-REA ap-
proaches supposedly focus on making the model better at
selecting the right features within a modality. The idea is
here to balance the importance of each modality in the final
embedding regarding the level of corruption of each.

4. Results and Discussion
4.1. Datasets and performance measures

Since our study is focused on V-I multimodal person
ReID, we employ the widely known SYSU-MM01 (SYSU)
[46] and RegDB [35] datasets, along with the lesser-known
ThermalWORLD (TWORLD) [25] dataset. Details on
these datasets are show in Table 1), allowing us to evalu-
ate under diverse conditions.

Table 1. Statistics of SYSU, RegDB, and TWORLD datasets. V:
Visible and I: Infrared. Image size and number per identity is
presented as: Min;Max;Avg. BRISQUE [33] metric as: avg±std.

SYSU RegDB TWORLD

V-images 29,033 4,120 8,125
I-images 15,712 4,120 8,125
V-Camera 4 1 16
I-Camera 2 1 Generated
Identities 491 412 409
Paired cameras No Yes Yes
V-images/id 10;144;59.1 10;10;10 1;155;19.9
I-images/id 10;144;32.0 10;10;10 1;155;19.9
Image width 26;1198;111 64;64;64 10;810;141
Image height 65;879;291 128;128;128 25;897;353
V-BRISQUE 30.50±12.26 38.84±9.86 27.79±13.28
I-BRISQUE 40.52±8.42 38.81±9.56 60.25±8.67

SYSU-MM01. [46] gather 4 RGB and 2 thermal cameras,
with 491 distinct individuals, 29033 RGB, and 15712 IR
thermal images. The specificity of this dataset is that its
RGB and IR cameras are not co-located.

RegDB. [35] is a much smaller dataset, with one camera
only per modality, co-located cameras, and a single 10 im-
ages tracklet per identity and camera. RegDB 410 identities
lead to 4120 images per modality.
ThermalWORLD. [25] is only partially available, leading
us to 409 distinct identities and 8125 RGB images from 16
cameras. IR images were generated synthetically. Hence,
cameras can be considered as co-located. However, the
thermal images are of poor quality (see BRISQUE [33]
value of 60.25 in Table 1).
Corruptions. For comparison reasons, the corruptions used
by Chen et al. [5] are the same in this study. However, the
RGB corruptions were adapted to the thermal modality (de-
tailed in supplementary material) as the thermal modality
would more likely get impacted in a real scenario. The RGB
data corruptions proposed by [5] are mentioned through
the notation -C, and its extension with both modalities cor-
rupted through the notation -C*. Corruptions are applied
independently and randomly for the RGB and the IR modal-
ities and on both the query and the gallery images to match
real-world conditions.
Performance Measures. The mean Average Precision
(mAP), and the mean Inverse Penalty (mINP) are used as
performance metrics, commonly used for person ReID [50].

4.2. Implementation details

Data division. SYSU-MM01 and RegDB datasets have
well-established V-I cross-modal protocols [43, 44, 45, 49],
but multimodal protocols remain to be built. Following
SYSU-MM01 authors’ cross-modal protocol, 395 identities
were used for the training set, and 96 identities were used
for the testing set. For RegDB, the 412 identities are kept
as well into the two identical sets of 206 individuals. The
SYSU-MM01 train/test ratio is kept for ThermalWORLD,
leading to 325 training identities and 84 for testing. A 5-fold
validation [37] is performed over the data used for training,
using folds of respectively 79, 41, and 65 distinct identities



for SYSU-MM01, RegDB, and ThermalWORLD.
Data augmentation (DA). The Augmix, S-PATCH, or S-
REA were evaluated following the original papers set-
tings. Our proposed multimodal extensions M-PATCH and
MS-REA were used with the same appearance augmenta-
tion probability as S-PATCH and S-REA. Modality Mask-
ing is applied randomly on one or another modality, with
equiprobability, and occurs with a default probability of
1/8. For RegDB, the validation set uses the same DA as the
training set. This way, better performances were observed,
since they maxed out in the early epochs, or otherwise do
not learn complex cues for the model.
Pre-processing. A data normalization is done at first by re-
scaling RBG and IR images to 144×288. Random cropping
with zero padding and horizontal flips are adopted for base
DA. Those parameters were proposed by [50] on RegDB
and SYSU-MM01 datasets. The same normalization is kept
under ThermalWORLD for consistency among protocols.
Hyperparameters. The hyperparameters values in our
models were set based on the default AGW [50] baseline.
The SGD is used for training optimization, combined with
a Nesterov momentum of 0.9, and a weight decay of 5e−4.
Our models are trained through 100 epochs. Early stop-
ping is applied based on validation mAP performances. The
learning rate is initialized at 0.1 and follows a warming-up
strategy [28]. The batch size is set to 32, with 8 distinct
individuals and 4 images per individual. The paired im-
age is selected by default for RegDB and ThermalWORLD.
For the SYSU-MM01 dataset, the images from the hetero
modality are randomly selected through the available ones
for a given identity.
Losses. The Batch Hard triplet loss [21] LBH tri and the
cross-entropy with regularization via Label smoothing [42]
LCE ls are used as loss functions for our models. In-
deed, the former is widely used in person ReID approaches
[44, 6, 50], so the same margin value is fixed at 0.3, and the
latter is part of the CIL implementation [5]. The total loss
corresponds to the sum of both losses. The batch hard triplet
loss aims at reducing the distance in the embedding space
for the hardest positives while increasing the distance for
the hardest negatives. The regularization with label smooth-
ing works at reducing the gap between logits, which makes
the model less confident on predictions and hence improves
generalization [34].
Leave-one-out query strategy. The single-shot and the
multi-shot settings [44] are widely used in cross-modal pa-
pers to form the query and gallery sets. For these settings,
one or ten images from the hetero modality are selected
per identity and camera to join the gallery, while the other
modality forms the probe set. However, such an approach
is not so realistic in a surveillance context, as the video
makes the gallery number of frames per person vary much.
These variations cannot be controlled as individuals are un-

known in the final environment. Hence, a new strategy is
developed, inspired by the leave-one-out cross-validation
strategy [37], named Leave-One-Out Query (LOOQ). The
LOOQ strategy treats the extreme but meaningful case in
which one would have only a unique image of the person to
ReID and multiple footages containing images of this same
person in the gallery. Every pair of images is alternatively
used as a probe set while all the other pairs join the gallery.
This allows us to respect the original dataset statistics (see
Table 1) by authorising the gallery images per individual to
vary. Also, the mINP metric relates to the hardest test sam-
ple from the same individual. Hence, computing this metric
over multiple gallery images makes it more consistent, ap-
pearing even more important in a corrupted context.

Concerning the implementation, the images are paired
for both RegDB and ThermalWORLD datasets, so the
paired image from the hetero modality joins the query and
gallery set directly during the formation of those sets. How-
ever, SYSU-MM01 needs personal treatment since its im-
ages are not paired. Plus, the image number per modality
for a given individual varies (Table 1). To solve this issue,
as many pairs of images as possible are randomly selected
with the constraint that one image from one modality or an-
other must not appear in two distinct pairs. Because ran-
dom image pairs are formed for SYSU-MM01, a mean of
30 trials is performed to present robust and reliable results
according to the Central Limit Theorem.

4.3. Benchmarking data augmentation strategies

Table 2 shows the impact on person ReID performance
of each DA strategy is investigated over the three datasets
under clean and corrupted (-C*) settings. First, we compare
the model learned without DA (Standard) with the model
learned with Augmix, and the models learned with Augmix
plus other augmentation. The other DA strategies can be
S-REA, S-PATCH, or one of our proposed augmentation.
Multimodal soft random erasing. The S-REA strategy ap-
plies random values to a certain proportion of the pixels in
a given patch of the RGB image. A good improvement can
be seen from the Augmix to the S-REA strategy for each
dataset and the clean and corrupted settings. Still, a more
significant improvement happened for ThermalWORLD-
C* compared to SYSU-MM01-C* and RegDB-C*, respec-
tively, with a 11.88% improvement against 8.01% and
3.09%. While extending the DA to the multimodal setting
through MS-REA, we observe a remarkable improvement
for each corrupted setting, and especially that the improve-
ment is much higher on both SYSU-MM01 and RegDB
compared to ThermalWORLD. Indeed, mAP increases by
18.20% and 14.00% for SYSU-MM01-C* and RegDB-C*
respectively against 3.96% for ThermalWORLD-C*. Ther-
malWORLD has a much weaker IR modality, so the model
probably focuses much on the visible modality. Conse-



Table 2. The performance of various multimodal DA strategies using a standard model (V-I ReID model trained without DA) as baseline.
Augmix DA is applied with and without other proposed DA approaches.

SYSU SYSU-C* RegDB RegDB-C* TWORLD TWORLD-C*
DA Strategy mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP

Standard 96.47 73.69 25.01 1.90 99.64 98.46 21.80 2.40 87.90 49.05 29.30 3.93
Augmix [20] 95.37 68.60 35.23 2.56 99.88 99.40 40.75 9.10 87.12 46.33 42.26 5.69

+ S-REA [5] 96.21 74.36 43.24 4.06 99.90 99.51 43.84 10.25 89.24 50.10 54.14 8.92
+ MS-REA 96.81 77.02 61.44 8.34 99.86 99.35 57.84 19.38 88.95 49.92 58.10 9.89

+ S-PATCH [5] 96.40 74.89 31.39 2.14 99.90 99.53 41.83 9.39 89.12 50.53 40.73 5.63
+ MS-PATCH 94.70 69.10 33.69 2.17 99.89 99.41 40.97 9.34 89.26 51.26 41.75 5.57
+ M-PATCH-SS 96.10 73.40 35.49 2.44 99.86 99.34 43.28 10.68 88.35 50.16 44.41 5.61
+ M-PATCH-SD 95.94 72.93 35.10 2.40 99.87 99.35 42.95 10.31 88.58 51.59 43.49 5.53
+ M-PATCH-DD 94.98 68.95 33.90 2.42 99.89 99.48 41.98 9.71 88.49 51.35 43.90 5.51

+ Masking 95.61 73.49 40.92 2.90 99.90 99.52 49.27 12.10 86.01 42.76 39.91 6.16

quently, the model probably almost fully benefits from S-
REA as if it were a unimodal architecture. The other
datasets do not allow to benefit as much from this DA, as
the model has presumably learned to focus more on IR due
to the unbalanced augmentation (applied only on RGB). In
contrast, the equilibrium brought by MS-REA probably al-
lows the full exploitation of the approach and explains the
impressive improvement from S-REA to MS-REA. Also,
MS-REA comes first among approaches under the clean
setting for SYSU-MM01 and RegDB datasets, except for
ThermalWORLD. With a 95% confidence, results using
MS-REA compared to the best approach are not statistically
significant for RegDB, whereas it is for ThermalWORLD
according to the Cochran p-values [37] of respectively 0.29
and 4.89e − 5. Thanks to MS-REA and partial occlusions,
the model might have learned not to only focus on the most
discriminant cues, as confirmed by the IR activation map
comparison from Augmix to MS-REA (see Fig. 2). Also,
this approach present important improvement over biased
data augmentation, denoting a great generalization power
(detailed in supplementary material).

Multimodal patch mixing. Observing the results obtained
for SYSU-MM01 and ThermalWORLD, the performances
globally improved from the Augmix strategy to the S-
PATCH approach for the clean datasets, while those are re-
duced under the corrupted setting. While applying the self
patch mixing on both modalities through MS-PATCH, per-
formances are questionable, as performances remains lower
or equivalent to Augmix on corrupted data, while conserv-
ing or decreasing from clean S-PATCH results. In practice,
it is only while considering the modality patch exchange in
our M-PATCH strategy, especially the less disturbing ver-
sion M-PATCH-SS, that the best improvement is obtained
on the corrupted setting, while conserving great perfor-
mances on the clean one. Indeed, mAP is respectively im-

proved by 2.15% and 2.53% over the Augmix strategy for
ThermalWORLD-C* and RegDB-C*. The cameras might
need to be co-located for the approach to perform, as SYSU-
MM01-C* pretty much conserve similar performances as
Augmix on corrupted data, and as the standard model on
clean data. Spatial alignment is probably helping much
the model to find correlations between the hetero modal-
ity patch and the current modality image. Still, there is a
performance improvement on two datasets even if this one
remains much lower than the previous MS-REA approach.

Masking. The modality masking approach presents inter-
esting improvements under the SYSU-MM01 and RegDB
datasets. Indeed, performances on corrupted datasets are in-
creased by 5.69% mAP and 8.52% mAP over the Augmix
approach, while those are pretty much matching Augmix
performances on the clean datasets. The modality masking
DA consists of punctually feeding a modality stream with
a fully uninformative modality. Hence, those results show
that the approach can make the model better able to give
more importance to the discriminant modality for a given
pair of images. The ability to balance modality influence
on not co-located cameras through SYSU-MM01 dataset is
important to highlight. Concerning the ThermalWORLD
dataset, the Masking model’s performances decrease for the
clean and the corrupted setting compared to Augmix. In-
deed, the mAP is respectively lower by 1.11% and 2.35%.
Such a decrease is not surprising, as this dataset’s thermal
modality is very uninformative. Hence, while learning, a
masked visible modality probably acts as noise by creating
not discriminant V-I pairs.

Combination. As the DA approaches have distinct ex-
pected roles in the way they help the model to get more
robust against corruption, combining them might allow to
benefit from each of their specificities (Table 3). It is in-
teresting to see that the real combining improvement comes



Table 3. Data augmentation combination. Each is used along with Augmix and MS-REA. C1 stands for Masking, C2 for M-PATCH-SS
and C3 for Masking and M-PATCH-SS.

SYSU SYSU-C* RegDB RegDB-C* TWORLD TWORLD-C*
Strategy mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP

MS-REA 96,81 77,02 61,44 8,34 99.86 99.35 57.84 19.3 88,95 49,92 58,10 9,89
MS-REA + C1 96.77 76.01 63.01 9.59 99.90 99.45 61.92 20.14 86.34 43.24 56.10 11.04
MS-REA + C2 96.85 75.87 61.19 9.13 99.85 99.26 56.23 17.98 89.16 50.68 57.45 9.64
MS-REA + C3 96.78 75.87 63.83 9.77 99.89 99.48 61.53 20.17 86.65 43.75 57.95 11.53

from the Masking approach used with MS-REA (C1) on
both SYSU-MM01-C* and RegDB-C*, with respectively
1.57% and 4.08% improvement over MS-REA used by it-
self. ThermalWORLD did not benefit from the masking
DA, which could be expected as the Masking was already
decreasing its performance when used alone. Adding M-
PATCH to MS-REA (C2) or to MS-REA and Masking
(C3) seems not to bring meaningful additional improve-
ments. Indeed, MS-REA + (C3) matches the performances
of MS-REA + (C1) under the clean and corrupted set-
tings on both RegDB and SYSU-MM01. Similar obser-
vations can be done from MS-REA alone and MS-REA +
M-PATCH. Hence, even if M-PATCH has shown improve-
ments on RegDB and ThermalWORLD when used alone,
those improvements are probably mainly due to the bene-
fits of occlusions, which are already part of the MS-REA
approach. Visual results observing especially IR activation
maps seem to confirm this aspect (Fig. 2). Though, us-
ing MS-REA with M-PATCH appear as not being meaning-
ful. From the previous conclusions, we propose the Mask-
ing and Local Multimodal Data Augmentation (ML-MDA)
strategy, which combines both the local approach MS-REA
with the modality masking DA.

4.4. Comparison with the state-of-art

Performance. As there is no true competitor in the area
of V-I multimodal person ReID, the ML-MDA strategy is
compared with SOTA unimodal person ReID models, with
or without the CIL strategy used. According to results ob-
tained in [5], the LightMBN [22] and TransReID [16] mod-
els are respectively the most performing unimodal models
under the clean and corrupted scenarios. For fair compar-
ison, Table 4 shows two scenarios for the multimodal test
data. First, both RGB and IR are corrupted (-C*), and sec-
ond, to observe how a clean IR modality can help when the
RGB modality is corrupted, performance is also compared
when only RGB is corrupted (-C).

Considering a clean data setting, the ML-MDA model
outperforms the second-best approach by 2.32% mAP and
especially by 11.22% mINP on SYSU-MM01. This signifi-
cant mINP improvement shows that the multimodal setting
helps considerably on the more challenging images. Indeed,
the multimodal model can compensate for challenging RGB

samples with the IR modality. On the RegDB dataset, our
approach outperforms the others, with a statistically signifi-
cant improvement. Indeed, with a 95% confidence interval,
the Cochran [37] p-value between LightMBN, LightMBN
+ CIL and our approach is of 0.02. On ThermalWORLD,
the performance of the multimodal model cannot compare
with TransReID and LightMBN models, not even improv-
ing over the ResNet-18 model. Again, the poor quality IR
mostly acts as a source of perturbation for the model.

When the RGB modality only is corrupted (-C) on both
SYSU-MM01 and RegDB datasets, the ML-MDA model
provides a considerable performance improvement over
TransReID and LightMBN models. Indeed, our model
reaches 87.98% mAP and 92.37% mAP for SYSU-MM01
and RegDB, respectively improving by 20.09% and 25.82%
over the second-best approach. These improvements high-
light the benefits of a well-trained multimodal model, re-
lying mainly on the clean modality (I) when the other is
corrupted (V). A performance gap between -C to -C* set-
tings can be observed, as -C* is much more challenging
with two corrupted modalities. The multimodal model ap-
pears as the second-best approach for both SYSU-MM01-
C* and RegDB-C* datasets. Indeed, LightMBN reaches
respectively 67.80% and 66.55% mAP against 63.01% and
61.92% mAP for our multimodal model. Still, the multi-
modal setting improves the mINP for SYSU-MM01, from
8.23% to 9.59%, and is only below RegDB by 1.39% mINP,
showing that the multimodal setting can help on the hard-
est cases. For the -C* setting, our approach outperforms
other models except for LightMBN + CIL, or on Ther-
malWORLD data, apparently unable to encode discrimi-
nant cues from the corrupted IR to counterbalance the well
designed unimodal models. However, our architecture re-
mains very simple, and obtaining such performance im-
provement on our light architecture is already promising.
More complex fusion strategies, with more knowledge ex-
change between modality streams, and a more robust back-
bones like ResNet-50, may allow exceeding the perfor-
mance of LightMBN.

Note that both the -C and the -C* settings might not be
the most accurate for a great multimodal evaluation. In-
deed, considering the IR always clean (-C) is not so accurate
as weather would, for example, probably happen on both



Table 4. Performance of our multimodal model using ML-MDA compared against SOTA unimodal person ReID models, and a ResNet-18
unimodal model while using CIL or not. The two last rows show the performance of the same model when RGB is corrupted (-C), and
when RGB and IR are corrupted (-C*). Note that performance on clean datasets are the same and presented in fused cells.

Model SYSU SYSU-C RegDB RegDB-C TWORLD TWORLD-C
mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP

ResNet-18 86,25 39,97 32,36 1,91 99,26 96,64 45,15 5,68 86.44 49.44 28.06 3.86
TransReID [1] 94,33 64,79 52,03 3,60 99,34 97,35 45,64 5,69 95.86 77.98 65.47 17.20
LightMBN [2] 94,45 64,06 40,90 2,13 99,90 99,41 32,40 3,25 93.02 65.94 37.34 5.60

ResNet-18 + CIL 86,64 42,78 51,64 3,83 99,65 98,41 55,76 10,98 86.95 48.07 52.85 7.97
TransReID [1] + CIL 93,20 62,02 61,38 7,20 99,69 98,57 58,74 12,89 94.79 73.82 73.61 23.16
LightMBN [2] + CIL 94,07 61,95 67,80 8,23 99,89 99,41 66,55 21,53 93.20 66.14 71.30 19.73

Ours + ML-MDA (-C) 96.77 76.01 87.89 42.5 99.90 99.45 92.37 75.71
86.34 43.24

69.20 18.47
Ours + ML-MDA (-C*) 63.01 9.59 61.92 20.14 56.10 11.04

modalities for a given co-located pair. On the other hand,
considering both modalities always corrupted (-C*) hardly
allows the hetero modality to help the primary modality, but
is not so realistic either. Indeed, digital corruption or noise
would probably not affect V-I modalities simultaneously. In
fact, the real-world setting would allow [Clean RGB, Cor-
rupted IR] pairs, and would especially be a mixture of -C
and -C* settings. In practice, there should be more pairs in
which one of the two modalities remains clean, so the true
potential of the multimodal setting probably lies somewhere
in between the -C and the -C* settings.

Table 5. Memory (number of parameters) and time (FLOPs) com-
plexity of proposed and baseline ReID models, FLOPs computed
from a single or multi-modal input.

Model No. Params (M) FLOPs (G)

ResNet-18 11.3 0.51
TransReID [16] 102.0 19.55
LightMBN [22] 7.6 2.09

Ours 22.5 1.54

Complexity. Multimodal person ReID with IR and RGB
is more complex than regular ReID with RGB, so models
are compared in terms of number of parameters and FLOPs
(Table 5). The TransReID [16] model is known for being
computationally expensive as its architecture is transformer
based, with a total of 102M parameters and 19.55 G-FLOPs.
In contrast, LightMBN [22] is based on the Os-Net architec-
ture, which makes it very light, requires 7.6M parameters
and 2.09G FLOPs. Even if our multimodal model has more
parameters (22.5M ) to adjust than LightMBN, it requires
less memory compared to the SOTA unimodal person ReID
models, with its 1.54G FLOPs. Although our model seems
equivalent to LightMBN in terms of complexity, it provides
a significant performance improvement. Its robustness to
corrupted data makes it an excellent trade-off in the face of
uncontrollable scenarios.

5. Conclusion
Real-world surveillance often requires light models that

perform well on corrupted data. In this paper, image cor-
ruptions were extended to the infrared modality, and MDA
strategy was proposed to improve the performance of the V-
I person ReID. Experiments on the SYSU-MM01, RegDB
and ThermalWORLD datasets showed the benefits of the
multimodal setting over SOTA unimodal ReID models, es-
pecially when combined with the specialized MDA strat-
egy. Indeed, our ML-MDA strategy has allowed for sig-
nificant improvements in terms of robustness to corruption
using the proposed modality masking and MS-REA MDA.
The former learns the model to dynamically balance the im-
portance of each modality in the final embedding. The lat-
ter works on the occlusion concept and teaches the model
to better select features among modalities and not to focus
only on the most discriminant features. ML-MDA improves
performances, yet does not incur additional model complex-
ity, and allows for a light ReID architecture.

Given multiple modalities, MDA allows addressing im-
age data corruption, as these corruptions impact V and I
modalities in a different ways, allowing the hetero-modality
to compensate. MDA could be studied more independently
from person ReID, and our methods can be applied to more
general datasets (e.g., RGB-D data). Moreover, increasing
the number modalities could further reduce the impact of
corruption. Note that potential improvements are possible
using more advanced fusion methods [41, 23]. Finally, we
believe that our multimodal corrupted test set might not en-
tirely reflect the true potential of the multimodal setting, as
discussed section 4.4. To better fit real-world conditions,
corruption correlations among modalities should be consid-
ered in the test set design. This would probably allow the
multimodal setting to perform even better.
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Appendices
A. Thermal modality corruptions:

In practice, except for the brightness corruption, each
and every other corruptions from the 20 corruptions [5] ap-
peared to be meaningful for the thermal modality as well.
Concerning the brightness changes, the thermal modality is
not impacted by the current luminosity so this corruption is
removed. Then, all others applicable, with eventually few
slight adjustments that we describe here. Those corruptions
are visible Fig. 3. The different forms of noises, like Gaus-
sian, Shot, Impulse, Speckle are applied similarly, except
that we turned the noise into greyscale values while com-
bining it with the original IR images. Speckle and frost are
two other corruptions which needed to be grayscaled before
being applied on the thermal images. Indeed, they initially
apply eventual color changes on the images, with blue col-
ored water or brown colored dirt for spatter, and blue frozen
masks for frost. As a last adjustment, the saturation is ex-
pressed differently for the IR modality, brightening eventu-
ally the object of interest if this one is too close to the cam-
era. Regarding this expression of the thermal saturation, we
applied in practice the brightness function as ease to mimic
it. Then, every other corruptions are affecting similarly both
modalities, so we applied them the exact same ways.

B. Additional experiments - Intuitive data aug-
mentation

For additional interpretations, two common corruptions
that are part of the corrupted test sets are used as a data
augmentation strategy.
Approach. As the idea is to keep a degree of blindness with
the test set encountered corruptions, those two data augmen-
tation corruptions are applied at a fixed intensity. The first
data augmentation is the Gaussian blur corruption, applied
with a blur radius of 3 for both the RGB and the IR. The
latter is the RGB’s luminosity changes and the IR modal-
ity’s image saturation. The luminosity changes are whether
increasing RGB brightness by an enhancement factor 2 or
decreasing it by a factor 0.5. The saturation for the IR is
changed by increasing the enhancement factor to 1.5. Each
of those augmentation occurs with equiprobability on the
RGB and the IR modality, with a probability of 1/8. As
those corruptions are part of the corrupted test set, which
biased the obtained performances, these results will only be
used for comparison but are not proposed as a solution for
better generalization.
Results. The obtained results are gathered table 6 Looking
at the reached performances by blur data augmentation or
luminosity and saturation ones, it appears that those strate-
gies are significantly improving over Augmix on the -C*

setting. From those results only, we cannot know how well
it allows the model to generalize over other types of corrup-
tion. However, it is clear that it helps and probably comes
from better handling the related corruptions in the test cor-
rupted test set. Still, the Masking strategy compares well
with those for both SYSU-MM01-C* and RegDB-C* while
not introducing bias in the results, which is a great observa-
tion. Also, the MS-REA approach is much ahead of those
results, showing that the strategy allows a great generaliza-
tion power while not introducing such bias to the results.



Figure 3. Taxonomy of our 19 used thermal corruptions, all applied on level 3.

Table 6. Comparison of the various data augmentation strategies, with standard being the multimodal concatenation model without specific
augmentation, to standard Augmix [20] and Augmix with one or another data augmentation. This table gather random activation, Patch,
Masking and intuitive corruptions related strategies.

SYSU SYSU-C* RegDB RegDB-C* Tworld Tworld-C*
mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP

Standard 96.47 73.69 25.01 1.90 99.64 98.46 21.80 2.40 87.90 49.05 29.30 3.93
Augmix [20] 95.37 68.60 35.23 2.56 99.88 99.40 40.75 9.10 87.12 46.33 42.26 5.69

+ S-REA [5] 96.21 74.36 43.24 4.06 99.90 99.51 43.84 10.25 89.24 50.10 54.14 8.92
+ MS-REA 96.81 77.02 61.44 8.34 99.86 99.35 57.84 19.38 88.95 49.92 58.10 9.89

+ S-PATCH [5] 96.40 74.89 31.39 2.14 99.90 99.53 41.83 9.39 89.12 50.53 40.73 5.63
+ MS-PATCH 94.70 69.10 33.69 2.17 99.89 99.41 40.97 9.34 89.26 51.26 41.75 5.57
+ M-PATCH-SS 96.10 73.40 35.49 2.44 99.86 99.34 43.28 10.68 88.35 50.16 44.41 5.61
+ M-PATCH-SD 95.94 72.93 35.10 2.40 99.87 99.35 42.95 10.31 88.58 51.59 43.49 5.53
+ M-PATCH-DD 94.98 68.95 33.90 2.42 99.89 99.48 41.98 9.71 88.49 51.35 43.90 5.51

+ Masking 95.61 73.49 40.92 2.90 99.90 99.52 49.27 12.10 86.01 42.76 39.91 6.16

+ Blur 94.77 69.38 41.72 3.06 99.86 99.33 45.68 11.66 88.05 51.36 50.36 7.66
+ Lum - Sat 94.99 70.31 38.54 2.79 99.79 99.00 54.05 17.89 88.01 50.25 44.09 5.73


