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Abstract— Multi-view Detection (MVD) is highly effective for
occlusion reasoning in a crowded environment. While recent
works using deep learning have made significant advances
in the field, they have overlooked the generalization aspect,
which makes them impractical for real-world deployment. The
key novelty of our work is to formalize three critical forms
of generalization and propose experiments to evaluate them:
generalization with i) a varying number of cameras, ii) varying
camera positions, and finally, iii) to new scenes. We find that
existing state-of-the-art models show poor generalization by
overfitting to a single scene and camera configuration. To
address the concerns: (a) we propose a novel Generalized MVD
(GMVD) dataset, assimilating diverse scenes with changing day-
time, camera configurations, varying number of cameras, and
(b) we discuss the properties essential to bring generalization to
MVD and propose a barebones model to incorporate them. We
perform a comprehensive set of experiments on the WildTrack,
MultiViewX and the GMVD datasets to motivate the necessity
to evaluate generalization abilities of MVD methods and to
demonstrate the efficacy of the proposed approach. The code
and the proposed dataset can be found at https://github.
com/jeetv/GMVD

I. INTRODUCTION

“Essentially all models are wrong, but some are useful.”

— George E. P. Box
In this work, we pursue the problem of Multi-View Detection
(MVD), a mainstream solution for dealing with occlusions,
especially when detecting humans/pedestrians in crowded
settings. The input to MVD methods is images from multiple
calibrated cameras observing the same area from different
viewpoints with an overlapping field of view. The predicted
output is an occupancy map [1] in the ground plane (bird’s
eye view). The solutions of MVD has evolved from classical
methods [1], [2], [3], to hybrid approaches [4] to end-to-
end trainable deep learning architectures [5]. Expectedly,
the current landscape of MVD is dominated by end-to-
end trainable deep learning methods [5], [6], [7]. We argue
that by training and testing on homogeneous data, current
deep MVD methods have overlooked critical fundamental
concerns, and to render them useful, the focus should shift
towards their generalization abilities.
Ideally, three forms of generalization abilities are essential
for the practical scalability and deployment of MVD meth-
ods, which is illustrated in Fig. 1:

1) Varying number of cameras: The model should adapt
to a varying number of cameras (a network trained on
six camera views, should work on a setup with five
cameras).
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Fig. 1. Three forms of generalization required in MVD: (a) varying number
of cameras, (b) different camera configurations, and (c) generalizing to new
scenes.

2) Varying configuration: The model should not overfit
to the specific camera configuration. The performance
should be similar even with altered camera positions,
as long as they span the dedicated area.

3) Varying scenes: Models trained on one scene should
work on another (model trained on a traffic signal
should work on a setup inside a university).

Surprisingly, the existing deep learning-based MVD meth-
ods are primarily trained and tested with the same camera
configuration, on the same scene, using the same number of
cameras. Even the environmental conditions (time, weather,
etc.) are similar across train and test splits. For instance, the
most commonly used Wildtrack dataset [8] includes a 200
second recording from all cameras, where the first 3 minutes
are used for training and the rest of the 20 seconds are
used for testing. We argue that the current State Of The Art
(SOTA) methods are seriously hindered from the deployment
perspective. The current models [5], [6], [7] will break if a
camera malfunctions. They will need retraining if a camera
needs to be added to the setup. Furthermore, our experiments
show that the performance significantly drops if the camera
positions or the scene is varied. The SOTA models also seem
to overfit to the order in which the cameras are sent to the
model.
The absence of a diverse dataset is a major shortcoming.
The available datasets: Wildtrack (real) and MultiViewX
(synthetic), comprise a single short sequence, where initial
frames are used for training and later for testing. In Figure 2,
we show that the evaluation strategy in both datasets is
unreliable and prone to overfitting. To this end, we pro-
pose a novel Generalized MVD (GMVD) dataset. Given
the privacy concerns, COVID restrictions, hardware setup
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Fig. 2. The train and test sets of Wildtrack (first row) and MultiViewX
datasets (second row) have significant overlap. We show the last image of the
training set (left) and the first image of the test set (right). In both datasets,
the appearance of several pedestrians is already seen in the training set. In
Wildtrack, there are many static pedestrians as well.

difficulties, the requirement of manual annotations, etc., we
believe curating a sizeable synthetic dataset is the right
way forward. Henceforth, we use Unity and the GTA game
environment to capture the GMVD dataset. It includes about
53 sequences captured in 7 different scenes with significant
variations in camera configuration, weather, lighting condi-
tions, pedestrian appearance, etc. The number of cameras
also varies across scenes. We use 6 scenes for training and
1 scene for testing. The proposed GMVD dataset sets up
a new benchmark for evaluating MVD with generalization.
It further allows reserving valuable real-world footages [8]
directly for testing.

Furthermore, we suggest a set of design guidelines to ensure
practical usability of Deep MVD methods. We demonstrate
that permutation invariance, transfer learning, and regular-
ization are vital for generalization. We improve the baseline
architecture [5] with appropriate changes and establish SOTA
generalization for MVD. We want to emphasize that we
do not claim any major architectural novelty, and our work
focuses on the barebone baseline architecture. Overall, our
work makes the following contributions:

1) We conceptualize and emphasize the importance of
generalization in MVD and propose a novel GMVD
dataset for the same.

2) We highlight the shortcomings of the current eval-
uation methodology and propose novel experimental
setup on existing datasets.

3) We adapt the baseline architecture to bring gener-
alization to deep MVD. We show that permutation
invariance is crucial for MVD and average pooling is
one minimal way to achieve it. We propose a novel
drop view regularization.

4) We back our claims using an extensive set of exper-
iments and ablation studies. We show staggering im-
provements in scene and configuration generalization,
paving the way for a practicable MVD.

II. RELATED WORK

A. Classical Methods

Seminal work by Fleuret et al. [1] cast MVD as predicting
occupancy probabilities over a discrete grid, an idea which
has stood the test of time. The classical methods in MVD rely
on background subtraction to compute likelihood over a fixed
set of anchor boxes derived using scene geometry, project
them on the top view and adopt conditional random field
(CRF) or mean-field inference for spatial aggregration [1],
[2], [3]. The classical methods, however observe a gradual
degradation in detection performance with increased crowds,
as the background subtraction becomes less effective with
increase in crowds and clutter. Some methods do away
with background subtraction and rely on handcrafted clas-
sifiers [9] instead.

B. Anchor based MVD

Anchor based MVD methods replace background subtraction
with anchor-based deep pedestrian detectors like Faster R-
CNN [10], SSD [11] and YOLO [12]. Some of these methods
process each view separately [13] and some process them
simultaneously [14], [15]. The inaccuracies in the pre-defined
anchor boxes [4] limit the performance of these methods.
Even if the boxes are correct, locating the exact ground point
to project in each 2D bounding box presents a challenge and
leads to a significant amount of errors. Moreover, some of
the Anchor based methods still rely on operations outside of
Convolutional Neural Networks (CNNs), requiring to work
out a balance between different potential terms [14].

C. End-to-end Deep MVD

MVDet [5] is a recent anchor-free approach that aggre-
gates multi-view information by perspective transformation
and concatenating multi-view feature map onto the ground
plane and then performs large kernel convolution for spatial
aggregation. It overcomes limitations of manual tuning of
CRF potentials, reliance on pre-defined 3D anchor boxes
and projection errors from monocular detectors. It aggregates
projected features from a ResNet [16] backbone using three
convolutional layers to predict the final occupancy map.
MVDet achieves notable improvement over the preceding
anchor based methods (over 14% improvement on the Wild-
Track dataset [8]). The idea from [5] was further enhanced
by using deformable transformers [17] to improve the feature
aggregation in MVDeTr [6]. More recently, SHOT [7] intro-
duced a combination of homographies at multiple heights to
improve the quality of the projections.

III. PROPOSED DATASET

We propose a new MVD dataset incorporating the three
forms of generalization discussed above (Figure 1). Some
example frames from the proposed Generalized Multi-View
Detection (GMVD) dataset are illustrated in Figure 3. The
GMVD dataset contains diverse non-overlapping scenes
within and across training and test sets. In contrast, the
existing MVD datasets Wildtrack and MultiViewX include
noticeable overlap across train and test splits (single scene,



Training Set Testing Set

GTAV Scenes Unity Scenes GTAV Scenes

Fig. 3. The proposed GMVD Dataset includes seven scenes. Each column illustrates frames from one of the views from two different sequences of the
same scene. The first six scenes are used for training and the last scene with two configurations are reserved for testing. Additionally, there are noticeable
lighting and weather variations within each scene.

TABLE I
DATASET STATISTICS FOR VARIOUS MVD DATASETS. OUR PROPOSED GMVD DATASET IS THE LARGEST AND MOST DIVERSE DATASET ON A

VARIETY OF METRICS. AVG. COVERAGE REFERS TO THE AVERAGE NUMBER OF CAMERAS THAT COVER EACH POINT ON THE GROUND PLANE.

Dataset Track Labels IDs # Scenes # Training Frames # Testing Frames # Cameras # Sequences Avg. Coverage

WildTrack X 313 1 360 40 7 1 3.74
MultiViewX X 350 1 360 40 6 1 4.41
GMVD (Ours) X 2800 7 4983 1012 3, 5, 6, 7, 8 53 2.76 - 6.4

pedestrians appearance, and location), encouraging existing
MVD methods to overfit the dataset-specific aspects and
thus hindering their practicality. The GMVD dataset, by its
design, prevents overfitting from happening by keeping a
clear separation in train and test splits.
Capturing a real-world MVD dataset is difficult, primarily
because of privacy concerns. The COVID restrictions also
restrict crowded human capture. Moreover, such a dataset
requires significant manual annotation effort. Consequently,
we curate the GMVD dataset using synthetic environments.
The GMVD dataset is curated using Grand theft Auto V
(GTAV) and Unity Game Engine. We employ two different
environments to avoid overfitting to a single synthetic data
generation source. This reasoning is aligned with recent
works [18], [19] which utilize multi-source datasets to
improve generalization performance. The GMVD dataset
includes seven distinct scenes, one indoor (subway) and six
outdoors. One of the scenes are reserved for the test split. We
vary the number of total cameras in each scene and provide
different camera configurations within a scene.
Additional salient features of GMVD include daytime varia-
tions (morning, afternoon, evening, night) and weather vari-
ations (sunny, cloudy, rainy, snowy). We generate multiple
short sequences for each scene while randomly varying the
daytime and the weather. The generation of multiple random
sequences ensures diversity, as different pedestrians (with
different clothing and appearance) are picked in each case.
The dataset also includes significant variations in lighting
conditions. Local illumination sources come into play due to
the presence of indoor and night scenes. We compare our
dataset with the existing ones in Table I. Avg. Coverage
represents the average amount of cameras observing each
location. For GMVD, avg. coverage varies from 2.76-6.4
cameras depending on the scene. In addition to the discussed
variations, GMVD is advantageous due to the dataset size, es-
pecially in terms of the total number of individual sequences.

Thereby, we propose the GMVD dataset as a new benchmark
for MVD. We further encourage future methods to train on
the GMVD dataset and test their performance on sparsely
available, difficult to capture real-world datasets like Wild-
Track .
Dataset Generation: We used Script Hook V [20] library to
interface with the GTAV environment. For each scene, cam-
era positioning and orientation were determined manually so
as to increase the camera coverage. All the cameras were po-
sitioned above the humans’ average height. Due to hardware
limitation, it is commonplace to have a small synchronization
delay in real-world multi-camera setups. To emulate such
realistic scenario, we induce a small synchronization error
(20-100 ms) between different camera views [21]. A ground
plane was defined for each location, partially overlapping
with each camera’s field of view. Only pedestrians inside the
ground plane were considered for multi-view detection. We
relied on the GTA’s navigational AI engine to avoid collision
and to obtain realistic pedestrian behavior.
In Unity environment, the scene is manually curated by
putting together 3d models of street, buildings and other
props. We used the PersonX [22] 3d human models to create
the pedestrians. To avoid collision errors (which are present
in MultiViewX dataset), pedestrians were spawned at random
locations within the region of interest, for every frame.
Since both the environments are synthetic, the 3D-2D corre-
spondences were directly available from the game engines.
We use similar procedure as [5] for camera calibration.
Track Labels: Our work focuses on a comprehensive anal-
ysis of the problem of Multi-View Detection. However, the
proposed dataset can also be useful for the task of multi-view
pedestrian tracking. To this end, for the sequences generated
from the GTAV environment, we collect the track labels
while capturing the data. While we do not use track labels in
this work, we provide them with the dataset, which will be
beneficial for the community in the future. We provide a total
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N RGB Views
N, 3, Hi, Wi

N = Number of camera views
C = Number of channels (features)
Hi, Wi = RGB Image height and width
Hf, Wf = Size of extracted features with C channels
Hg, Wg = Size of Occupancy Map




Feature Extraction

Average Pooling

Occupancy map prediction

Projected Feature Maps
D

ro
pV

ie
w

R
eg

ul
ar

iz
at

io
n

Fig. 4. Our proposed architecture: ResNet features are extracted from the input views, which are then projected to the top view. Following this, the
projected features across views are pooled and then the final occupancy map is predicted. The use of average pooling across views is crucial in ensuring
that our proposed architecture can work for an arbitrary number of views.

of 125000 frames with track labels. The GTAV frames for
the GMVD dataset are regularly sampled from these densely
annotated sequences.

IV. PROPOSED METHOD

We propose an anchor free deep MVD method along the
lines of [5], [6], [7] specifically tailored to improve the
generalization abilities by modifying the training objective
and making use of an average pooling strategy on the
projected feature maps. The overall architecture is shown in
Fig. 4. The input to our pipeline are multiple calibrated RGB
cameras with overlapping fields of view, and the expected
output is the occupancy map for pedestrians.

A. Feature Extraction and Perspective Transformation

Feature Extractor: We use a ResNet18 [16] backbone as
a feature extractor replacing last three strided convolutions
with dilated convolutions to have a high spatial resolution
of the feature maps. Given N camera views of image size
(3, Hi,Wi), where Hi and Wi corresponds to height and
width of images, C-channel features are extracted for N
camera views which corresponds to size (N,C,Hf ,Wf ),
where Hf and Wf represents the height and width of the
extracted features.
Perspective Transformation: The extracted features from
the feature extractor are then projected onto the ground
plane using a perspective transformation, where (Hg,Wg)
corresponds to the height and width of the ground plane
grid. Considering the calibrated cameras, K represents the
intrinsic camera parameters and [R|t] represents the extrinsic
camera parameters (R is the rotation matrix and t is the
translation vector).
In the world coordinate system, the ground plane corresponds
to Z = 0, i.e., W = (X,Y, 0, 1)T . A pixel of an image

I = (x, y)T is transformed to the ground plane as follows:

I = s

xy
1

 = K[R|t]


X
Y
Z
1

 = P


X
Y
Z
1

 (1)

where s is a scaling factor and P is a perspective transfor-
mation matrix.

B. Spatial Aggregation

Average Pooling: We first project the ResNet feature maps
from each viewpoint on to the bird’s eye view using the
perspective transformation to obtain the projected feature
maps fmi (where, i = 1, 2, ..., N). Following this, we
average pool the projected feature maps fmi to obtain
the final bird’s eye view feature representation F of size
(C,Hg,Wg), which is written as,

F =

∑N
i=1 fmi

N
. (2)

While there can be many other alternatives to average
pooling, we opt for this solution, primarily because it is
permutation-invariant. Unlike MVDet, where the camera
views ideally need to be input in the same order as training
during inference, our proposed solution can accept arbitrary
number of views in an arbitrary order. Furthermore, the av-
erage pooling solution is free from any learnable parameters
which ensures that there is no overfitting introduced due to
this operation. The projected feature maps for N cameras
of size (N,C,Hg,Wg) after average pooling, reduces to
(C,Hg,Wg), thus removing the dependency over the number
of camera views thereby allowing the model to take an
arbitrary number of views as input.



Fig. 5. An illustration of our proposed DropView regularization

DropView Regularization: Inspired by Dropout [23] as
well as work on self-supervised learning which drops color
channels to prevent the model from memorization [24], [25],
we propose the DropView regularization technique. For each
sample, we randomly select one view to discard during
training iterations, as illustrated in Fig 5. The occupancy
map prediction step is done with all the remaining views. We
provide a detailed analysis of the effect of this regularization
strategy in our experiments.
Occupancy Map Prediction: Similar to MVDet [5], we use
3 dilated convolutional layers to predict the occupancy map
of size (Hg,Wg).

C. Loss Function

The loss function compares the output probabilistic occu-
pancy map (p) with the ground-truth (g). Inspired by the
work on saliency estimation in images and vidoes [26],
[27], [28], we use the combination of Kullback–Leibler
Divergence (KLDiv) and Pearson Cross-Correlation (CC)
metrics as a loss function. The final loss function can be
written as:

L(p, g) =
σ(p, g)

σ(p)× σ(g)
−
∑
i

gi log

(
gi
pi

)
, (3)

where σ(p, g) is the covariance of p and g, σ(p) is the
standard deviation of p and σ(g) is the standard deviation
of g. The loss function was selected empirically using the
scene generalization experiment, i.e. training on MultiViewX
and testing on WildTrack , where using KLDiv+CC gave best
results (compared with MSE, CC or KLDiv alone).

V. EXPERIMENTS

A. Experimental setup

Datasets: In addition to our proposed GMVD dataset, we
use the WildTrack and MultiViewX datasets. The WildTrack
dataset consists of 7 static calibrated cameras with overlap-
ping fields of view, covering an area of 12 × 36 m2. The
dataset comprises a single 200 second sequence annotated
at 2 fps. The image resolution is 1080 × 1920 pixels. The
ground plane grid is discretized into a 480 × 1440 grid,
where each grid cell is 2.5 cm square. On average, the
dataset captures 23.8 persons per frame. The MultiViewX
dataset is a synthetic dataset which has similar configurations

as the WildTrack dataset. However, it consists of 6 static
calibrated cameras with overlapping fields of view and 400
synchronized frames of resolution 1080 × 1920 annotated
at 2 fps for ground-truth covering an area of 16 × 25 m2.
The ground plane grid is discretized into a 640× 1000 grid,
where each grid cell is 2.5 cm square. On average, the dataset
captures 40 persons per frame. For both datasets, we use the
first 90% frames in training and the last 10% frames for
testing, as done in previous work [5], [8].
Evaluation metrics: We use the standard evaluation met-
rics proposed in [8]. Multiple Object Detection Accuracy
(MODA) is the primary performance indicator that accounts
for normalized missed detections and false positives, i.e., it
considers both false negatives and false positives. Multiple
Object Detection Precision (MODP) assesses the localization
precision [31]. Precision and Recall is calculated by Preci-
sion = TP/(TP+FP) and Recall = TP/(TP+FN) respectively;
where TP, FP and FN are True Positives, False Positives,
False Negatives. A threshold of 0.5 meters is used to deter-
mine the true positives.
State of the Art comparisons: We compare against nine
different methods. The set includes one monocular object
detection baseline (referred to as RCNN clustering [13]);
a classical probabilistic occupancy map method [1]; four
anchor based methods [30], [14], [15], [29] and three recent
end-to-end trainable deep MVD approaches [5], [6], [7].
For generalization experiments, we only compare against the
recent state-of-the-art methods MVDet [5], MVDetr [6] and
SHOT [7].

B. Implementation Details

Down sampled images of 720 × 1, 280 pixels serve as an
input to the model. The feature extracted from ResNet-
18 has C = 512 channel features, which is bilinearly
interpolated to get the shape of 270 × 480. These (N,C =
512, Hf = 270,Wf = 480) extracted features are projected
onto top view to obtain (N, 512, Hg,Wg) sized features for
N viewpoints, which are average pooled to obtain the ground
plane grid shape of (512, Hg,Wg). Hg and Wg vary from
scene-to-scene, depending on the area of ground plane.
The spatial aggregation has three layers of dilated convo-
lution with a 3 × 3 kernel size and dilation factor of 1, 2,
and 4. Training is done for ten epochs with early stopping;
we set batch size as 1, SGD optimizer with momentum =
0.9 has been used with one-cycle learning rate scheduler. A
probability of τ or more on the occupancy grid is considered
a detection. For GMVD experiments, τ is determined using
MultiViewX as a validation set, and for other experiments,
we use τ = 0.4 in alignment with the previous works. Non-
Maximal Suppression (NMS) is applied with a spatial reso-
lution of 0.5m. All training and testing have been performed
on a single Nvidia GTX 1080 Ti GPU. Unless specifically
mentioned, we always use pre-trained ImageNet [32] weights
while training our proposed model.



TABLE II
COMPARISON AGAINST THE STATE-OF-THE-ART METHODS. OUR METHOD REFERS TO THE PROPOSED MODEL IN SECTION IV. WE MADE FIVE RUNS

FOR SOME OF THE EXPERIMENTS AND THE VARIANCES ARE PRESENTED IN THE BRACKET.

Method ImageNet
(pre-train)

WildTrack MultiViewX

MODA MODP Prec Recall MODA MODP Prec Recall

RCNN Clustering [13] × 11.3 18.4 68.0 43.0 18.7 46.4 63.5 43.9
POM-CNN [1] × 23.2 30.5 75.0 55.0 - - - -
Lopez-Cifuentes et al. [29] × 39.0 55.0 - - - - - -
Lima et al. [30] × 56.9 67.3 80.8 74.6 - - - -
DeepMCD [15] × 67.8 64.2 85.0 82.0 70.0 73.0 85.7 83.3
Deep-Occlusion [14] × 74.1 53.8 95.0 80.0 75.2 54.7 97.8 80.2
MVDet [5] × 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7
MVDeTr [6] X 91.5 82.1 97.4 94.0 93.7 91.3 99.5 94.2
SHOT [7] × 90.2 76.5 96.1 94.0 88.3 82.0 96.6 91.5
Ours × 87.2(±0.6) 74.5(±0.4) 93.8(±1.6) 93.4(±1.8) 78.6(±0.9) 78.1(±0.4) 96.8(±0.5) 81.3(±0.9)
Ours X 85.4(±0.4) 76.7(±0.2) 95.2(±0.4) 89.9(±0.8) 86.9(±0.2) 79.8(±0.1) 97.2(±0.2) 89.6(±0.2)
Ours (DropView) X 86.7(±0.4) 76.2(±0.2) 95.1(±0.3) 91.4(±0.6) 88.2(±0.1) 79.9(±0.0) 96.8(±0.2) 91.2(±0.1)

TABLE III
RESULTS FOR EVALUATING WITH A VARYING NUMBER OF CAMERAS. THE MODEL IS TRAINED ON ALL 7 CAMERAS ON WILDTRACK, AND IS TESTED

ON 2 DIFFERENT SETS OF 4 CAMERAS EACH.

Inference on {1,3,5,7} Inference on {2,4,5,6}

Method MODA MODP Prec Recall MODA MODP Prec Recall

MVDet 38.9 71.5 93.8 41.6 16.2 47.6 80.3 21.4
MVDeTr 55.8 76.7 80.8 73.2 34.6 69.2 68.6 63.8
SHOT 66.6 75.1 91.0 73.9 46.3 67.8 88.2 53.5
Ours 76.5 74.0 91.7 84.0 79.3 71.4 91.1 87.9
Ours (DropView) 77.0 74.5 90.3 86.2 79.2 72.5 88.6 90.9

C. Results
Like prior works, we evaluate our approach on the WildTrack
and MultiViewX datasets in Table II. We find that our
proposed models attains satisfactory performance on the test
sets of both WildTrack (best MODA score of 87.2) and
MultiViewX (best MODA score of 88.2). This is slightly
worse than the recently proposed methods [6], [7], but is far
superior to the performance of the classical and the anchor-
based MVD methods. However, we would like to highlight
that the traditional evaluation protocol is highly misleading
since the train and test sets have significant overlap, thereby
encouraging overfitting. Therefore, we emphasize the evalu-
ation across a varying number of cameras, changing camera
configurations, and on new scenes.
Generalization to Varying Number of Cameras: An
interesting scenario that can potentially occur in practical
scenarios is the loss of some camera feeds due to various
issues. In this case, a model trained with 7 cameras, may
need to be able to perform inference with just 4 cameras.
To simulate this setting, we train all the models (MVDet,
MVDeTr, SHOT and Ours) on all 7 cameras and test them
on 2 different sets of 4 cameras ({1,3,5,7},{2,4,5,6})
in Table III. Our proposed model is able to naturally work in
this setting without any issues. For MVDet, MVDeTr, and
SHOT, we randomly duplicate 3 of these views to ensure
that 7 views are available. We observe that the performance
of MVDet, MVDeTr, and SHOT degrades drastically when
evaluated in this setting. When trained with the DropView

TABLE IV
SCENE GENERALIZATION : EVALUATION OF OUR METHOD WHILE

TRAINING ON SYNTHETIC DATASET (MULTIVIEWX) AND TESTING ON

REAL DATASET (WILDTRACK). CAMERA 7 OF THE WILDTRACK

DATASET WAS DISCARDED FOR THE EXPERIMENTS IN THE FIRST FIVE

ROWS.

Method Inference on
total cameras

ImageNet
(pre-train) MODA MODP Prec Recall

MVDet 6 × 17.0 65.8 60.5 48.8
MVDeTr 6 X 50.2 69.1 74.0 77.3
SHOT 6 × 53.6 72.0 75.2 79.8

Ours 6 X 60.1 72.1 75.6 88.7
Ours (DropView) 6 X 66.1 72.2 82.0 84.7
Ours 7 X 69.4 72.96 83.7 86.14
Ours (DropView) 7 X 70.7 73.8 89.1 80.6

regularization, our proposed model outperforms these meth-
ods by a huge margin (MODA of 77.0 vs 66.6 and 79.2
vs 46.3). This experiment clearly illustrates the need for the
architectures to automatically work with an arbitrary number
of views. Furthermore, since MVDet, MVDeTr, and SHOT
learn a separate spatial aggregation module for each view,
the spatial aggregation module overfits to the order of input
cameras (indicated by the significant performance variations
across the two sets). Future works should ensure that the
model has permutation invariance to the order of input views
in addition to working with an arbitrary number of views.
Generalization to New Camera Configurations: Another
practical scenario that we explore is when the camera po-



TABLE V
EXPERIMENTS ON THE WILDTRACK DATASET WITH CHANGING CAMERA CONFIGURATIONS

Inference on {2,4,5,6} Inference on {1,3,5,7}

Method MODA MODP Prec Recall MODA MODP Prec Recall
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t

{2
,4

,5
,6
} MVDet 85.2 72.2 92.6 92.5 43.2 68.2 94.6 45.8

MVDeTr 75.4 79.5 96.9 77.9 41.7 73.7 92 45.7
SHOT 81.9 74.1 94.1 87.4 51.4 72.5 94.4 54.6
Ours 81.8 73.5 93.5 87.9 66.5 71.4 94.3 70.8
Ours (DropView) 84 72.9 92.4 91.6 75.1 71.1 94.3 79.9

{1
,3

,5
,7
} MVDet 27.8 68.7 90.8 31.0 78.2 73.6 89.5 88.6

MVDeTr 5.6 65.5 62.4 14.0 72.5 78.9 95 76.5
SHOT 15.3 62.9 89.2 17.4 79.7 76.4 95.7 83.5
Ours 52.4 67.4 81 68.5 76.4 74.6 91.5 84.1
Ours (DropView) 62.6 67.4 86.7 73.9 80.8 74.0 94.2 86

TABLE VI
CHANGING CONFIGURATION AND SCENE GENERALIZATION

EXPERIMENT ON THE SETTING INTRODUCED IN [7]

Method MODA MODP Prec Recall

MVDet 33.0 76.5 64.5 73.4
MVDeTr 56.5 70.8 85.0 68.6
SHOT 49.1 77.0 73.3 77.1
Ours 57.8 76.5 88.7 66.3
Ours (DropView) 66.1 75.8 89.3 75.2

TABLE VII
EVALUATION WHEN TRAINED ON GMVD TRAINING SET: FIRST ROW

SHOWS THE RESULT ON GMVD TEST SET AND SECOND ROW IS WHEN

TESTED ON WILDTRACK DATASET.

Inference on MODA MODP Prec Recall

GMVD 68.2 76.3 91.5 75.5
WildTrack 80.1 75.6 90.9 89.1

sitions are varied between the train and test sets. We train
all the models on two sets of camera views and then test
the trained models on both sets. The results are provided
in Table V. When the models are evaluated on the same
camera configuration, all the models have satisfactory per-
formance. However, when evaluated on the different camera
configuration, MVDet, MVDeTr, and SHOT see a huge
degradation in performance. Our model is fairly robust to the
changing camera configuration. Especially when trained with
DropView regularization, the resulting model outperforms all
other models by over 20 percentage points.
Scene Generalization: Finally, an important concern with
the practical utility of MVD methods is that since real-world
data is scarce, a trained model should be able to generalize to
new scenes. We first evaluate the scene generalization abili-
ties of the MVD methods by training them on MultiViewX
and evaluating them on WildTrack in Table IV. Our proposed
model is able to utilize the extra camera present in the
WildTrack dataset and achieves a MODA score of 70.7. This
further highlights the benefits of an architecture that works
with arbitrary number of views, since the performance during
inference can be enhanced by adding more view. However,

even without the additional view, our model achieves a
MODA score of 66.1, which is much higher than SHOT
which only achieves a MODA score of 53.6.
In addition to this, we perform the scene generalization
experiment proposed in [7] where the MultiViewX scene
is split into two halves, and each half is covered using 3
cameras each. In this setting as well (Table VI), our proposed
approach with DropView regularization has a MODA score
of 66.1, which is significantly higher than both SHOT (49.1)
and MVDeTr (56.5).
GMVD Benchmark: Having shown that our proposed
model is capable of comprehensive generalization abilities,
we benchmark our proposed approach on the GMVD dataset
(Table VII). We train our model on the training set of the
GMVD dataset and use MultiViewX dataset for validation.
Since each sequence in the training set has a different number
of cameras, none of the existing methods can be adapted to
this setting, since they can be trained only on a fixed set of
cameras. When evaluated on WildTrack, our model is able
to achieve a MODA score of 80.1, which is a significant
improvement over the results from training on MultiViewX.
Notably, this shows that training on our synthetic dataset, we
can nearly attain the same performance as training on Wild-
Track itself. When evaluated on GMVD test set, our model
achieves a MODA score of 68.2. The results empirically
suggest the difficulty of the GMVD test set, compared to
WildTrack and MultiViewX, resulting from a distinct train-
test split and the presence of extensive variations. We believe
that our dataset can serve two important purposes. The first
is as a diverse, synthetic dataset from which a model can be
adapted to real-world data. The second is that the GMVD
dataset itself can be a challenging benchmark to evaluate the
generalization capabilities of MVD methods. In this setting,
MultiViewX being used for validation is ideal, since this
ensures that no information from the test set is leaked during
training.

VI. DISCUSSION AND FUTURE WORK

The biggest limitation in the field of Multi-View Detection
is that real-world capture of data is extremely challenging
due to the difficulty in collecting a dataset with people in
addition to the challenges involved in the hardware setup



and annotations. The absence of a large, diverse benchmark
significantly hampers the progress of this topic. Therefore,
the existing WildTrack dataset is extremely valuable for the
community. However, due to its limited size and variety,
it is not suitable for training and should only be used to
evaluate the generalization abilities of the models. In this
regard, we hope that our proposed dataset and our barebone
model serves as a useful tool in bridging the gap between
the theory and real-world application of MVD methods. In
our work, we have not explored the use of unsupervised
domain adaptation techniques to bridge the gap between the
feature distributions of the synthetic and real datasets and
the direction is left for exploration in the future work.

VII. CONCLUSION

We find the current Multi-View Detection setup severely
limited and encouraging models to overfit the training config-
uration. Therefore, we conceptualize and propose novel ex-
perimental setups to evaluate the generalization capabilities
of MVD models in a more practical setting. We find the state-
of-the-art models to have poor generalization capabilities on
our proposed setups. To alleviate this issue, we introduce
changes to the feature aggregation strategy, loss function,
as well as a novel regularization strategy. With the help of
comprehensive experiments, we demonstrate the benefits of
our proposed architecture. In addition to this, we propose a
diverse, synthetic, but realistic dataset which can be used
both as an evaluation benchmark, as well as a training
dataset for various MVD methods. Overall, we hope our
work plays a crucial role in steering the community towards
more practical Multi-View Detection solutions.
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[8] T. Chavdarova, P. Baqué, S. Bouquet, A. Maksai, C. Jose, T. M.
Bagautdinov, L. Lettry, P. Fua, L. Gool, and F. Fleuret, “Wildtrack:
A multi-camera hd dataset for dense unscripted pedestrian detection,”
2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 5030–5039, 2018.

[9] G. Roig, X. Boix, H. B. Shitrit, and P. Fua, “Conditional random fields
for multi-camera object detection,” 2011 International Conference on
Computer Vision, pp. 563–570, 2011.

[10] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
pp. 1137–1149, 2015.

[11] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu,
and A. Berg, “Ssd: Single shot multibox detector,” in ECCV, 2016.

[12] J. Redmon, S. Divvala, R. B. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 779–788, 2016.

[13] Y. Xu, X. Liu, Y. Liu, and S.-C. Zhu, “Multi-view people tracking
via hierarchical trajectory composition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
4256–4265.
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Fig. 6. Camera splits of WildTrack dataset for changing camera configu-
ration experiment.

APPENDIX

Method ImageNet
(pre-train) MODA MODP Prec Recall

MSE X 57.3(±0.2) 72.6(±0.0) 75.6(±0.1) 84.5(±0.05)
CC X 55.5(±5.5) 74.2(±0.4) 72.1(±4.4) 89.5(±2.6)
KL X 62.5(±0.1) 73.4(±0.04) 89.1(±0.0) 71.3(±0.0)

KLCC X 69.4(±0.6) 72.96(±0.2) 83.74(±0.5) 86.14(±0.3)

TABLE VIII
CHOICE OF LOSS FUNCTION: WE PRESENT AN ABLATION STUDY FOR

OUR PROPOSED METHOD ON THE SCENE GENERALIZATION

EXPERIMENT. OVERALL, THE MODEL TRAINED WITH BOTH

KL-DIVERGENCE AND CROSS-CORRELATION ACHIEVES THE BEST

PERFORMANCE.

We ablate the choice of the loss function in Table VIII
for the scene generalization experiment. We consider the
Mean Squared Error (MSE), KL-Divergence(KL), Pearson
Cross-Correlation (CC), as well as our chosen loss function
(KL+CC). We find that the combination of KL-Divergence
and Pearson Cross-Correlation achieves significantly better
results than any other loss function.
First we show the predicted occupancy maps of MVDet,
MVDeTr, SHOT and our method and compare them with
the ground truth, in the traditional setting. Subsequently,
qualitative results are shown w.r.t to three generalization
abilities obtained from both the WildTrack and MultiViewX
datasets.

A. WildTrack Dataset

The traditionally evaluated results which contains occupancy
maps of ground truth, our method, MVDet, MVDeTr and
SHOT are shown in Fig. 7. The occupancy map from our
method which uses average pooling, KLCC loss function and
ImageNet pretraining gives us more accurate localization as
compared to the base MVDet architecture. The results (maps)
are competitive when compared to SHOT and MVDeTr.
The maps obtained using MVDeTr are sharper and focused,
however, it also has more false positives.
Varying number of cameras: The output occupancy map
for varying number of cameras are shown in Fig. 8. Wild-
Track consists of seven cameras, we show the results inferred
with three cameras upto six cameras. As the number of views
are increasing, we get an accurately localized occupancy
map.

Changing camera configurations: The output occupancy
map for cross subset evaluation are shown in Fig. 10. Here,
we have the occupancy maps for a model trained on one
set and tested on other set. For example, trained on camera
views one, three, five and seven and tested on cameras two,
four, five and six or vice-versa like the camera splits shown
in Figure 6. Clearly the pre-training is improving localization
in both the methods. Furthermore, our method with average
pooling is better at disambiguating the occlusions and also
giving brighter outputs (resulting in sharp maxima’s).

B. MultiViewX Dataset
In this subsection the qualitative results for MultiViewX
dataset are been shown. We consider similar configurations
as in the Wildtrack dataset. The obtained results clearly
indicates the improvements our method brings over the
MVDet, MVDeTr and SHOT model and observations are
similar to that of the Wildtrack dataset. Fig. 7 shows the
traditionally evaluated results.
Varying number of cameras: The output occupancy map
for varying number of cameras are shown in Fig. 11.
MultiViewX consists of six cameras, we show the results
inferred with three cameras upto five cameras. As the number
of views are increasing, we get an accurately localized
occupancy map.
Changing camera configurations: The output occupancy
map for cross subset evaluation are shown in Fig. 12. Here,
we have the occupancy maps for a model trained on one
set and tested on other set. For example, trained on camera
views one, three, and four and tested on cameras two, five
and six or vice-versa, the camera splits are shown in Figure
9 and their results are shown in Table IX.

Inference on {1,3,4} Inference on {2,5,6}

Method MODA MODP Prec Recall MODA MODP Prec Recall

Tr
ai

ne
d

on
ca

m
er

a
se

t

{1
,3

,4
}

MVDet 72 76.1 93.5 77.4 46.3 66.4 94.5 49.1
MVDeTr 77.4 85.1 97.9 79 60.4 71.3 95.4 63.5
SHOT 74.3 76.3 94.1 79.3 37.3 67 67.5 72.1
Ours 67.7 76.4 96.2 70.5 59.6 73.4 94.7 63.2
Ours (DropView) 67.3 75.3 98.4 68.5 62.9 73.6 96.3 65.4

{2
,5

,6
}

MVDet 34.3 66.2 93.8 36.7 77.6 77.4 93.8 83.1
MVDeTr 51.1 72.1 94.9 54 83.1 87.1 97.8 85
SHOT 47.3 73 94.2 50.3 80.7 78.7 96.1 84.1
Ours 45.8 71.8 94.5 48.6 76.1 78.7 95.9 79.5
Ours (DropView) 53.4 71.6 88.2 61.6 75.2 77.4 92.8 81.5

TABLE IX
EXPERIMENTS ON THE MULTIVIEWX DATASET WITH CHANGING

CAMERA CONFIGURATIONS

C. Scene Generalization
The qualitative results of output occupancy map for cross-
dataset evaluation are shown in Fig. 13, when we train on
synthetic dataset (MultiViewX ) and test on real dataset
(WildTrack ). First four occupancy maps are the outputs
of MVDet, MVDeTr, SHOT and our method when tested
on only 6 views of WildTrack dataset for having a fair
comparison with other methods. We also show the output
occupancy map when tested on all the views of WildTrack
dataset. Our method provides accurately localized occupancy
maps and disambiguate the occlusions as compared to other
methods.



RGB N Camera View Input Ground Truth MVDet OursMVDeTr SHOT

Widltrack

MultiviewX

Fig. 7. Sample frames from WildTrack and MultiViewX dataset with corresponding occupancy maps of ground truth, our result MVDet, MVDeTr and
SHOT for comparison. We can see the clusters forming in the MVDet predictions, in contrast our method gives much sharper and distinct predictions.

Ground Truth View {1,2,3,4}View {1,2,3}
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MODA : 66.8% MODA : 81.9% MODA : 84.1%

Fig. 8. Occupancy maps for varying number of cameras on WildTrack dataset when trained on seven cameras and tested on varying subsets of the
cameras.
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Fig. 9. Camera splits of MultiViewX dataset for changing camera configuration experiment shown in Table IX.
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OursMVDet MVDeTr SHOT

Fig. 10. Result occupancy maps for cross subset evaluation from WildTrack dataset.

Ground Truth View{1,2,3} View{1,2,3,4} View{1,2,3,4,5}

MODA : 48.7% MODA : 72% MODA : 81.8%

Fig. 11. Occupancy maps for varying number of cameras on MultiViewX dataset when trained on seven cameras and tested on varying subsets of the
cameras.
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Fig. 12. Result occupancy maps for cross subset evaluation from WildTrack dataset.

Trained on
MultiViewX Ground Truth Ours  (All views)Ours  (6 views)MVDet  (6 views)Tested on

WildtTrack MVDeTr  (6 views) SHOT (6 views)

Fig. 13. Occupancy maps obtained on inference from WildTrack dataset where the models where trained on the synthetic dataset (MultiViewX ).


	I Introduction
	II Related Work
	II-A Classical Methods
	II-B Anchor based MVD
	II-C End-to-end Deep MVD

	III Proposed Dataset
	IV Proposed Method
	IV-A Feature Extraction and Perspective Transformation
	IV-B Spatial Aggregation
	IV-C Loss Function

	V Experiments
	V-A Experimental setup
	V-B Implementation Details
	V-C Results

	VI Discussion and Future work
	VII Conclusion
	References
	Appendix
	A WildTrack Dataset
	B MultiViewX Dataset
	C Scene Generalization


