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Abstract

Multiple toddler tracking (MTT) involves identifying and
differentiating toddlers in video footage. While conven-
tional multi-object tracking (MOT) algorithms are adept at
tracking diverse objects, toddlers pose unique challenges
due to their unpredictable movements, various poses, and
similar appearance. Tracking toddlers in indoor environ-
ments introduces additional complexities such as occlusions
and limited fields of view. In this paper, we address the
challenges of MTT and propose MTTSort, a customized
method built upon the DeepSort algorithm. MTTSort is
designed to track multiple toddlers in indoor videos accu-
rately. Our contributions include discussing the primary
challenges in MTT, introducing a genetic algorithm to op-
timize hyperparameters, proposing an accurate tracking
algorithm, and curating the MTTrack dataset using unbi-
ased AI co-labeling techniques. We quantitatively compare
MTTSort to state-of-the-art MOT methods on MTTrack,
DanceTrack, and MOT15 datasets. In our evaluation,
the proposed method outperformed other MOT methods,
achieving 0.98, 0.68, and 0.98 in multiple object tracking
accuracy (MOTA), higher order tracking accuracy (HOTA),
and iterative and discriminative framework 1 (IDF1) met-
rics, respectively1.

1. Introduction
Multiple toddler tracking (MTT) involves the detection

of toddlers in video footage and continuous tracking with a
unique identification number. According to the American
Academy of Pediatrics (AAP), toddlers are children aged
1-3 years characterized by their active engagement in activ-
ities such as climbing, running, and jumping [8]. Ensuring
the safety of toddlers during their daily routines, both at

1The MTTSort code available at
https://github.com/ostadabbas/Multiple-Toddler-Tracking.

home and in care facilities, is a paramount concern for par-
ents and their assigned caregivers. The identification and
monitoring of toddlers’ movements is of significant interest
for researchers in child development [10, 11], nursing [36],
and various health-related fields [28], particularly early de-
tection of motor-related abnormalities [6, 14, 20].

Multiple toddler tracking falls under the specialized cat-
egory of multiple object tracking (MOT) algorithms. MOT
is a crucial component of various scene-understanding
tasks, including surveillance [27], robotics [1, 34], and au-
tonomous [7]. These algorithms track multiple moving ob-
jects while assigning a unique identifier to each [2, 19, 31].
Typically, various objects are present in each frame and
may belong to different classes. MOT algorithms are com-
prised of three key steps: detection (finding all objects in a
frame), localization (determining detected object positions
in a frame), and association (matching objects across frames
to maintain consistent identifiers) [22]. Particularly in hu-
man tracking and monitoring systems, ensuring each person
has unique and persistent identifier numbers throughout the
video is a critical requirement.

While some toddler detection methods have been pro-
posed to measure the distance of toddlers from dangerous
objects and prevent potentially hazardous situations [8, 9],
it is evident that developing an algorithm capable of si-
multaneously tracking multiple children with unique iden-
tifiers is significantly more challenging. Multiple toddler
tracking (MTT) presents three primary obstacles. First,
many existing face and bounding box detection methods are
trained primarily on adult samples, leading to numerous er-
rors when applied to child detection (i.e., detection chal-
lenge) [29]. Second, young children exhibit unpredictable
movement patterns involving rapidly changing directions
and positions, such as walking, sitting, and crawling, mak-
ing it challenging to establish an accurate tracking model
(i.e., localization challenge) [32]. Third, when multiple
young children are present in a scene, distinguishing them
can be problematic due to their similar appearances (i.e., as-
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sociation challenge) [29, 32]. Furthermore, to address the
demand for intelligent systems for toddler tracking, they
should be designed for indoor environments, such as homes
and daily care centers. In these applications, the limitation
of field of view, results in some challenges such as a high
rate of occlusion [21]. These challenges underscore the es-
sential need for a customized and accurate method for track-
ing multiple toddlers in indoor videos.

This paper discusses the main challenges and poten-
tial solutions of MOT methods for multiple toddlers track-
ing in indoor videos. Then a customized and accurate
method, MTTSort, is proposed to resolve these challenges
and achieve high efficiency for toddler tracking. This
method builds upon the DeepSort algorithm [31] which is
a state-of-the-art MOT approach that has demonstrated sig-
nificant potential for customization in indoor applications in
our experiments. In the first step of the proposed method,
a genetic algorithm is proposed to optimize the hyperpa-
rameters. Then a new extension of the DeepSort algorithm
is developed for multiple toddler tracking in indoor videos.
This paper also provides a quantitative comparison of state-
of-the-art methods including DeepSort [31], StrongSort [5],
HybridSort [33], and Bytetrack [35]. Since there is no pub-
licly available dataset for multiple toddler tracking, we built
a video set, called the MTTrack dataset. Comprehensive
evaluation and comparison have been conducted on MT-
Track and two other public tracking datasets, DanceTrack
[26], and MOT15 [3]. In summary, the paper introduces
several significant contributions:

• Discussing the main challenges of MOT methods for
multiple toddler tracking applications in indoor videos.

• Providing a genetic algorithmic method to make sure
that the optimum hyperparameters are used for track-
ing.

• Proposing an accurate tracking algorithm that is cus-
tomized for multiple subject tracking in indoor videos.

• Building and annotating the MTTrack dataset using the
AI co-labeling techniques, ensuring no algorithmic bi-
ases.

• A quantitative comparison of state-of-the-art MOT
methods on two public datasets as well as the MTTrack
dataset.

Overall, these contributions enhance our understanding
of multiple object tracking and provide valuable resources
for further research in this domain. The rest of this paper
is structured as follows: State-of-the-art MOT methods and
their shortcomings for multiple toddler tracking in indoor
videos are described in Section 2. Then, in Section 3, the
proposed customized method for multiple toddler tracking

is described. The experimental results are shown in Sec-
tion 4. Finally, Section 5 is dedicated to conclusions and
recommendations for future research.

2. Related Works
In this section, the widely used existing MOT methods

are briefly described, and then the main shortcomings of
these methods for multiple toddler tracking especially in in-
door videos are discussed.

DeepSort [31] is designed to track multiple objects in
real-time applications by combining object detection with
deep neural networks, specifically using YOLO [23] and
Deep Association Network (DAN) [30]. DeepSort extends
the original simple online and real-time tracking [2] (SORT)
algorithm by improving the re-identification of objects after
an occlusion. In this method, the object detection module
detects objects in each frame. YOLOv8 has been used as
a deep object detection model in this paper. DeepSort uses
the Kalman filter to estimate the state of each track (i.e.,
position, velocity, size, and age) and predict its future loca-
tion. The Kalman filter is used in combination with the data
association module to update the state of each track based
on the detected objects in the current frame and predict the
state of each track in the next frame. The track manage-
ment module in DeepSort is responsible for updating the
state of each track over time and removing tracks that are
no longer valid or reliable. This module keeps track of each
object’s position, velocity, size, and age, and uses this in-
formation to predict the object’s future location and update
its state. In addition to updating the state of each track, the
track management module also performs track maintenance
tasks such as track initiation and track termination. While
DeepSort exhibits the capability to track multiple moving
objects effectively in straightforward scenarios where the
objects are widely spaced and follow uncomplicated trajec-
tories, it tends to produce numerous errors in more intricate
situations, particularly in indoor video environments char-
acterized by prolonged occlusions.

StrongSort [5] revisits the classic DeepSort tracker
with the appearance-free (AFLink) model and Gaussian-
smoothed interpolation (GSI). StrongSort first uses an en-
hanced correlation coefficient maximization (ECC) to ac-
count for motion noise caused by movements. Then, a mod-
ified Kalman filter that emphasizes non-linear motions is
used to calculate the weightings during each update across
frames. Lastly, for object association, StrongSort directly
includes the motion information in addition to appearance
for more accurate tracking. While StrongSort generally out-
performs DeepSort as a more accurate tracker when evalu-
ated on publicly available outdoor datasets, our experimen-
tal findings indicated an unexpected outcome. Specifically,
in our experiments, the performance of StrongSort was no-
tably inferior to DeepSort, particularly in indoor video sce-



narios. Consequently, we introduced our tracking method,
based on DeepSort, with the primary objective of achieving
precise tracking of multiple toddlers within indoor videos.

HybridSort [33] improves tracking when long-standing
failure cases are caused by heavy occlusion and cluster-
ing. In this situation, strong cues such as spatial and ap-
pearance information become unreliable simultaneously. In
this research, they demonstrated an important finding that
previously overlooked weak cues, such as confidence state,
height state, and velocity direction, can compensate for the
limitations of strong cues. Then, they proposed Hybrid-
Sort by introducing simple modeling for the newly incor-
porated weak cues and leveraging both strong and weak
cues. The design effectively and efficiently resolves am-
biguous matches generated by strong cues and significantly
improves association performance. A critical limitation we
observed in our experiments regarding HybridSort is its per-
formance inconsistency. Specifically, when toddlers are in
motion, this method yields highly satisfactory results. How-
ever, it encounters significant challenges when toddlers are
either stationary or exhibiting minimal movement, leading
to a notable increase in tracking errors.

ByteTrack [35] has been proposed to fix missing pre-
dictions by using low-confidence candidates in association,
achieving good performance by balancing the detection
quality and tracking confidence. It focuses on associating
almost every detection box, including low-score ones, to
recover true objects and filter out background detections.
ByteTrack associates every detection box and uses similari-
ties between tracklets to reduce false positives and negatives
for low-score detection bounding boxes. It proposes a sec-
ond matching stage in which low-confident detections are
associated with unmatched tracks from the first stage. The
low-confident detections are not used to start new tracks, en-
suring no ghost tracks from low-confident false positive de-
tections are introduced. The authors of ByteTrack show that
this two-stage matching (TSM) improves the tracking per-
formance when integrated into various frameworks. In our
initial experiments, ByteTrack showed promising results.
However, it became clear that it had limited potential for
customization and parameter adjustment, particularly when
dealing with indoor videos, in contrast to the DeepSort algo-
rithm. Consequently, we made the decision to enhance and
tailor DeepSort with our modifications to create a highly ac-
curate tracker for the purpose of tracking multiple toddlers
in indoor video settings.

Public Datasets for multi-object tracking have been or-
ganized into two main resources, MOT [3] and DanceTrack
[26]. The MOT datasets are designed for the task of multi-
ple object tracking. There are several variants of the dataset
released each year, such as MOT15, MOT17, and MOT20.
DanceTrack is a large-scale multi-object tracking dataset
for human tracking in occlusion, frequent crossover, uni-

form appearance, and diverse body gestures. It is proposed
to emphasize the importance of motion analysis in multi-
ple object tracking instead of mainly appearance-matching-
based diagrams.

3. Our MTTSort

Here, we outline the primary difficulties faced by MOT
techniques when tasked with tracking multiple toddlers in
indoor video environments. To address these challenges,
we introduce our novel approach. Our method (MTTSort),
which builds upon the DeepSort algorithm, consists of two
pivotal phases. In the initial phase, we utilize a genetic al-
gorithm to determine the optimal parameters for DeepSort.
This crucial step ensures the use of optimized parameters
prior to any further adjustments. Following this, in the sec-
ond phase, we implement specific modifications to Deep-
Sort, thereby improving its precision in tracking multiple
toddlers in indoor video scenarios.

3.1. MTT Main Challenges

Utilizing a conventional MOT method for tracking tod-
dlers in indoor videos presents several noteworthy chal-
lenges, as outlined below:

Adult-Centric Models: Existing detection and tracking
models have predominantly been trained on adult samples,
resulting in a significant number of errors when detecting
children.

Unpredictable Movements: Young children exhibit un-
predictable and rapid changes in their movements and posi-
tions, making it challenging to develop an accurate tracking
model for them.

Activity Variability: Toddlers engage in diverse activ-
ities, including walking, sitting, lying, and crawling, all
within a single video sequence. This variability introduces
higher error rates in both detection and tracking processes.

Similar Appearances: Distinguishing between toddlers
can be problematic due to their similar physical appear-
ances. This challenge becomes more pronounced, partic-
ularly when tracking twins, given their resemblance.

Toy Confusion: In scenarios where a child interacts
with humanoid toys or action figures, the detection stage
may mistakenly identify the toy as a real subject, leading to
tracking errors.

Limited Camera View: Indoor video setups often em-
ploy stationary cameras with restricted fields of view, re-
sulting in frequent occlusions, even with a small number of
subjects being tracked.

Extended Occlusion: Unlike outdoor environments
where occlusion might occur over a few frames, indoor sce-
narios involve prolonged occlusion extending over consec-
utive frames. This extended occlusion poses a significant
challenge in maintaining individual subjects’ identities.



Data Challenges: Developing a novel model for track-
ing multiple toddlers necessitates a substantial dataset for
training. However, data collection and labeling for chil-
dren’s research are expensive, individualized, and subject
to stringent privacy and classification laws. Capturing mul-
tiple video clips from various children can also be time-
consuming due to their unpredictable movements.

In summary, the importance of “SmallData” is evident,
emphasizing the challenge of obtaining sufficient labeled
data for toddler tracking. Customizing existing methods is
crucial to adapting to the unique demands and complexities
associated with toddler tracking, enabling the development
of more precise tracking solutions tailored to their distinc-
tive characteristics and requirements.

3.2. Parameter Optimization Using Genetic Algo-
rithm

In the realm of optimization problems, the Genetic Al-
gorithm (GA) stands out as a bio-inspired heuristic, rooted
in the process of natural selection. GAs operate by simu-
lating the process of evolution found in nature. Beginning
with a population of potential solutions (analogous to in-
dividuals or organisms), the algorithm iteratively evaluates,
selects, mates, and mutates these solutions. The key prin-
ciple is that over successive generations, better and fitter
solutions emerge, closely resembling the evolutionary con-
cept of ”survival of the fittest.” The algorithm’s capacity to
explore a vast solution space by intelligently combining and
modifying solutions makes it especially effective for prob-
lems where the optimal solution is elusive or computation-
ally intensive to ascertain directly [13].

In our pursuit of tackling the complexities of multi-
toddler tracking, we embarked on a comprehensive explo-
ration of various configurations encompassing diverse as-
pects of the detection and tracking challenges. Following a
rigorous evaluation, we concluded that DeepSort emerged
as the most suitable solution to meet our tracking needs.
Nonetheless, optimizing performance necessitated a metic-
ulous fine-tuning of DeepSort hyperparameters using a ge-
netic algorithm [17]. We pinpointed specific hyperparame-
ters, each associated with a defined range derived from em-
pirical insights and domain expertise. These critical hyper-
parameters are shown in Table 1.

To discover the optimal values within these ranges, we
adapted a mainstream genetic algorithm. The fitness func-
tion for our genetic algorithm was designed to maximize the
aggregate score, Score, defined as:

Score = HOTA+MOTA+ IDF1, (1)

where, HOTA (higher order tracking accuracy) [16], MOTA
(multiple object tracking accuracy) [12], and IDF1 (iterative
and discriminative framework 1) [24] are the three main ac-
curacy criteria in MOT algorithms. Each metric was given

an equal weight. This approach allows us to automatically
and efficiently search the hyperparameter space, ultimately
leading to enhanced tracking performance in our MTT sys-
tem. Algorithm 1 shows the main body of the proposed
genetic algorithm for optimizing the parameters.

Table 1. MOT hyperparameters with descriptions.

Parameter Range Description
MAX DIST [0.1, 1.0] Maximum distance for

matching
MIN CONFIDENCE [0.2, 0.7] Minimum confidence

for detection
NMS MAX OVERLAP [0.2, 0.8] Max overlap for non-

max suppression
MAX IOU DISTANCE [0.2, 0.9] Max IoU distance for

tracking
MAX AGE [10, 200] Max age of a track

without detection
N INIT [2, 15] Number of initial detec-

tions
NN BUDGET [20, 120] Nearest neighbors’

budget

Algorithm 1 Genetic algorithm for hyperparameter opti-
mization in MOT

1: Define config template with hyperparameters of Ta-
ble 1.

2: Initialize a population of individuals using the con-
fig template.

3: Evaluate the fitness of each individual in the popula-
tion using the fitness function:
Score = HOTA+MOTA+ IDF1.

4: while standard deviation of scores in the population is
greater than tolerance OR maximum number of gener-
ations not reached do

5: Select parents from the current population based on
their scores.

6: Perform crossover (recombination) on pairs of par-
ents to produce offspring.

7: Mutate offspring based on mutation rate.
8: Evaluate the score of the offspring using the fitness

function.
9: Replace the current population with the offspring.

10: end while
11: return The solution (individual) with the best score

from the population.

3.3. Indoor MTT

In the realm of tracking applications, particularly those
involving subjects like toddlers with highly similar appear-
ances and unpredictable movements, conventional track-



Figure 1. Our proposed method, MTTSort for multiple toddler tracking in indoor videos. This diagram illustrates two significant enhancements to the
traditional DeepSort framework: (1) Pooled Aggregated Feature Association with a Custom Buffer, a mechanism that accumulates and consolidates features
across consecutive frames in a user-defined buffer, and (2) Attention-Based Feature Extraction with ViT, which replaces conventional CNNs with the Vision
Transformer for a more refined and attention-focused feature extraction process. Both modifications are designed to tackle the challenges posed by subjects
like toddlers, characterized by their similar appearances and unpredictable movements.

ing algorithms such as DeepSort often grapple with main-
taining consistent identities. Recognizing these challenges,
we have introduced significant modifications, integrating
a state-of-the-art feature association mechanism into the
DeepSort framework. Figure 1 illustrates the essence of our
proposed method. Our method enhances the DeepSort algo-
rithm by adding two parts to it: (1) pooled aggregated fea-
ture association with custom buffer, and (2) attention-based
feature extraction with the vision transformer (ViT).

Pooled aggregated feature association with custom
buffer: While traditional tracking methods, including
DeepSort, predominantly rely on the immediate features
from the current frame, our approach takes a leap forward.
We’ve introduced a custom-sized feature buffer that aggre-
gates features over a series of frames. Specifically, in our
experiment, the buffer size was fixed to store up to 5 fea-
tures extracted per object. This choice of a buffer size of 5
was deliberate; we found that increasing the buffer size fur-
ther led to an accumulation of more divergent features over
time. As a result, the matching process could become less
accurate, since features could deviate significantly from the
object’s most recent appearance. Hence, a size of 5 strikes
a balance between retaining recent appearance information
and ensuring effective feature matching.

The features buffer was designed as a queue, and the
queuing mechanism operates under two distinct conditions:
(1) When the Kalman filter terminates a track, leading to
the removal of associated features, or (2) when the buffer
reaches its full capacity, implying that 5 features have al-
ready been buffered. In such a scenario, the oldest feature
is dequeued, ensuring that only the 5 ”last seen” features
are stored. Essentially, this buffer acts as a temporal slid-
ing window for each object, capturing the most recent and
relevant appearance data over time.

This buffer retains the ”last seen” features for each sub-
ject across multiple frames, which, when subjected to an av-
erage pooling operation, produces aggregated features that
capture the historical appearance nuances of each subject
[18]. This innovation not only ensures that the most recent
and pertinent features are always in play but also amplifies
the reliability of associations. By pooling these features, our
algorithm achieves a holistic representation, adeptly han-
dling transient appearance changes, momentary occlusions,
or drastic appearance shifts — a marked enhancement over
traditional methodologies.

Attention-based feature extraction with ViT: Deep-
Sort, like many tracking algorithms, has conventionally
leaned on CNNs for feature extraction. While CNNs have



been instrumental in many computer vision tasks, in our ex-
periments they occasionally missed the mark in scenarios
demanding meticulous attention to minute details. Address-
ing this gap, we have integrated the Vision Transformer
(ViT), an attention-centric model [15], supplanting the con-
ventional CNN in DeepSort. The ViT, renowned for its self-
attention mechanisms, shines in pinpointing subtle differ-
ences by zeroing in on vital image regions. This capability
is paramount for our toddler tracking application, ensuring
that even the most nuanced appearance variations are metic-
ulously captured, offering a richer and more detailed feature
set for association.

4. Experimentation Results
In the conducted experiments, multiple configuration se-

tups were systematically assessed to understand the robust-
ness and efficiency of the object tracking model. Each con-
figuration was run across five different sub-scenes, generat-
ing individual results per sub-scene. To aggregate the re-
sults, the metrics from each configuration were averaged
across all the sub-scenes, providing a comprehensive view
of the model’s performance under varying conditions. This
approach ensures that the derived insights and the compar-
ative analysis are based on consistent and averaged data
points, mitigating the impact of outlier sub-scenes on the
overall evaluation.

The experimentation was structured around several fo-
cused scenarios, each emphasizing different aspects of the
model’s parameters. One configuration concentrated on de-
tection confidence, another on distance measures, the third
on overlapping and intersection over union (IoU), and the
last on age and budget of the tracks. These configurations
were crafted to observe the impact of selective variation of
parameters on the model’s outcomes and to deduce which
parameters are crucial for optimizing performance. Interest-
ingly, during the experimentation, it was observed that vary-
ing only the IoU or the confidence did not significantly alter
the results, implying a degree of robustness in the model
against these parameters. Most configurations yielded sim-
ilar performance metrics, indicating that the model’s effec-
tiveness is less sensitive to alterations in IoU and confidence
values. This insight is instrumental in understanding the in-
herent stability of the model and guides further refinement
and tuning of the model parameters.

4.1. Evaluation Criteria

Accurate evaluation of MOT algorithms has proven to
be very difficult, because MOT is a complex task, requiring
accurate detection, localization, and association over time.
Generally, there are five types of errors in an MOT method:
1- false negative or misses when ground truth exists but the
prediction is missed, 2-false positive when tracker predic-
tion exists for no ground truth tracker, 3- merge or ID switch

when two or more object tracks are swapped, 4- deviation
which measures the average distance between the predicted
location of an object and its true location over time, and 5-
fragmentation which shows a track suddenly stops getting
tracked but the ground truth track still exists. It causes a
false increment of identifier numbers. Figure 2 shows an
example of ID switches and fragmentation, which are the
most challenging errors, in MOT algorithms. In this figure,
there is an ID switch between toddler 1 and toddler 3. Also,
toddler 2 has gotten a new ID due to the fragmentation error.

Using the mentioned five types of errors, various evalu-
ation metrics can be calculated. In this paper, HOTA [16]
(higher order tracking accuracy) is considered as the pri-
mary metric. HOTA combines several sub-metrics that
evaluate algorithms from different perspectives, providing
a comprehensive assessment of algorithm performance. In
addition to HOTA, we also include other well-established
metrics, such as MOTA [12] (multiple object tracking ac-
curacy) and IDF1 [24] (iterative and discriminative frame-
work1). IDF1 reflects the association aspect of the tracker,
while MOTA is primarily influenced by detection perfor-
mance. However, HOTA explicitly measures both types of
metrics and combines detection and association in a bal-
anced way. It can be used as a single unified metric for
ranking trackers.

Figure 2. ID switch and fragmentation errors: toddler 1 and toddler 3 in
the top image, have had their ID numbers swapped with each other in the
bottom image, constituting an ID switch error. Toddler 2, present in the
top image, is no longer tracked in the bottom image and is treated as a new
toddler assigned the ID 4, indicative of a fragmentation error.

4.2. Building Our MTTrack Dataset

The dataset building was a sophisticated and detailed en-
deavor, primarily concentrating on toddler videos, which



necessitated the precise and accurate labeling of the selected
frames. To facilitate this intricate procedure, an innovative
labeling technique was utilized, allowing for the efficient
auditing and refinement of labels generated by an estab-
lished MOT algorithm. This negated the need to initiate
labeling from scratch for each frame, thus optimizing the
process. To assure the integrity of the dataset and try to
cancel biases towards specific algorithms, two distinguished
MOT algorithms, StrongSort and DeepSort, were incorpo-
rated. The calculated average between the bounding boxes
generated by these algorithms yielded unbiased and consis-
tent labels, adding to the robustness of the dataset.

The MTTrack Dataset consists of recorded videos cap-
turing three toddlers engaged in various activities within
a room. These toddlers, aged 2-4 years, can be observed
performing actions such as jumping, walking, sitting, and
playing with tablets and toys. We formatted the dataset
frames into 10 subscenes, each comprising a maximum
of 300 frames. This methodological division was instru-
mental in eliminating sudden changes in scenery and mit-
igating extreme ID switches, thereby ensuring the consis-
tency and reliability of the labels [4]. The auditing and
validation of the labels were meticulously executed using
the Labelme [25]open-source tool, enabling the verifica-
tion of each label’s accuracy, relevance, and compliance
with established standards. This comprehensive approach
to labeling, while extensive, was imperative in establishing
a reliable and credible foundation for subsequent research
phases, yielding a dataset of unparalleled accuracy and reli-
ability.

4.3. Experimentation Configurations

To ensure a consistent evaluation, 10 toddler video clips,
each with 300 frames, were used in our experiments us-
ing the MTTrack dataset. Also, we applied different MOT
methods on two public datasets: MO15, and DanceTrack.
To have a comprehensive evaluation, various configurations
were tested to examine object tracking algorithms. Each
configuration is tailored to address specific challenges and
requirements in object tracking, ranging from high preci-
sion and reliability to robustness against occlusions and ap-
pearance changes. A brief description of each configuration
is listed below:

Configuration 1: This default configuration serves as a
balanced setup suitable for general-purpose object-tracking
scenarios.

Configuration 2: With a heightened MIN CONFIDENCE
of 0.7, this configuration is optimized to minimize false pos-
itives by considering only high-confidence detections.

Configuration 3: This configuration, with an increased
MAX DIST of 0.4 and MAX AGE of 80, is tailored for sce-
narios where objects may change appearance significantly
or be temporarily occluded.

Configuration 4: The reduced NMS MAX OVERLAP and
MAX IOU DISTANCE of 0.3 in this setup makes it suitable
for tracking smaller or thin objects in densely populated
scenes.

Configuration 5: By allowing more overlap between
bounding boxes and between detections and trackers, this
configuration is suitable for tracking larger or blob-like ob-
jects where overlap is expected.

Configuration 6: This configuration targets challeng-
ing conditions with substantial appearance changes or
noise, allowing even low-confidence detections due to a
MIN CONFIDENCE of 0.3 and a MAX DIST of 0.6.

Configuration 7: This configuration uses optimized pa-
rameters resulting from the proposed genetic algorithm.
The GA algorithm’s configuration was number of genera-
tions is 50, the pop size is 10, the mutation rate is 0.1, and
the crossover rate is 0.7.

4.4. Quantitative Comparison

To conduct a thorough assessment, we carried out a se-
ries of experiments from various perspectives. Firstly we
examined different configurations of DeepSort and com-
pared them with the configuration resulting from the pro-
posed genetic algorithm. Table 2 shows the results of this
experiment in terms of HOTA (higher order tracking ac-
curacy), DetRe (detection recall), DetPr (detection preci-
sion), DetA (detection accuracy), and MOTA (multiple ob-
ject tracking ac- curacy). As can be seen in this table, con-
figuration 7 which is the result of parameter optimization of
the genetic algorithm achieved the best results.

Table 2. Accuracy parameters in different configurations. Each config-
uration is designed to address a specific challenge. Configuration 7 with
parameters resulting from the proposed genetic algorithm has achieved the
best accuracy.

Config. MOTA DetRe DetPr DetA HOTA
1 0.94 0.96 0.92 0.89 0.56
2 0.95 0.97 0.94 0.91 0.62
3 0.94 0.94 0.94 0.89 0.58
4 0.92 0.89 0.95 0.85 0.59
5 0.92 0.89 0.95 0.85 0.66
6 0.91 0.87 0.94 0.82 0.60
7 0.95 0.92 0.99 0.91 0.67



Table 3. A quantitative comparison between different algorithms on indoor and outdoor environments. The proposed method (MTTSort) has achieved the
best results on the MTTrack dataset. DeepSort+GA shows a configuration of DeepSort resulting from the genetic algorithm. DeepSort+GA improves the
HOTA and IDF1 on the MTTrack dataset significantly in comparison with the traditional DeepSort.

MOT Algorithms Outdoor (MOT15) Indoor (DanceTracker) Indoor (MTTrack)
MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1

DeepSort [31] 0.77 0.78 0.86 0.79 0.33 0.49 0.94 0.56 0.82
StrongSort [5] 0.74 0.76 0.85 0.75 0.31 0.47 0.91 0.47 0.78
HybridSort [33] 0.77 0.80 0.88 0.90 0.48 0.54 0.87 0.20 0.86
Bytetrack [35] 0.76 0.70 0.80 0.80 0.47 0.52 0.96 0.52 0.96
DeepSort+ GA 0.69 0.57 0.62 0.65 0.39 0.22 0.95 0.67 0.97
MTTSort (Ours) 0.66 0.59 0.67 0.72 0.43 0.23 0.98 0.68 0.98

Table 3 displays the results of benchmarked techniques
when compared to our proposed method. Within this ta-
ble, ”DeepSort+GA” denotes an enhanced DeepSort con-
figuration incorporating the proposed genetic algorithm. As
depicted in the table, our method has delivered superior
performance, particularly in the context of indoor videos,
specifically excelling in the tracking of multiple toddlers, as
evident in the MTTrack dataset. We also found out that the
best performing parameters without the aggregated features
were different from the ones we got after adding the ViT
attention model and the aggregated features. Especially, the
N INIT which decreased, suggesting that tracks are now
initialized with fewer frames. This could be because the
new features provide more distinct and reliable information
early on.

In our experimental observations of HybridSort, a note-
worthy drawback we encountered is its inconsistency in per-
formance. As it can be seen in Table 3, this approach deliv-
ers exceptionally good results when toddlers are active and
moving. However, it faces considerable difficulties when
toddlers remain still or display minimal movement, result-
ing in tracking errors. Based on the experimental results and
the flexibility for customization and parameter adjustment
offered by various MOT methods, we have determined to
adopt the DeepSort algorithm as the baseline framework for
our proposed method designed for multiple toddler tracking
in indoor video footage.

5. Conclusion

This paper discussed the primary challenges of multi-
ple object tracking methods for tracking toddlers in indoor
videos. We then introduced a new tracking method named
”MTTSort,” which is designed for multiple toddler track-
ing. In the initial phase of MTTSort, we employed a genetic
algorithm to estimate optimized tracking parameters. By
melding our custom feature buffer and the ViT-based fea-
ture extraction, we’ve re-engineered the foundational com-
ponents of the DeepSort algorithm in order to capture the
temporal features of each subject. This rejuvenated al-
gorithm underwent rigorous evaluation and benchmarked
against performance metrics like MOTA, HOTA, and IDF1

on the collected MTTrack dataset and two public tracking
datasets, MOT15, and DanceTrack.

Looking ahead, our research will focus on addressing ad-
ditional challenges in multiple toddler tracking, including
scenarios involving action figures, crawling subjects, and
twins detection and tracking. Furthermore, we plan to ex-
pand our research to encompass multi-view videos. This
expansion will include work on multi-camera tracking and
re-identification methods. Our ultimate goal is to imple-
ment our method in real-world multi-camera systems for
tasks such as detection, tracking, action recognition of tod-
dlers, and the prediction of potentially hazardous events in
indoor videos.
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