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Abstract

Although 3D human pose estimation has gained impres-
sive development in recent years, only a few works focus
on infants, that have different bone lengths and also have
limited data. Directly applying adult pose estimation mod-
els typically achieves low performance in the infant domain
and suffers from out-of-distribution issues. Moreover, the
limitation of infant pose data collection also heavily con-
strains the efficiency of learning-based models to lift 2D
poses to 3D. To deal with the issues of small datasets, do-
main adaptation and data augmentation are commonly used
techniques. Following this paradigm, we take advantage of
an optimization-based method that utilizes generative pri-
ors to predict 3D infant keypoints from 2D keypoints with-
out the need of large training data. We further apply a
guided diffusion model to domain adapt 3D adult pose to
infant pose to supplement small datasets. Besides, we also
prove that our method, ZeDO-i, could attain efficient do-
main adaptation, even if only a small number of data is
given. Quantitatively, we claim that our model attains state-
of-the-art MPJPE performance of 43.6 mm on the SyRIP
dataset and 21.2 mm on the MINI-RGBD dataset.

1. Introduction
3D human pose estimation has been a popular research

area these days. Similarly, pose estimation for infants plays
an important role in risk assessment and healthcare monitor-
ing [28]. However, due to privacy and the difficulty of data
collection, public infant pose datasets are rare and limited,
and manual labeling is unreliable and expensive. Therefore,
it is challenging to train an efficient deep-learning model
for infant pose estimation from scratch without sufficient
data. To address this limitation, it is natural to think about
transferring or tuning an existing adult-based pose estima-
tion model on infant datasets to fully take advantage of sim-
ilar kinetics of human body pose. Previous work like [11]
tried to adapt a 2D adult pose detector to the infant domain,

Figure 1. The overall flowchart of our method. Our model aims
to adapt a generative prior pre-trained model based on large adult
pose data to the infant domain via a controllable branch or fine-
tuning. Then, we utilize generative prior in the infant domain to
perform optimization work that predicts 3D infant pose from 2D.

but little work has been discussed for 3D infant pose es-
timation. Therefore, in this paper, we would like to pur-
sue a method that can efficiently predict 3D infant poses
even with small infant datasets, by taking advantage of the
general kinetic knowledge transferred from an adult adult-
based pre-trained model, as the flowchat shown in Figure 1.

Though learning-based 3D pose estimation models typ-
ically learn better features and obtain better performance
compared to optimization algorithms, they inevitably re-
quire much more data in training for sufficient feature learn-
ing. Besides, the majority of human pose estimation learn-
ing models suffer from out-of-distribution issues, which
make it hard for them to apply in practical scenarios or test
data whose characteristics are far from the training data.
However, this can easily happen for infant pose as few
public datasets are available to support a more general 3D
model’s training, and cameras in hospitals or healthcare in-
stitutions may have different camera settings, leading to an
unpredictable domain gap. Fortunately, previous optimiza-
tion works [2, 32] are proved to be more insusceptible to
distribution bias and robust in cross-domain tasks. More-
over, thanks to sophisticated 2D keypoint detectors, two-
stage lifting networks are generally of higher accuracy than
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one-stage networks, which directly predict 3D pose from
raw images. In addition, we believe that generation models
can be easily trained with few data and be domain-adapted
efficiently compared to classic deep-learning models [26].
Therefore, inspired by ZeDO [16], we choose to apply a
two-stage optimization-based method, named ZeDO-i, to
address the lack of data and out-of-distribution issues un-
der the assistance of generative priors. Given 2D keypoints,
our model can iteratively adjust noisy 3D prediction under
the constraint of 2D-3D projection and prior distribution
learned. As we expected, generative priors learned in the
adult domain could be effectively transferred to the infant
domain without requiring a lot of data, and the optimization
process can cope with challenging test data in reality. More-
over, to simulate the extreme condition of lack of data in
small datasets, we also test our model with only 20 and 100
data during adaption and successfully validate our model’s
ability for efficient domain adaptation. Furthermore, we
also introduce a guided diffusion model, which aims to sup-
plement datasets by adapting adult pose to infant pose in
order to address data limitation issues and reinforcement di-
versity. Finally, our method obtains SOTA performance in
terms of MPJPE on two infant pose datasets. In this paper,
we make the following contributions:

• We propose an optimization-based method using gen-
erative priors for 3D infant pose estimation. We attain
SOTA performance on MINI-RGBD [7] and SyRIP
[11]. We also claim that our model can achieve effi-
cient domain adaptation even with a small number of
data.

• We introduce a condition-guided diffusion model
which can adapt adult human keypoints to similar in-
fant keypoints for data augmentation purposes and fur-
ther enhance performance.

2. Related Work

2.1. 3D Human Pose Estimation

3D Human Pose Estimation is one of the fundamental
tasks in computer vision and is crucial to many downstream
tasks, including Human Tracking [1, 34], Action Recogni-
tion [5, 29, 36, 41], Motion and Gait Analyses [10, 15, 40],
and so on. There are three main approaches to realizing
the 3D human pose estimation: optimization-based, 2D-3D
lifting [20, 38], and image-based methods.

Optimization-based methods are not limited by any
training dataset and are good at in-the-wild inference. How-
ever, the performance of previous optimization-based meth-
ods [2, 25, 33] is commonly worse than the performance
of training-based networks. 2D-3D lifting methods fol-
low a two-stage pipeline requiring a separate 2D human

pose estimation model and a lifting network to map 2D hu-
man poses to 3D human poses in single frames or short se-
quences. Pavllo et al. [27] apply dilated temporal convolu-
tion to enhance 3D pose estimation for unlabeled videos in
a semi-supervised method. Zhao et al. [39] design a novel
graph convolution and take advantage of a graph convolu-
tion network (GCN) to learn inter-joint features and local
and global relationships in a structured graph. On the other
hand, image-based methods focus on directly regressing 3D
human poses from RGB images. Kolotouros et al. [18] in-
troduce SPIN (SMPL oPtimization IN the loop) by using
a CNN to extract features from a cropped-out human im-
age and regress the SMPL [22] parameters with the help of
an optimization-based pose estimation pipeline to conduct
semi-supervised learning. However, all the learning-based
methods suffer from the use of small datasets in Infant Pose
Estimation tasks. In this paper, we focus on how to conduct
3D infant pose estimation with limited data.

2.2. Infant Pose Estimation

Infant pose estimation, which aims at predicting 2D and
3D keypoints of infants in image and world coordinates, can
lead to useful downstream tasks such as infant action recog-
nition [12,36] or motion analysis [4,13]. Hesse et al. [7] are
the first to present the MINI-RGBD dataset, which enables
the experiment on 2D infant pose estimation. Subsequently,
Huang et al. [11] propose a hybrid synthetic and real infant
pose (SyRIP) dataset based on SMIL [24] with annotated
2D keypoints. Following the 2D infant pose estimation, the
mainstream of 3D infant pose estimation works on RGB-D
data. Wu et al. [35] measure infant movements by com-
bining 2D keypoints and matching depth images collected
by Kinect. Li [19] continues using the same pipeline but
correcting depth information for a better matching between
image and depth. However, Kinect may cause depth ambi-
guity if joints are occluded, and depth images are not always
available in the infant monitor system. In [6], the author
uses a 2D pose estimation model and a 3D lifting network
pretrained on the adult dataset and fine-tuned on the infant
dataset. Though this model achieves rather good perfor-
mance on the MINI-RGBD dataset, it is basically learning-
based and hard to adapt to more realistic data due to the do-
main gap. From our experience in human pose estimation,
predicting 3D keypoints from 2D keypoint detection is eas-
ier than the one-stage method predicting 3D joints directly
from raw images.

3. Methods
Our model primarily consists of a diffusion model to

learn the prior, and an optimization algorithm to itera-
tively adjust 3D pose prediction. Additionally, we apply
a condition-guided diffusion model for pose data augmen-
tation. We demonstrate the method as followings: back-
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Figure 2. Model architecture. The modules excluded by the dotted box comprise our proposed score-matching-based prior learning
model, and the modules inside the dotted box are the controllable branch used in one of our adaptation strategies. The prior learning model
consists of MLP layers and two residual blocks displayed on the right side. The controllable branch takes a learning prompt as inputs,
copies the weights from the prior model and only updates the copied weights during adaptation, while the original prior learning model is
kept frozen. For convenience, we paint all frozen layers in controllable adaptation as blue and all updated layers as brown.

ground of diffusion model in section 3.1, generative prior
model in section 3.2, optimization algorithm in 3.3, its con-
trollable adaptation variant in 3.4 and condition-guided data
augmentation in 3.5.

3.1. Preliminaries of Diffusion Model

Before introducing our diffusion model as the genera-
tive prior learning model, we briefly discuss its background
for clarity. Diffusion models [9, 31] are popular generation
models used in tasks like image generation [30], image in-
painting [23], editing [3] and so on. During training, the
diffusion model iteratively adds Gaussian noise to an image
relative to a timestamp t to the inputs and tries to recover
inputs from a noise image in the reverse process. In this
paper, we use Score-Matching-Network(SMN) [31] as our
prior learner. SMN aims to train a score network sθ(x) to
approximate gradients of log probability of a score function
pθ(x), expressed as sθ(x) ≈ ▽x log pθ(x), so the loss is
generally represented as

Ep(x)∥▽x log pθ(x)− sθ(x)∥22. (1)

3.2. Infant Pose Prior Model

For pose estimation tasks on small datasets, learning-
based deep-learning models suffer from out-of-distribution
issues and insufficient resources to extract reliable features.

Built upon the work of ZeDO [16], we also propose to use
an optimization-based method to predict 3D keypoints from
2D keypoints along with a score-matching network diffu-
sion model(SMN) [31] as our prior learner. Our final ar-
chitecture is illustrated in 2. The modules excluded by the
dotted bounding box comprise our proposed prior learn-
ing model, which takes root-relative infant keypoints, sized
B × J × 3, and randomly sampled noise timestamp t as
inputs, where J is the number of joints. The embedding
layers are simple linear projection layers, which lift input
dimension to B × 1024, and then sum them up. Further,
the embedding goes through the Score-Matching-Network
diffusion model consisting of two residual blocks as back-
bones. Each of the residual blocks contains two residual-
connected MLPs. The last output projection layer projects
the feature back to pose joints. With the generative priors,
our method can denoise a noisy 3D pose in the optimization
stage if it violates the kinematic rules of infant poses.

3.3. Optimization Algorithm

Given a 2D infant pose and the intrinsic parameter,
ZeDO-i first tries to compute the ray vectors emitted by
the camera and initializes the predicted 3D keypoints on
the rays to minimize 3D-2D projection errors. Further it
activates the generation model to adjust the noisy 3D pose
prediction based on its prior knowledge. After each ad-



justment, 3D keypoints may be off the rays, and the model
again moves them onto the rays in the shortest distance. Our
method runs this iteration 1000 times to iteratively achieve
a reasonable 3D pose under a 3D-2D projection constraint.
In experiments, we find that a pseudo intrinsic parameter
which has a focal length of 2000 and a camera center equal
to the image center also functions so one could apply it in
practical cases.

In details, we first define ray vectors ˆVray emitted from
the camera using 2D keypoints X2D and real or pseudo in-
trinsic parameter K, in which focal length is always 2000
and the principal point is the image center point. Then we
randomly choose a training 3D pose X3Dinit and use an
Adam optimizer [17], which helps us find an appropriate
rotation Ro and translation T0 such that ∥K(R0X3Dinit +
T0) −X2d∥2 is minimized. With T0 known, we set all ini-
tial 3D keypoints on the rays with depth equal to T0, and
supposedly this 3D pose has zero projection error with the
2D ground truth. Next, we start T = 1000 times of opti-
mization steps in which we first move 3D kyepoints to cor-
responding rays in the shortest distance if they are off the
rays and then the prior model is used to adjust the noisy
pose based on the prior distribution it learns.

In evaluation, we find that a noise level t = (0, 0.1]
works the best, and we also observe that performance is
heavily dependent on the initial depth distance assigned. As
the training data are all root-relative, the prior model may
cause depth ambiguity if we don’t limit depth in the first
few steps. In practice, we get the lowest error when forc-
ing the depth T unchanged in the first 950 iterations and
opening the constraint in the remaining 50.

3.4. Controlling Branch for Domain Adaptation

As the kinematics of infants and adults are similar, trans-
ferring a pre-trained adult pose model to the infant domain
would intuitively boost the performance. Considering that
directly fine-tuning a model trained on a huge amount of
data to a small dataset may lead to overfitting, we propose
a method inspired by Control-Net [37] to manipulate the
adaption process of the generative priors. As shown in the
left-side dotted box in Figure 2, we duplicate the weights
of the prior model to the controllable branch. Like how
Control-Net sets the condition, We set a learnable prompt
with the same size as 3D pose as the controlling inputs
and connect the prior model and controllable branch with
a few zero linear layers, which are fully initialized as zero
weights. Then internal embeddings are added back to the
prior model before and after every residual block. Dur-
ing adaptation, all layers of the prior model have to be kept
frozen, and only the controllable branch is open to weight
update. In the experiment section, we will compare its per-
formance with two other adaption strategies: fine-tuning a
pre-trained adult prior model and training a prior model in

Figure 3. Left: augmented infant pose. Right: h36m adult pose.
Our augmentation model converts the adult pose to a similar infant
pose by adjusting scales and kinematic features like bone length
without altering actions much.

the infant domain only.

3.5. Condition Guided Diffusion Model

If the only available data are too few to be used, one
could convert the resourceful adult poses to an infant-like
pose as data augmentation. To fit the augmented data to
the kinematics of infants, we trained a score matching net-
work diffusion model which takes in both adult and infant
3D poses along with two 1 × 1000 sized learnable condi-
tion tokens to represent whether the pose belongs to adults
or infants. The architecture is similar to the prior model
we used. We hope that the diffusion model would implic-
itly learn features like bone lengths and bone angles for two
different domains and know how to distinguish their dis-
tribution. During inference, we ask the diffusion model to
generate corresponding infant poses based on the given in-
put adult poses, so the model adjusts the scale and angle
according to the implicit knowledge of the pose prior, yet
still keeps the pose semantic meanings, such as actions, as
shown in Figure 3. We prove that adding these challenging
poses enhances diversity in the ablation study.

4. Experiments
4.1. Datasets

We conduct our experiments on MINI-RGBD [7] and
SyRIP [11], two public infant datasets with 2D-3D pose
pairs. For pre-trained adult prior model and condition-
guided diffusion model, we take advantage of Human3.6m
[14].
MINI-RGBD includes 12 sequences of data, in total 12000
synthetic infant images, and also provides their 25 joint 2D
and 3D keypoint pairs. We train on the first 9 sequences
and test on the rest 3, following the 17-keypoint definition
of Human3.6m.
SyRIP includes a diverse set of 700 real and 1000 synthetic
infant images, generated by fitting SMIL [24] models to
real images, supplemented with additional variants to the
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Figure 4. Visualization of the optimization algorithm. ˆVray ray vectors are first calculated. T0 and R0 are then found via an optimizer, so
the initial pose is T0 in depth on the rays. We then run the optimization algorithm 1000 times. In each step, keypoints are moved toward
the rays, represented by X̃0 in the figure, and are also sent to the diffusion model to adjust the pose to get X0. In the last step X1000 the
ground truth in blue is quite close to our prediction in red.

SMIL shape and pose parameters. Later, in total of 700
weak ground truth of 3D keypoints in [13] were manually
corrected and made available. In this paper, we also train on
their 600 weak ground truth 3D labels and test on the 100
real images.
Human3.6m (H36m) [14] is a single-frame 3D human
pose benchmark, containing about 3.6 million 2D-3D hu-
man pose pairs. This dataset was collected in an indoor
setting, consisting of 17 various actions. As this adult 3D
pose dataset includes more actions and diversity than infant
3D poses, we intend to transfer its 3D poses to the infant
domain for data augmentation.

4.2. Implementation Details

We pre-train our adult prior model on Human3.6m [14],
which includes millions of adult 3D pose data, and further
train all three adaptation strategies for 5000 epochs with a
learning rate of 2 × 10−4. During training, we set the total
diffusion step as 1000 with a uniform noise level of [0, 1.0].
We use the Adam Optimizer with a batch size of 5000.

In inference, we choose a noise level t in (0, 0.1] and
run the optimization for 1000 iterations. We keep the depth
distance unchanged in the first 950 iterations.

The guided diffusion data augmentation diffusion model
shares the same training configuration as the prior model.
We choose a noise level in the range (0, 1.0] and only run
100 iterations for the diversity of augmented data. In exper-
iments, we add 600 augmented data to SyRIP and 4000 to
MINI-RGBD.

Methods MPJPE (↓)

Kolotouros et al. [18] 105.8
Liu et al. [21] 97.2
Liu et al. (Finetuned) 78.3

ZeDO-i (GT) 43.6
ZeDO-i (DT) 47.7

Table 1. 3D infant pose estimation results on SyRIP dataset under
12 joints setting. For a fair comparison, we list the performance
of ZeDO-i with both estimated 2D keypoints and ground truth 2D
keypoints.Estimated 2D keypoints and other method performance
are provided in [13].

4.3. Experiment Results

In this section, we first compare our method’s results to
the previous SOTA in terms of MPJPE. In addition, we also
test if our method can be efficiently adapted to the infant
domain with 20 and 100 data only in order to simulate ex-
treme situations. Further, we evaluate all domain adaptation
strategies of our model including the controllable adapta-
tion method (CA), fine-tuning from the adult-based diffu-
sion model (FT), and training from scratch on infant data to
seek the best adaptation approach.

4.4. Results on SyRIP

Similar to previous works, we have the same training and
testing sets as [13] with only 12 keypoints of limbs for fair



Methods MPJPE (↓)

Hesse et al. [8] 44.9
Ellershaw∗ et al. [6] 34.2
Ellershaw et al. 28.5

ZeDO-i 21.2

Table 2. 3D infant pose estimation results on MINI-RGBD under
16 joints setting. We list the best performance among the three
strategies. ∗ denotes w/o adult pre-training. We evaluate 16 key-
points to keep aligned with the setting of the previous SOTA.

Datasets CA FT From Scratch

SyRIP (S=20) 67.8 69.4 72.3
SyRIP (S=100) 56.4 60.8 60.6
SyRIP(GT) 49.4 47.7 54.0
SyRIP (augmented) 45.5 43.6 48.9

Table 3. MPJPE performance of different strategies on SyRIP. The
controllable adaptation approach achieves better performance than
the other two approaches when the data number is small.

comparison. Observed from Table 1, our method clearly
achieves the SOTA performance even with only 20 train-
ing data. Moreover, as shown in Table 3, we observe that
the controllable adaptation approach achieves better results
than fine-tuning when the data number is small, therefore
controllable adaptation is more suitable for limited data in
such more practical and diverse scenarios. Both adaptation
and fine-tuning from the adult domain are better than train-
ing from scratch, indicating that knowledge from the adult
domain is necessary.

4.5. Results on MINI-RGBD

For a fair comparison with previous works [6], we follow
their keypoint definitions and show the results in Table 2.
Our method beats all previous SOTA to a great extent.
Besides, as shown in Table 4, direct fine-tuning adult pre-
trained model on MINI-RGBD attains lower error, which
is different from SyRIP. We suspect that the discrepancy
between training and testing sets leads to this observation,
as MINI-RGBD is full of synthetic images with rather less
discrepancy compared to the SyRIP dataset. Moreover, we
also include the results of 16 keypoints like the previous
SOTA, showing that our model is already comparable to the
previous SOTA with only 100 training data.

5. Ablation Studies

5.1. Data Augmentation Diversity

In this section, we demonstrate how our condition-
guided data augmentation method enhances the diversity
in the MINI-RGBD dataset as its data are all synthesized

Datasets CA FT From Scratch Best(J = 16)

MINI-RGBD (S=20) 38.7 36.8 36.4 34.6
MINI-RGBD (S=100) 34.8 31.9 33.7 29.4
MINI-RGBD Full 25.5 24.1 27.4 22.8
MINI-RGBD (Augmented) 20.7 19.9 21.3 21.2

Table 4. MPJPE performance of different strategies on MINI-
RGBD. Here, we not only evaluate all 17 keypoints according to
H36M’s keypoint definition but also list their performance in 16
keypoints for the convenience of fair comparison with previous
works.
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Figure 5. The data distribution of bone length in the augmented
dataset is better than the original MINI-RGBD. Our augmented
dataset spans over a wider range of bone lengths.
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Figure 6. The data distribution of bone angle in the augmented
dataset is better than the original MINI-RGBD. Our augmented
data have a wider range of bone angles.

and narrow-distributed. We analyze bone lengths and bone
angles of the original dataset and our augmented data. As
shown in Figure 5, we randomly choose one bone and com-
pare their lengths. Our augmented bone length spans over
a wider range of scales. Similarly, we show comparisons of
bone angles in Figure 6 and get the same conclusion. Tables
4 and 3 also justify this conclusion quantitatively.



Figure 7. Visualizations of 2D ground truths and our 3D predictions on MINI-RGBD(Top Line) and SyRIP(Middle and Bottom Line). Our
3D predictions are colored in red, and the ground truth are in blue. The shapes and poses in general are well aligned.
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Figure 8. One of the failure examples achieves the highest MPJPE
of 160mm in MINI-RGBD. Left side: our prediction. Right side:
ground truth.

Datasets ZeDO-i VideoPose3D [27]

SyRIP 49.6 145.7
MINI-RGBD 27.4 106.7

Table 5. MPJPE performance of different pose estimation models
trained from scratch without augmentation. Clearly, ZeDO-i is
more suitable for infant small dataset than learning-based models.

5.2. Comparison with 3D pose estimation model

To prove the efficiency of our two-stage optimization
method, we compare its performance with other classic
learning-based 3D pose estimation models widely applied
in human pose estimation tasks. We train all the models
from scratch on infant datasets without data augmentation.

As shown in Table 5, our method outperforms the clas-
sic 2D-3D lifting human pose estimation model, Video-
Pose3D [27], which further proves our claim that the pro-
posed optimization method can better fit the task of small-
dataset domain adaption in 3D pose estimation than other
learning-based models.

6. Limitation
Though our method achieves impressive performance in

small datasets like infant 3D pose, it still needs accurate
2D keypoints. Additionally, the prediction results of our
method also depend on the depth distance T0 defined in
initialization since we find that the generation model only
learns root-relative priors with little knowledge of spatial
depth. Besides, like all optimization works aiming to min-
imize 2D-3D projection error, our method may also suf-
fer from one-to-many mappings. For example, we show
one failure example in MINI-RGBD in Figure 8. Here our
model fails to predict the correct T of 3D keypoints in spite
of the matched 2D projections. We calculated the median
MPJPE error which is 4mm lower than the mean, which
implies that these extreme outlines are very rare.

7. Conclusion
We propose an optimization method which applies gen-

erative priors of the infant pose to predict 3D infant key-
points. We show that our method achieves SOTA on MINI-
RGBD and SyRIP and attains efficient domain adaptation
using a small amount of data. Besides, we compare three
training strategies for our model, in which fine-tuning an
adult pre-trained generative model seems more efficient for
MINI-RGBD and the whole SyRIP dataset, but the con-
trollable adaptation version performs better in SyRIP when
only 20 and 100 data are available. We also introduce a
condition-guided diffusion model which enhances the kine-
matic diversity and boosts overall results. In general, we
state that our method fits the small-dataset 3D infant pose
estimation very well and attains outstanding performance.
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