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Abstract

Deep learning-based object detectors have driven no-
table progress in multi-object tracking algorithms. Yet,
current tracking methods mainly focus on simple, regular
motion patterns in pedestrians or vehicles. This leaves
a gap in tracking algorithms for targets with nonlinear,
irregular motion, like athletes. Additionally, relying on
the Kalman filter in recent tracking algorithms falls short
when object motion defies its linear assumption. To over-
come these issues, we propose a novel online and robust
multi-object tracking approach named deep ExpansionIoU
(Deep-EIoU), which focuses on multi-object tracking for
sports scenarios. Unlike conventional methods, we aban-
don the use of the Kalman filter and leverage the iterative
scale-up ExpansionIoU and deep features for robust track-
ing in sports scenarios. This approach achieves superior
tracking performance without adopting a more robust de-
tector, all while keeping the tracking process in an online
fashion. Our proposed method demonstrates remarkable ef-
fectiveness in tracking irregular motion objects, achieving a
score of 77.2% HOTA on the SportsMOT dataset and 85.4%
HOTA on the SoccerNet-Tracking dataset. It outperforms
all previous state-of-the-art trackers on various large-scale
multi-object tracking benchmarks, covering various kinds
of sports scenarios. The code and models are available at
https://github.com/hsiangwei0903/Deep-EIoU.

1. Introduction
Multi-Object Tracking (MOT) is a fundamental com-

puter vision task that aims to track multiple objects in
a video and localize them in each frame. Most recent
tracking algorithms [33, 1, 28, 4], which mainly focus on

Figure 1. HOTA comparison of different trackers on the test sets of
SoccerNet-Tracking and SportsMOT dataset. Deep-EIoU achieves
77.2% HOTA on the SportsMOT test set and 85.4% HOTA on
the SoccerNet-Tracking test set. These results surpass the perfor-
mance of all previous trackers on these large-scale multi-object
tracking benchmarks. More comparisons between different track-
ers can be found in table 2 and table 3

pedestrians or vehicle tracking, have achieved tremendous
progress on public benchmarks [19, 8, 11]. However,
these state-of-the-art algorithms fail to perform well on
datasets with higher difficulties, especially those datasets
with sports scenarios [7, 6, 36]. Given the growing demand
for sports analytic for applications like automatic tactical
analysis and athletes’ movement statistics including run-
ning distance, and moving speed, the field of multi-object
tracking for sports requires more attention.

Different from multi-object tracking for pedestrians or
vehicles, MOT in sports scenarios poses higher difficulties
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Figure 2. An example of the occlusion problem encountered dur-
ing multi-athlete tracking. Occlusion can significantly hinder de-
tection and tracking performance, and the occlusion issue in ath-
lete tracking is particularly severe when compared to pedestrian
tracking due to the high intensity of sports characteristics.

due to several reasons, including severe occlusion caused
by the high intensity in sports scenes as illustrated in Figure
2, similar appearance between players in the same team due
to the same color jersey like examples in Figure 3, and also
unpredictable motion due to some sport movement like a
crossover in basketball, sliding tackle in football or spike in
volleyball. Due to the above reasons, the previous trackers,
which utilize appearance-motion fusion [34, 28] or simply
motion-based [33, 5, 4] methods struggle to conduct robust
tracking on several major MOT benchmarks in sports sce-
narios [6, 7].

To address these issues, in this paper, we propose a novel
and robust online multi-object tracking algorithm specifi-
cally designed for objects with irregular and unpredictable
motion. Our experimental results demonstrate that our al-
gorithm effectively handles the irregular and unpredictable
motion of athletes during the tracking process. It out-
performs all tracking algorithms on two large-scale pub-
lic benchmarks [7] without introducing extra computational
cost while maintaining the algorithm online. Therefore, in
this paper, we assert three main contributions:

• We present a novel association method to specifically
address the challenges in sports tracking, named Ex-
pansionIoU, which is a simple yet effective method for
tracking objects with irregular movement and similar
appearances.

• Our proposed iterative scale-up ExpansionIoU further
leverages with deep features association for robust
multi-object tracking for sports scenarios.

• The proposed method achieves 77.2 HOTA on the
SportsMOT [7] dataset, and 85.4 HOTA on the
SoccerNet-Tracking dataset [6], outperforming all the
other previous tracking algorithms by a large margin.

Figure 3. Example of similar appearances between the players
from the SportsMOT dataset, which can cause confusion towards
the tracker and decrease the tracking accuracy. Each column rep-
resents two different players with similar appearance.

2. Related Work
2.1. Multi-Object Tracking using Kalman Filter

Most of the existing tracking algorithms [33, 4, 5, 28,
35, 30, 14, 12, 13, 29] incorporate Kalman filter [15] as a
method for object motion modeling. Kalman filter can for-
mulate object motion as a linear dynamic system and can
be used to predict its next frame location according to the
object’s motion from the previous frames. Kalman filter
has shown effectiveness in multi-object tracking across sev-
eral public benchmarks [19, 8, 23]. However, due to the
Kalman filter’s linear motion and Gaussian noise assump-
tion, the Kalman filter might fail to track an object with non-
linear motion. Due to this reason, OC-SORT [5] proposes
several methods including observation-centric re-update to
modify the Kalman filter’s parameters during the tracking
process and prevent error accumulations when an object
is not tracked. The performance has shown effectiveness
for tracking objects with irregular motion on several public
datasets [23, 7].

2.2. Location-based Multi-Object Tracking

Tracking can also be conducted based on the position
information, given a high frame rate input video sequence,
the object’s position shift between frames is relatively small
due to the high frame rates, thus making the position in-
formation a reliable clue for association between frames.
Several methods [22, 14] utilizes the bounding boxes’ dis-
tance as the cost for bounding box association, while some
recent work [31] utilize different IoU calculation methods
including GIoU [20], DIoU [38], and BIoU [31], to con-
duct bounding box association between frames, which also
demonstrate effectiveness in multi-object tracking.

2.3. Appearance-based Multi-Object Tracking

With the recent development and improvement of ob-
ject ReID model [39] and training tricks [17], many track-
ing algorithms incorporate ReID into the association pro-
cess. Some methods use the joint detection and embed-
ding architecture [35, 27] to produce detection and object
embedding at the same time to achieve real-time tracking.



Figure 4. The proposed iterative scale-up ExpansionIoU tracking pipeline. The pseudo code of the proposed pipeline can be found in
supplementary material.

While the other methods [28, 1] apply other stand-alone
ReID model to extract detection’s embedding features for
association. The appearance-based tracking methods im-
prove the tracking robustness with an extra appearance clue,
while sometimes the appearance can be unreliable due to
several reasons including occlusions, similar appearance
among tracked objects, appearance variation caused by the
object’s rotation, or the lighting condition.

2.4. Multi-Object Tracking in Sports

Numerous studies have been conducted to monitor play-
ers’ movements in team sports during games. This mon-
itoring serves not only to automate the recording of game
statistics but also enables sports analysts to obtain compre-
hensive information from a video scene understanding per-
spective. Different from MOT of pedestrian [19], MOT in
sports scenarios is much more challenging due to several
reasons including targets’ faster and irregular motions, sim-
ilar appearance among players in the same team, and more
severe occlusion problem due to the sport’s intense charac-
teristic. The majority of recent methods for MOT for sports
utilize the tracking-by-detection paradigm and integrate a
re-identification network to generate an embedding feature
for association.

Vats et al. [25] combine team classification and player
identification approaches to improve the tracking perfor-
mance in hockey. Similarly, Yang et al. [32] and Maglo
et al. [18] demonstrate that by localizing the field and play-
ers, the tracking results in football can be more accurate.
Additionally, Sangüesa et al. [21] utilize the human pose in-
formation and actions as the embedding features to enhance
basketball player tracking. While Huang et al. [14] com-
bine OC-SORT [5] and appearance-based post-processing
to conduct tracking on multiple sports scenarios including
basketball, volleyball, and football [7].

3. Proposed Methods
Our proposed method follows the classic tracking-by-

detection paradigm, which also enables online tracking
without using future information. We first apply the object
detector YOLOX on each input frame, and then we conduct
association based on several clues including the similarity
between extracted appearance features and the Expansion-
IoU between the tracklets and detections. After the associa-
tion cost is obtained, the Hungarian algorithm is conducted
to get the best matching between tracklets and detections.

3.1. Appearance-based Association

The appearance similarity is a strong clue for object as-
sociation between frames, the similarity can be calculated
by the cosine similarity between the appearance features,
and it can also be used to filter out some impossible associ-
ations. The cost for appearance association CostA can be
directly obtained from the cosine similarity with the follow-
ing formula:

CostA = 1− Cosine Similarity = 1− a · b
∥a∥∥b∥

(1)

Here, a and b are the tracklet’s appearance feature and
the detection’s appearance feature, respectively. A higher
cosine similarity denotes a higher similarity in appearance,
while a lower cosine similarity means the tracklet’s appear-
ance and the detection’s appearance are different.

3.2. Association with ExpansionIoU

Insipired by previous work [31], which utilizes expand-
ing bounding boxes for association, to deal with the fast and
irregular movement of sports player, we proposed Expan-
sionIoU (EIoU), a robust association method for tracking
under large and nonlinear motion. Different from the pre-
vious work [31], we found out that expanding the bounding
box even more during association can lead to a significantly



better performance in athlete tracking. Traditional IoU has
been a cornerstone in location-based tracking method, but it
often lacks the flexibility to account for object’s large move-
ment, when tracklet and detection bounding boxes share
small or no IoU between adjacent frames. EIoU addresses
this limitation by modifying the dimensions of bounding
boxes, expanding their width and height and considers a
wider range of object relationships, thus recover the asso-
ciation for those objects with large movement in sports sce-
narios. The expansion of bounding box is controlled by ex-
pansion scale E, given an original bounding box with height
h and width w, we can calculate the expansion length h⋆

and w⋆ following:

h⋆ = (2E + 1)h

w⋆ = (2E + 1)w
(2)

The original bounding box is expand based on the ex-
pansion length. Denote the original bounding box top-left
and bottom-right coordinate as (t, l),(b, r), we can derive
the expanded bounding box’s coordinate as (t− h⋆

2 , l− w⋆

2 )

and (b+ h⋆

2 , r + w⋆

2 ).
The expanded bounding box is further used for IoU cal-

culation between tracklets and detections pairs, note that
the expansion is applied both on tracklets’ last frame de-
tections and the new coming detections from detector, the
calculated EIoU is used for Hungarian association between
adjacent frames. The operation of expanding the bounding
box does not change several important objects’ information
like the bounding box center, aspect ratio, or appearance
features. By simply expanding the search space, we can as-
sociate those tracklets and detections with small or no IoU,
which is considered a common situation when the target’s
movement is fast, especially in sports games.

3.3. Confidence Score Aware Matching

Following ByteTrack [33], we give the high confidence
score detections higher weighting during the matching pro-
cess. The high score detections usually imply less occlu-
sion, hence a higher chance to preserve more reliable ap-
pearance features. Due to this reason, the first stage match-
ing with high score detections is based on the associa-
tion cost of both appearance and ExpansionIoU, denoted as
Cstage1. The first stage of matching is built upon several
rounds of iterative associations with a gradually scale-up
expansion scale, addressed in Section 3.4. In the second
round of matching with low score detections, only Expan-
sionIoU is used, the cost is denoted as Cstage2.

In our first matching stage, we abandon the IoU-ReID
weighted cost method used in several previous works [34,
28], where the cost is a weighted sum of the appearance cost
CA and IoU cost CIoU :

C = λCA + (1− λ)CIoU (3)

Instead, we adopt strategy similar to that of BoT-SORT
[1] for appearance-based association. More specifically, we
first filter out some impossible associations by setting cost
thresholds for both appearance and ExpansionIoU (EIoU).
The adjusted appearance cost CÂ is set to 1 if either cost is
bigger than its corresponding threshold, otherwise CÂ is set
as half of its appearance cost CA. Finally, the first stage’s
final association cost Cstage1 is set as the minimum of the
appearance cost CÂ and EIoU cost CEIoU . With τA and
τEIoU denotes the threshold for the cost filter, we can write
the appearance cost CÂ as:

CÂ =

{
1, if CA > τA or CEIoU > τEIoU

0.5CA, otherwise
(4)

The final cost in the first stage of matching Cstage1 will
be the minimum between adjusted appearance cost CÂ and
EIoU cost CEIoU .

Cstage1 = min(CÂ, CEIoU ) (5)

While the association cost in the second matching stage
Cstage2 will be only using the EIoU cost CEIoU .

3.4. Iterative Scale-Up ExpansionIoU

As illustrated by the previous work using expansion
bounding box for association [31], the amount of the bound-
ing box expansion is a crucial and sensitive hyperparameter
in the tracking process and the performance of the tracker
can be largely affected by the choice of the hyperparame-
ter. In the real-world scenario, several factors might limit us
from tuning the expansion scale and improving the tracking
performance, including 1) the online tracking requirements.
One common requirement for an athlete tracking system is
the system needs to operate in an online matter, tuning the
expansion scale with experiments and tweaking the perfor-
mance is not possible in such cases. 2) No access to the test-
ing data. For real-world scenarios, the testing data’s ground
truth is often not available, which makes finding the per-
fect expansion scale for association impossible. Due to the
above reasons, we proposed a novel iterative scale-up Ex-
pansionIoU association stage for robust tracking, the exper-
iment results show that without any parameter tuning, our
algorithms can always maintain SOTA performance on pub-
lic benchmark. Instead of doing hyperparameter tuning for
the best expansion scale E, we choose to iteratively conduct
EIoU association based on a gradually increasing Et during
the tracking process. In each scale-up iteration, the expan-
sion scale of the current iteration Et can be derived from
the following formula:

Et = Einitial + λt, (6)



where Einitial is the initial expansion scale, λ denotes the
step size for the iterative scale-up process, t stands for the
iteration count, which starts from 0. By using this ap-
proach, we can first perform association to those trajectory
and detection pairs with higher ExpansionIoU, and grad-
ually search for those pairs with lower overlapping area,
which enhances the robustness of our association process.
Note that the iterative scale-up process is only applied for
high score detections association, once the iteration count
reaches the total number of iteration ttotal, the association
for high score detections stops and the tracker moves on to
the low score detections association stage.

4. Experiments and Results
4.1. Dataset

We evaluate our tracking algorithm on two large-scale
multi-sports player tracking datasets, i.e., SportsMOT [7]
and SoccerNet-Tracking [6].

Sport Type # of tracks # of frames Track Len Density
Basketball 10 845.4 767.9 9.1
Football 22 673.9 422.1 12.8

Volleyball 12 360.4 335.9 11.2
Table 1. Summary of the SportsMOT dataset split by the type of
sport. The number of tracks, number of frames, track length, and
track density are average numbers across all videos of the sports.

SportsMOT consists of 240 video sequences with over
150K frames and over 1.6M bounding boxes collected from
3 different sports, including basketball, football, and volley-
ball. Different from the MOT dataset [19, 8], SportsMOT
possesses higher difficulties including: 1) targets’ fast and
irregular motions, 2) larger camera movements, and 3) sim-
ilar appearance among players in the same team.
SoccerNet-Tracking is a large-scale dataset for multiple
object tracking composed of 201 soccer game sequences.
Each sequence is 30 seconds long. The dataset consists of
225,375 frames, 3,645,661 annotated bounding boxes, and
5,009 trajectories. Unlike SportsMOT, which only focuses
on the tracking of sports players on the court, the tracking
targets of SoccerNet contains multiple object classes includ-
ing normal players, goalkeepers, referees, and soccer ball.

4.2. Detector

We choose YOLOX [10] as our object detector to achieve
real-time and high accuracy detection performance. Several
existing trackers [33, 5, 1, 31] also incorporate YOLOX as
detector, this also leads to a more fair comparison between
these trackers with ours. We use the COCO pretrained
YOLOX-X model provided by the official GitHub reposi-
tories of YOLOX [10] and further fine-tune the model with
SportsMOT training and validation set for 80 epochs, the

input image size is 1440 × 800, with data augmentation in-
cluding Mosaic and Mixup. We use SGD optimizer with
weight decay of 5 × 10−4 and momentum of 0.9. The ini-
tial learning rate is 10−3 with 1 epoch warmup and cosine
annealing schedule, which follows the same training proce-
dure of ByteTrack’s [33]. As for the SoccerNet-Tracking
dataset, since oracle detections are provided in the dataset,
to make a fair comparison and focus on tracking, we di-
rectly use the oracle detections provided by the dataset for
the evaluation of all trackers.

4.3. ReID Model

For player re-identification (ReID), we use the omni-
scale feature learning proposed in OSNet [39]. The unified
aggregation gate fuses the features from different scales
and enhances the ability of human ReID.
SportsMOT The ReID training data for experiments on
SportsMOT dataset is constructed based on the original
SportsMOT dataset where we crop out each player accord-
ing to its ground truth annotation of the bounding boxes.
The sampled dataset includes 31,279 training images, 133
query images, and 1,025 gallery images.
SoccerNet-Tracking We sample the ReID training data
from the SoccerNet-Tracking training set, we randomly
select 100 ground truth bounding boxes for each player
from randomly sampled videos, with 65 used as training
images, 10 used as query images, and 25 used as gallery
images. The sampled ReID data contains 7,085 training
images, 1,090 query images, and 2,725 gallery images,
with a total of 109 randomly selected identities.
Training Details We use the pre-trained model from the
Market-1501 dataset [37] and further fine-tune the model
based on each of the above mentioned sampled sports
ReID datasets, resulting in two ReID models for these two
datasets. Each model is trained for 60 epochs, using Adam
optimizer with cross entropy loss and the initial learning
rate is 3 × 10−4. All the experiments are conducted on
single Nvidia RTX 4080 GPU.

4.4. Tracking Settings

The threshold for detection to be treated as high score
detection is 0.6, while detections with confidence score be-
tween 0.6 and 0.1 will be treated as low score detections,
the rest detections with confidence score lower than 0.1 will
be filtered. The cost filter threshold τA and τEIoU are set to
0.25 and 0.5, respectively. We also remove the constraint of
aspect ratio in the detection bounding box, since sports sce-
narios might have the condition when a player is lying on
the ground, which is different from the MOT datasets where
most of the pedestrians are standing and walking. For the
high score detections association, the initial value of expan-
sion scale Einitial is set to 0.7 with a step size λ of 0.1, and



the total number of iteration ttotal is 2. The expansion scale
E for low score detections association is 0.7, while for un-
matched detections is 0.5. The max frames for keeping lost
tracks is 60. After tracking is finished, linear interpolation
is applied to boost the final tracking performance.

4.5. Evaluation Metrics

MOTA [2] is often used as an evaluation metric for multi-
object tracking task, however, MOTA mainly focuses on the
detection performance instead of association accuracy. Re-
cently, in order to balance between the detection and as-
sociation performance, more and more public benchmarks
start to use HOTA [16] as the main evaluation metric. For
evaluation on the SportsMOT dataset, we adopt HOTA,
MOTA, IDF1, and other associated metrics [3] for compar-
ison. While for SoccerNet, we adopt HOTA metrics, with
associated DetA, and AssA metrics, since only these met-
rics are provided by the evaluation server.

4.6. Performance

We compare our tracking algorithm with previous ex-
isting trackers on two large-scale multi-object tracking
datasets in sports scenarios, the SportsMOT and SoccerNet-
Tracking datasets. All the experiments are run on one
Nvidia RTX 4080 GPU, and the tracking results are eval-
uated on the datasets’ official evaluation server.
SportsMOT As shown in table 2, the performance of
our proposed Deep-EIoU achieves 77.2 in HOTA, 79.8
in IDF1, 67.7 in AssA. The performance of our method
achieves state-of-the-art results and outperforms all the
other previous trackers while also keeping the tracking
process in an online fashion, showing the effectiveness
of our algorithm in multi-object tracking in sports scenarios.

SoccerNet To focus on the tracking performance and make
a fair comparison, all the evaluated methods are using ora-
cle detections provided by the SoccerNet-Tracking dataset
[6]. The performance of our proposed method is reported
in table 3. Our method achieves 85.443 in HOTA, 73.567
in AssA, 99.236 in DetA, which outperforms several state-
of-the-art online tracking algorithms by a large margin.
The performance of DeepSORT and ByteTrack are reported
from the original SoccerNet-Tracking paper [6]. The com-
petitive performance of Deep-EIoU in various large-scale
sports player tracking datasets demonstrates the effective-
ness of our algorithm in multi-object tracking in sports.

4.7. Ablation Studies on Deep-EIoU

In our experiments, Deep-EIoU is evaluated with differ-
ent settings on the SportsMOT test set, including whether
to incorporate appearance (ReID) during tracking, using it-
erative scale-up bounding box expansion, and using linear

interpolation as post-processing. As shown in Table 4, af-
ter incorporating ReID model based on appearance associ-
ation, the HOTA of Deep-EIoU is boosted by 3.8, showing
that although sharing similar appearance between athletes,
it is still important to use appearance as a clue for track-
ing in sport scenarios. With the iterative scale-up process
(ISU), the gradually scale-up bounding box can first es-
tablish association with those tracklets and detections with
higher EIoU, thus also increase the tracking performance,
note that the iterative scale-up process is incorporate with
a larger tracking buffer, unlike the default setting of 30 for
pedestrian tracking, we use 60 due to the stronger occlusion
characteristics of the sports scenarios. And finally, follow-
ing most of the online tracking algorithm [33, 5], we also
include linear interpolation (LI) as a strategy to boost the
final tracking performance.

Figure 5. Performance comparison of Deep-EIoU under different
initial expansion scales on the SportsMOT test set.

4.8. Robustness to initial expansion scale

To prove the effectiveness and robustness of our ap-
proach, we conduct experiments based on different ini-
tial expansion scales in the iterative scale-up process. We
change the initial expansion scale from 0.2 to 0.8. The ex-
periment results in Figure 5 show that we can still achieve
SOTA performance with different initial expansion scales
because the iterative scale-up process can enhance the ro-
bustness and does not require any parameter tuning to
achieve SOTA performance. This proves our method’s ef-
fectiveness in the real-world scenario, when ground truth is
often not available and the tracking parameter can not be
tuned.

4.9. ExpansionIoU on Kalman filter-based tracker

To test the effect of ExpansionIoU on the Kalman filter-
based tracker, we also implement several versions of our
method by directly incorporating the Kalman filter and Ex-
pansionIoU. In our implementation, the Kalman filter’s pre-



Method Training Setup HOTA↑ IDF1↑ AssA↑ MOTA↑ DetA↑ LocA↑ IDs↓ Frag↓

FairMOT [34] Train 49.3 53.5 34.7 86.4 70.2 83.9 9928 21673
QDTrack [9] Train 60.4 62.3 47.2 90.1 77.5 88.0 6377 11850
CenterTrack [40] Train 62.7 60.0 48.0 90.8 82.1 90.8 10481 5750
TransTrack [24] Train 68.9 71.5 57.5 92.6 82.7 91.0 4992 9994
BoT-SORT [1] Train 68.7 70.0 55.9 94.5 84.4 90.5 6729 5349
ByteTrack [33] Train 62.8 69.8 51.2 94.1 77.1 85.6 3267 4499
OC-SORT [5] Train 71.9 72.2 59.8 94.5 86.4 92.4 3093 3474
ByteTrack [33] Train+Val 64.1 71.4 52.3 95.9 78.5 85.7 3089 4216
OC-SORT [5] Train+Val 73.7 74.0 61.5 96.5 88.5 92.7 2728 3144
MixSort-Byte [7] Train+Val 65.7 74.1 54.8 96.2 78.8 85.7 2472 4009
MixSort-OC [7] Train+Val 74.1 74.4 62.0 96.5 88.5 92.7 2781 3199

Deep-EIoU (Ours) Train 74.1 75.0 63.1 95.1 87.2 92.5 3066 3471
Deep-EIoU (Ours) Train+Val 77.2 79.8 67.7 96.3 88.2 92.4 2659 3081

Table 2. The performance comparison between different state-of-the-art trackers on the SportsMOT test sets. Our algorithm outperforms
all the other previous tracking algorithms and achieves SOTA performance in several major evaluation metrics including HOTA, IDF1,
and AssA. The evaluation results besides BoT-SORT are taken from the number reported in the SportsMOT dataset paper [7]. While
BoT-SORT is evaluated based on their official code [1].

Tracker HOTA AssA DetA
DeepSORT [28] 69.552 58.668 82.628
ByteTrack [33] 71.500 60.718 84.342
BoT-SORT [1] 76.999 63.447 93.525
OC-SORT [5] 78.091 64.687 94.273
Deep-EIoU (Ours) 85.443 73.567 99.236

Table 3. Performance comparison of different tracking methods
using oracle detections on the SoccerNet-Tracking [6] test set. The
performance of DeepSORT and ByteTrack are reported from the
SoccerNet-Tracking dataset paper [6]. While BoT-SORT and OC-
SORT are evaluated using their official code.

Method ReID ISU LI HOTA (↑)
Baseline - - - 71.403

- ✓ 75.266
- ✓ ✓ 77.205
- ✓ ✓ ✓ 77.220

Table 4. We evaluate the Deep-EIoU baseline with different set-
tings on the SportsMOT test set. Including using the ReID model
for association based on appearance, Iterative Scale-Up (ISU) pro-
cess and using Linear Interpolation (LI) as post-processing for our
method.

diction and detection will be expanded in the tracking pro-
cess following the ExpansionIoU. The experiment results in
Table 5 demonstrate that after directly replacing IoU with
EIoU, these two classic Kalman filter-based trackers in-
crease their performance by a large margin in HOTA, AssA,
and DetA. This demonstrates that ExpansionIoU can also
be applied as a plug-and-play trick for Kalman filter-based
tracker to boost the tracking performance.

Tracker w/ EIoU HOTA AssA DetA
ByteTrack 62.8 51.2 77.1
ByteTrack ✓ 67.5 54.4 83.9
BoT-SORT 68.7 55.9 84.4
BoT-SORT ✓ 71.3 60.2 84.5

Table 5. We evaluate two classic Kalman filter-based tracking
algorithms including ByteTrack [33] and BoTSORT [1] on the
SportsMOT test set. Experiment results show that the Kalman
filter-based tracker can also be benefited from incorporating Ex-
pansionIoU during the tracking process.

4.10. Limitations

While our algorithm provides a robust and practical so-
lution for online multi-object tracking in sports scenarios,
it does have its limitations, including the absence of an of-
fline post-processing trajectories refinement method. Such
methods could involve a post-processing approach [14] or
a strong memory buffer [26], which would be valuable in
handling edge cases where sports players temporarily exit
and re-enter the camera’s field of view. It is worth noting
that exploring and integrating offline refinement techniques
in the future could potentially enhance the overall perfor-
mance and extend the applicability of our approach beyond
short-term tracking scenarios.

Another concern of Deep-EIoU is its relatively slower
running speed when compared with motion-based trackers.
Despite delivering significantly enhanced performance, the
integration of the appearance-based tracking-by-detection
framework, which involves a detector and a ReID model, in-
troduces additional computational cost. The current Deep-
EIoU pipeline achieves around 14.6 FPS on a single Nvidia
RTX 4080 GPU, which is slower compared to motion-



Figure 6. Visualization results of Deep-EIoU from random sampled clips of SportsMOT dataset (row 1 to 3) and SoccerNet-Tracking
dataset (row 4 to 5). With the iterative scale-up ExpansionIoU and deep features association, our algorithm can achieve robust multi-
athlete tracking under severe occlusion conditions in multiple diverse sports scenarios including basketball, football, and volleyball. More
visualization results can be found in supplementary material.

based method. It’s worth noting that transitioning to a more
lightweight detector and ReID model has the potential to
significantly boost operational speed.

5. Conclusions

In this paper, we proposed Deep-EIoU, an iterative
scale-up ExpansionIoU and deep features association
method for multi-object tracking in sports scenarios, which

achieves competitive performance on two large-scale multi-
object sports player tracking datasets including SportsMOT
and SoccerNet-Tracking. Our method successfully tackles
the challenges of irregular movement during multi-object
tracking in sports scenarios and outperforms the previous
tracking algorithms by a large margin.
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for multi object tracking in crowded scenes. arXiv preprint
arXiv:2003.09003, 2020.

[9] Tobias Fischer, Jiangmiao Pang, Thomas E Huang, Linlu
Qiu, Haofeng Chen, Trevor Darrell, and Fisher Yu. Qdtrack:
Quasi-dense similarity learning for appearance-only multiple
object tracking. arXiv preprint arXiv:2210.06984, 2022.

[10] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021, 2021. arXiv
preprint arXiv:2107.08430.

[11] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013.

[12] Hsiang-Wei Huang, Cheng-Yen Yang, and Jenq-Neng
Hwang. Multi-target multi-camera vehicle tracking using
transformer-based camera link model and spatial-temporal
information. arXiv preprint arXiv:2301.07805, 2023.

[13] Hsiang-Wei Huang, Cheng-Yen Yang, Zhongyu Jiang,
Pyong-Kun Kim, Kyoungoh Lee, Kwangju Kim, Samartha
Ramkumar, Chaitanya Mullapudi, In-Su Jang, Chung-I
Huang, et al. Enhancing multi-camera people tracking with
anchor-guided clustering and spatio-temporal consistency id
re-assignment. arXiv preprint arXiv:2304.09471, 2023.

[14] Hsiang-Wei Huang, Cheng-Yen Yang, Samartha Ramkumar,
Chung-I Huang, Jenq-Neng Hwang, Pyong-Kun Kim, Ky-
oungoh Lee, and Kwangju Kim. Observation centric and
central distance recovery for athlete tracking. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 454–460, 2023.

[15] R. E. Kalman. A new approach to linear filtering and predic-
tion problems, 1960. J. Fluids Eng., 82(1):35–45.

[16] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip
Torr, Andreas Geiger, Laura Leal-Taixé, and Bastian Leibe.
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