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Abstract

Multi-turn compositional image generation (M-CIG) is
a challenging task that aims to iteratively manipulate a ref-
erence image given a modification text. While most of the
existing methods for M-CIG are based on generative adver-
sarial networks (GANs), recent advances in image genera-
tion have demonstrated the superiority of diffusion models
over GANs. In this paper, we propose a diffusion-based
method for M-CIG named conditional denoising diffusion
with image compositional matching (CDD-ICM). We lever-
age CLIP as the backbone of image and text encoders, and
incorporate a gated fusion mechanism, originally proposed
for question answering, to compositionally fuse the refer-
ence image and the modification text at each turn of M-CIG.
We introduce a conditioning scheme to generate the target
image based on the fusion results. To prioritize the semantic
quality of the generated target image, we learn an auxil-
iary image compositional match (ICM) objective, along with
the conditional denoising diffusion (CDD) objective in a
multi-task learning framework. Additionally, we also per-
form ICM guidance and classifier-free guidance to improve
performance. Experimental results show that CDD-ICM
achieves state-of-the-art results on two benchmark datasets
for M-CIG, i.e., CoDraw and i-CLEVR.

1. Introduction
Image generation is a hot topic in computer vision, which

has many applications in a wide range of areas, such as art,
education, and entertainment. The generation of an image
often needs to follow a text prompt. Additionally, sometimes
the generation also needs to be based on an existing image
rather than starting from scratch. Combining the above two
requirements brings about compositional image generation
(CIG), which is to generate a target image by changing a
reference image according to a modification text. Addressing
this cross-modal task is useful in computer-aided design
(CAD), as it enables a computer system to generate images
given verbal instructions from users.

Figure 1. A three-turn example of multi-turn compositional image
generation (M-CIG).

In this paper, we focus on multi-turn compositional image
generation (M-CIG), which is to perform CIG in an iterative
manner. As shown in Figure 1, M-CIG can be described as
a sequence of CIG turns, where the initial reference image
is a background canvas, and the target image generated at
each turn will be used as the reference image at the next turn.
Compared with CIG, M-CIG is more challenging due to the
iterative setting. Meanwhile, M-CIG is also more practical
than CIG, as in the real world, a user usually needs to go
through a series of incremental interactions with a computer
system before achieving a final goal.

To the best of our knowledge, the existing methods for
M-CIG [12, 13, 34] are mostly based on generative adversar-
ial networks (GANs) [15], which are currently the dominant
family of techniques in image generation. According to some
theoretical and empirical studies [2, 4, 6, 36, 54], although
GANs can generate high-quality images, they are usually
difficult to train, and the diversity of the generated images
is also limited. Recently, diffusion models [16, 58, 59, 62],
which are another family of generative modeling techniques,
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have gained great popularity in image generation. Compared
with GANs, diffusion models are easier to train due to the
straightforward definition of objectives, and can also gener-
ate more diverse images due to the explicit modeling of data
distribution. As for the quality of the generated images, it
has been demonstrated that diffusion models are comparable
to or even better than GANs [8, 17, 40, 63]. Therefore, we
apply diffusion models to M-CIG.

Diffusion models rely on a denoising diffusion mecha-
nism [16] to generate images, which can be conditional so
that only desired images are generated. Therefore, the key
to addressing M-CIG using diffusion models is to learn con-
ditional denoising diffusion (CDD), where the condition for
generating the target image at each turn comes from the ref-
erence image and the modification text. However, this raises
the following two problems:

The lack of an appropriate conditioning scheme. Al-
though many conditioning schemes have been proposed for
diffusion models, most of these works only deal with uni-
modal cases, where the condition comes from either an im-
age [49, 51, 53] or a text [39, 47, 52]. The conditioning
scheme proposed by [22] is aimed at a multi-modal case,
where the condition comes from an image-text pair, but this
work assumes that the text just describes the semantics of
the image rather than the desired change to it. In a word, the
above conditioning schemes cannot support the application
of diffusion models to M-CIG.

The concern about the semantic quality of the gen-
erated target image. For the generated target image, we
are not only concerned with its visual quality, but also its
semantic quality, which refers to whether it contains the de-
sired objects and whether the contained objects constitute
the desired topology. Actually, we believe that the semantic
quality deserves more concern than the visual quality. The
reason is two-fold. On the one hand, a high semantic quality
implies a high visual quality, but the reverse is not true. On
the other hand, due to the iterative nature of M-CIG, seman-
tic mistakes are likely to accumulate from turn to turn, which
may corrupt the rear turns.

To solve these problems, we propose a diffusion-based
method for M-CIG named conditional denoising diffusion
with image compositional matching (CDD-ICM), which fea-
tures a novel conditioning scheme equipped with a multi-task
learning framework. Specifically, we use CLIP [45] as the
backbone to encode images and texts. On this basis, we bor-
row a gated fusion mechanism from a question answering
(QA) method [67] to perform compositional fusion between
the reference image and the modification text at each turn of
M-CIG, and use the result as the condition of the denoising
diffusion mechanism to generate the target image. To guar-
antee the semantic quality of the generated target image, we
learn image compositional matching (ICM) as an auxiliary
objective of CDD to explicitly enhance the conditon, where

Reference Image Modification Text

Image 
Encoder

Text
Encoder

Fusion Module

Denoising U-Net

Condition 

Target ImageNoisy Target Image

CDD Loss

Noisy Image 
Encoder

Image 
Encoder

ICM LossN-ICM Loss

Concatenation

Add a blue sphere behind 
it on the left.

Noise Injector

Noise

Figure 2. An overview of CDD-ICM. Colored components are
trainable, and those of the same color share their trainable parame-
ters.

the compositional fusion result is aligned with the repre-
sentation of the target image through contrastive learning.
Moreover, we also perform ICM guidance and classifier-free
guidance [18] to boost performance. Experimental results
show that CDD-ICM achieves state-of-the-art (SOTA) per-
formance on two benchmark datasets for M-CIG, namely
CoDraw [24] and i-CLEVR [12].

The contribution of this paper is three-fold. First, we
creatively apply diffusion models to M-CIG, where a novel
conditioning scheme is developed to handle a compositional
image-text pair, integrating the denoising diffusion mech-
anism with CLIP and a gated fusion mechanism. Second,
to prioritize the semantic quality of the generated target im-
age, we establish a multi-task learning framework for the
conditioning scheme, where ICM serves as an auxiliary ob-
jective of CDD to explicitly enhance the condition. Third,
our diffusion-based method outperforms the existing GAN-
based methods on two M-CIG benchmark datasets.

2. Method
In this section, we elaborate CDD-ICM, which is our

diffusion-based method for M-CIG. We begin by providing a
task formulation of M-CIG, which is followed by a detailed
introduction to the design of CDD-ICM.

2.1. Task Formulation

Given an initial reference image a(1), which is a back-
ground canvas, and a sequence of k modification texts



{m(1), . . . ,m(k)}, which describe the desired changes to
be successively made to a(1), M-CIG is a k-turn iterative
process, where at each turn i ∈ {1, . . . , k}, it is required to
generate a target image z(i) by changing the current refer-
ence image a(i) according to m(i), and if i < k, z(i) will be
used as the next reference image a(i+1).

2.2. Encoding

Considering the cross-modal nature of M-CIG, we map
images and texts into a joint representation space through
encoding. As shown in Figure 2, we include an image en-
coder and a text encoder in CDD-ICM, where the former
is used to encode reference images and target images, and
the latter is used to encode modification texts. Since M-CIG
is a vision-and-language (V&L) task, we take advantage of
large-scale V&L pre-training by using CLIP, which is pre-
trained on 400M image-text pairs, as the backbone of both
encoders. Specifically, we use the vision part of CLIP, which
is a vision transformer (ViT) [11], as the backbone of the
image encoder, and use the language part of CLIP, which
is a GPT-like [46] auto-regressive language model, as the
backbone of the text encoder. In each encoder, we append
a linear projection layer after the backbone, which finally
yields the representations. For both linear projection layers,
we set their output dimensionality to the same value d, which
is a hyper-parameter denoting the dimensionality of the joint
representation space.

Additionally, as shown in Figure 2, we also include a
noisy image encoder in CDD-ICM, which is used to encode
the noisy target images obtained in the denoising diffusion
mechanism. It has the same structure as the image encoder,
but holds different trainable parameters.

2.3. Compositional Fusion

At each turn of M-CIG, to extract clues for the genera-
tion of the target image, we perform compositional fusion
between the reference image and the modification text. As
shown in Figure 2, we include a fusion module in CDD-ICM,
which fuses the representation of the reference image with
that of the modification text. Actually, we can interpret each
turn of M-CIG from the perspective of QA. Specifically, we
can regard the reference image as a context, the modifica-
tion text as a relevant question, and the target image as the
corresponding answer. In this way, to implement the fusion
module, we borrow the following gated fusion mechanism
from a QA method [67]:

f(u, v) = g ⊙ h+ (1− g)⊙ u

g = sigmoid(Wg[u; v;u⊙ v;u− v] + bg)

h = gelu(Wh[u; v;u⊙ v;u− v] + bh)

(1)

where Wg and Wh are trainable weight matrices, bg and bh
are trainable bias vectors, ⊙ denotes element-wise multipli-
cation, and [; ] denotes vector concatenation. In the fusion

module, we set u to the representation of the reference im-
age, set v to that of the modification text, and thereby obtain
f(u, v) as the compositional fusion result.

2.4. Conditional Denoising Diffusion

To generate the target image at each turn of M-CIG, we
learn conditional denoising diffusion (CDD), which is to
perform the generation using a denoising diffusion mecha-
nism conditioned on the compositional fusion result between
the reference image and the modification text. As proposed
by [16], the denoising diffusion mechanism consists of a
forward diffusion process, which gradually injects noises
to the target image, and a reverse denoising process, which
gradually erases the injected noises.

With the target image denoted as x0 ∼ q(x0), the forward
diffusion process is a pre-defined Markov chain of T time
steps ⟨1, . . . , T ⟩, where the state transfers from x0 all the
way to xT . Specifically, at each time step t, we obtain xt by
injecting a Gaussian noise ϵt ∼ N(0, I ) to xt−1:

q(xt|xt−1) = N(
√
αtxt−1, (1− αt)I )

⇔ xt =
√
αtxt−1 +

√
1− αtϵt

(2)

where αt is a hyper-parameter used to control the noise scale.
It is easy to derive that with

∏t
i=1 αi denoted as ᾱt, we can

actually obtain xt by directly injecting ϵt to x0:

q(xt|x0) = N(
√
ᾱtx0, (1− ᾱt)I )

⇔ xt =
√
ᾱtx0 +

√
1− ᾱtϵt

(3)

As shown in Figure 2, we include a noise injector in CDD-
ICM, which executes Equation 3 at an arbitrary time step t
to obtain xt as a noisy target image. To implement the noise
injector, we set each αt ∈ {α1, . . . , αT } in the following
way proposed by [40]:

αt =
s(t)

s(t− 1)

s(t) = cos2(
t/T + 0.008

1.008
· π
2
)

(4)

With the compositional fusion result between the ref-
erence image and the modification text denoted as c, the
reverse denoising process is a parameterized Markov chain
of T time steps ⟨T, . . . , 1⟩, where the state transfers from
xT all the way back to x0 conditioned on c. Specifically,
at each time step t, given xt and the condition c, we obtain
xt−1 using a neural network θ:

pθ(xt−1|xt, c) = N
(
µθ(xt, t, c),Σθ(xt, t, c)

)
⇔ xt−1 = µθ(xt, t, c) + Σ

1
2
θ (xt, t, c)ξt

(5)

where ξt ∼ N(0, I ). According to [16], we can learn θ by
minimizing the following variational lower-bound (VLB)



loss:

Lvlb = Ex0∼q(x0),t∼U{1,T}[L
vlb
t ]

Lvlb
t =

{
−log pθ(xt−1|xt, c), if t = 1

DKL

(
q(xt−1|xt, x0)||pθ(xt−1|xt, c)

)
, else

(6)

Using Bayes’ theorem, it can be derived that with 1 − αt

denoted as βt, q(xt−1|xt, x0) is the following Gaussian dis-
tribution:

q(xt−1|xt, x0) = N
(
µ̃(xt, x0), β̃tI

)
µ̃(xt, x0) =

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

β̃t =
1− ᾱt−1

1− ᾱt
βt

(7)

Based on Equation 3 and Equation 7, we parameterize
µθ(xt, t, c) in the following way proposed by [16]:

µθ(xt, t, c) =
1√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t, c)
)

(8)

where ϵθ(xt, t, c) is a prediction to ϵt. Besides, we also
parameterize Σθ(xt, t, c) in the following way proposed by
[40]:

Σθ(xt, t, c) = exp
(
log

βt

β̃t
ρθ(xt, t, c) + logβ̃t

)
(9)

where ρθ(xt, t, c) is a fraction used to interpolate between
logβt and logβ̃t. As shown in Figure 2, we include a de-
noising U-Net in CDD-ICM, which performs the above pa-
rameterizations and thus can be seen as θ. To implement
the denoising U-Net, we make three changes to the U-Net
structure used by [8]. First, we replace the class embedding
with the condition c. Second, we concatenate xt with the
reference image along the channel dimension, and thereby
use the result as the input. Third, we concatenate the patch
representations of the reference image with the token rep-
resentations of the modification text, and thereby use the
result to augment each attention layer as suggested by [39].
The output of the denoising U-Net is divided into two parts
along the channel dimension, which are separately used as
ϵθ(xt, t, c) and ρθ(xt, t, c).

According to [16], to learn the above reverse denoising
process, instead of minimizing Lvlb, we can actually mini-
mize the following mean squared error (MSE) loss:

Lmse = Ex0∼q(x0),t∼U{1,T}[||ϵt − ϵθ(xt, t, c)||2] (10)

Compared with Lvlb, Lmse is not only simpler but also
more effective. However, minimizing Lmse cannot bring
any learning signal to Σθ(xt, t, c). To benefit from learn-
ing Σθ(xt, t, c), we combine Lmse with Lvlb as suggested
by [40]. Specifically, we minimize a CDD loss Lcdd, which
is calculated as follows:

Lcdd = Lmse + γLvlb (11)

where γ is a hyper-parameter used to control the weight of
Lvlb. Additionally, we also stop the gradients of Lvlb from
flowing to ϵθ(xt, t, c).

2.5. Image Compositional Matching

At each turn of M-CIG, the semantic quality of the gener-
ated target image depends on the condition of the denoising
diffusion mechanism, which is the compositional fusion re-
sult between the reference image and the modification text.
Although learning CDD ensures that the condition is learned,
this effect is implicit. To explicitly enhance the condition
so that it embodies more clues about the target image, we
learn image compositional matching (ICM) as an auxiliary
objective of CDD, which is to align the compositional fusion
result with the representation of the target image.

To learn ICM, we adopt the InfoNCE loss [41] used in
the contrastive pre-training of CLIP, and apply it to individ-
ual turns constituting M-CIG samples. Specifically, given
a mini-batch of n (reference image, modification text, tar-
get image) triples {(a1,m1, z1), . . . , (an,mn, zn)}, each of
which denotes an individual turn picked from an M-CIG
sample, we treat them as positive samples, and generate
n2 − n negative samples by replacing the target image zi in
each positive sample (ai,mi, zi) separately with the other
n − 1 target images {z1, . . . , zn} − {zi}. For each of the
positive and negative samples, suppose that we have already
obtained the compositional fusion result between the refer-
ence image and the modification text and the representation
of the target image, then we calculate the cosine similarity
between them. As a result, we construct a similarity matrix
S ∈ Rn×n, where the element at the i-th row and the j-th
column corresponds to the sample (ai,mi, zj). It is easy to
see that the diagonal elements in S correspond to the pos-
itive samples, while the other elements correspond to the
negative samples. Based on S, we minimize an ICM loss
Licm, which is calculated as follows:

Licm =
1

n
tr
(
−log

(
softmax(

S

τ
)
))

+

1

n
tr
(
−log

(
softmax(

S⊤

τ
)
)) (12)

where τ is a trainable temperature scalar, tr(·) denotes cal-
culating matrix trace, and softmax(·) is calculated along the
row dimension. In this way, the compositional fusion result
between a (reference image, modification text) pair will be
close to the representation of the real target image, while
apart from those of the fake ones.

Besides, to enable ICM guidance, which will be intro-
duced later, we also learn noise-aware image compositional
matching (N-ICM). Specifically, we replace the above target
images with their noisy variants, which are obtained using
the noise injector, and encode these noisy target images us-
ing the noisy image encoder. On this basis, we minimize an



N-ICM loss Ln−icm, which is calculated in the same way as
we calculate Licm.

2.6. Training and Inference

For the training, we disassemble M-CIG samples into indi-
vidual turns and thereby apply teacher forcing. On this basis,
we divide the training into three stages, where in each stage,
we minimize a different loss through mini-batch gradient
descent to update the corresponding trainable components
of CDD-ICM. Specifically, in the first stage, we minimize
Licm to update the image encoder, the text encoder, and the
fusion module. In the second stage, we minimize the fol-
lowing joint loss, which is a combination of Lcdd and Licm,
to update the image encoder, the text encoder, the fusion
module, and the denoising U-Net:

Ljoint = Lcdd + δLicm (13)

where δ is a hyper-parameter used to control the weight of
Licm. In the third stage, we freeze the image encoder, the
text encoder, and the fusion module, and minimize Ln−icm

to update the noisy image encoder. To effectively fine-tune
CLIP, we set the backbone learning rate as a product of the
global learning rate and a backbone activity ratio η, which is
a hyper-parameter. From the perspective of transfer learning,
η controls the trade-off between the knowledge transferred
from CLIP and that embodied in the training data.

For the inference, at each turn of M-CIG, we use the
image encoder to encode the reference image, use the text
encoder to encode the modification text, use the fusion mod-
ule to perform compositional fusion based on the encoding
results, and use the denoising U-Net to iteratively execute
Equation 5 from the time step T until the time step 1, where
the condition c is set to the compositional fusion result. From
Equation 3 and Equation 4, it can be derived that if T is large
enough, then q(xT ) ≈ N(0, I), thus we sample xT from
N(0, I) at the time step T . To accelerate the inference, we
traverse only a part of the time steps, which are uniformly
distributed among all of them, and make this process deter-
ministic as suggested by [60]. Finally, we obtain x0 as the
generated target image at the time step 1.

Moreover, we also perform ICM guidance and classifier-
free guidance to boost performance. Our ICM guidance is
similar to the CLIP guidance of [39]. Specifically, suppose
that we have minimized Ln−icm in the training, then in the
inference, instead of using µθ(xt, t, c) in Equation 5, we
use µ̂θ(xt, t, c), which is obtained by perturbing µθ(xt, t, c)
using the gradient of Ln−icm with respect to xt:

µ̂θ(xt, t, c) = µθ(xt, t, c) + ψΣθ(xt, t, c)∇xtL
n−icm (14)

where ψ is a hyper-parameter used to control the perturbation
scale. Our classifier-free guidance is similar to that of [39].
Specifically, in the training, when calculating ϵθ(xt, t, c) in
Equation 10, we set the condition c to 0⃗ with a probability

of λ, which is a hyper-parameter. On this basis, in the
inference, instead of using ϵθ(xt, t, c) in Equation 8, we
use ϵ̂θ(xt, t, c), which is obtained by perturbing ϵθ(xt, t, c)
using ϵθ(xt, t, 0⃗):

ϵ̂θ(xt, t, c) = ϕϵθ(xt, t, c) + (1− ϕ)ϵθ(xt, t, 0⃗) (15)

where ϕ is a hyper-parameter used to control the perturbation
scale.

3. Related Works
3.1. Image Manipulation

The goal of image manipulation is to modify specific
attributes of an image while avoiding unintended changes or
generating a completely new image. Existing works can be
split into two main categories: image-to-image translation
and text-conditioned image manipulation.

Image-to-Image Translation. The image-to-image trans-
lation aims to generate an output image only conditioning on
an input image, i.e., uni-modal condition. Image inpainting
and image super-resolution are two typical image-to-image
translation tasks. In recent years, deep learning has achieved
great success in image inpainting. Context Encoders [44]
first explores to utilize conditional GANs. Multiple vari-
ants [29, 69, 72, 73] of U-Net [50] have been proposed for
image inpainting. Some works explore multi-stage genera-
tion by taking object edges [38], structures [48], or semantic
segmentation maps [64] as intermediate clues. In terms of
super-resolution, most early works are regression-based and
trained with MSE loss [9, 10, 23, 70]. Auto-regressive mod-
els [7, 42] and GAN-based methods [19, 26, 32, 35, 68] have
also shown high quality results.

Text-Conditioned Image Manipulation. The text-
conditioned image manipulation targets generating an output
image conditioned on both the input image and text, i.e.,
multi-modal condition. The input text can be a caption-like
description of the target image, and the editing is usually
single-turn. TAGAN [37] employs word-level local discrim-
inators to preserve text-irrelevant content. ManiGAN [28]
first selects image regions and then correlates the regions
with semantic words. DiffusionCLIP [22] is a robust frame-
work that utilizes the pre-trained diffusion models and CLIP
loss for image manipulation.

The input text can also be user-provided text instructions
that describe desired modifications, such as adding, chang-
ing, or removing the objects in images. Generating an image
based on provided instructions and an input image is dubbed
as the compositional image generation (CIG) task in this
paper. [1] achieve great performance on the benchmarks
CSS [65] and Fashion Synthesis [75] by designing an im-
proved image & text composition layer and a multi-modal
similarity module. [74] propose a GAN-based method to
locally modify image features and show remarkable results



on both CSS and Abstract Scene [76]. Afterward, the M-
CIG task presents a more challenging setting compared to the
above single-turn CIG task. [12] first propose the M-CIG task
known as Generative Neural Visual Artist (GeNeVA) task,
which requires iteratively generating an image according to
ongoing linguistic input. [14] introduce the self-supervised
counterfactual reasoning (SSCR) framework to tackle the
data scarcity problem. LatteGAN [34] improves desired
object generation by introducing a Latte module and a text-
conditioned U-Net discriminator. Our research work targets
the M-CIG task, following [12], we conducted experiments
on CoDraw [25] and i-CLEVR [12].

3.2. Diffusion Models

Diffusion models (DMs) [58], which formulate the data
sampling process as an iterative denoising procedure, are
closely related to a large family of methods for learn-
ing generative models as transition operators of Markov
chains [3, 27, 56, 58, 61]. Many research works concentrate
on improving the diffusion process of DMs. [62] propose to
estimate the gradients of data distribution via score matching
and produce samples via Langevin dynamics. Denoising
diffusion probabilistic models (DDPMs) [16], which opti-
mize a variational lower bound to the log-likelihood, can
achieve comparable sample quality as GANs [5,20]. Denois-
ing diffusion implicit models (DDIMs) [59] speed up the
sampling process while enabling near-perfect inversion [8].
The improved DDPM [40] introduces several modifications
to achieve competitive likelihoods without sacrificing sample
quality. The latent diffusion [49] model is applied in latent
space instead of pixel space to enable an efficient diffusion
process. Although GANs have achieved plausible results in
image synthesis, they are usually difficult to train and tend
to limit the diversity of the generated images [57, 66]. DMs
are more stable during training and demonstrate comparable
or even better performance for image synthesis [8, 17, 63].

Motivated by the progress in developing DMs, some re-
search works explore text or image conditional diffusion
mechanisms. While certain diffusion models solely utilize
an input image for conditioning, such as PALETTE [51]
and SR3 [53], those that condition on both an input image
and text are more pertinent to our work. GLIDE [39] is a
text-guided diffusion model, where classifier-free guidance
yields higher-quality images than CLIP guidance. DALL-
E 2 [47] initially generates a CLIP [45] image embedding
given a text caption and then generates an image conditioned
on the image embedding. ImageGen [52] exhibits a deep
level of language understanding which enables high-fidelity
image generation. Stable Diffusion [49] is an efficient latent
diffusion model and has achieved superior image synthesis
performance. [30] compose pre-trained text-guided diffu-
sion models to improve structured generalization for image
generation. However, in the context of this paper, it should

be noted that the textual input in the aforementioned mod-
els refers to a caption-like description, rather than iterative
instructions on image manipulations. Designing diffusion-
based methods for the M-CIG task remains a relatively under-
explored area, presenting challenges in iteratively modifying
images with instructions and conditioning the denoising dif-
fusion mechanism on multi-modalities. To address this gap
in the literature, we propose a diffusion-based approach cou-
pled with auxiliary ICM objectives to enhance the visual and
semantic fidelity of generated images in the M-CIG task.

4. Experiments
4.1. Datasets

To verify the effectiveness of CDD-ICM, we conduct ex-
periments on the following two M-CIG benchmark datasets:

CoDraw. CoDraw contains 8K M-CIG samples for train-
ing, 1K for validation, and 1K for test. The number of turns
per M-CIG sample varies between 1 and 14 with an average
of 4.25. The reference images and the target images contain
58 classes of clip-art-style objects, such as boys, girls, and
trees. The modification texts are conversations between a
teller and a drawer.

i-CLEVER. i-CLEVER contains 6K M-CIG samples for
training, 2K for validation, and 2K for test. The number of
turns per M-CIG sample is always 5. The reference images
and the target images contain 24 classes of colored geometric
objects, such as red spheres, yellow cubes, and blue cylinders.
The modification texts are sentences indicating the addition
of a new object.

Both datasets adopt four metrics to evaluate the semantic
quality of the generated target images: precision, recall, F1
score, and relational similarity (RSIM). Specifically, each
dataset comes with an object detector, which is trained on
the dataset by [12]. In the evaluation, the object detector is
applied to both the generated target images and the ground-
truth target images. On this basis, precision, recall, and F1
score are calculated for each turn of M-CIG by comparing
the object presence in the generated target image with that
in the ground-truth target image:

precision =
|Ogen ∩Ogt|

|Ogen|

recall =
|Ogen ∩Ogt|

|Ogt|

F1 = 2 · precision · recall
precision + recall

(16)

where Ogen and Ogt denote the objects in the generated
target image and the ground-truth target image, respectively.
RSIM is calculated on the last turn of M-CIG by comparing
the object topology in the generated target image with that
in the ground-truth target image:

RSIM = recall · |Egen ∩ Egt|
|Egt|

(17)



Method CoDraw i-CLEVR

Precision Recall F1 RSIM Precision Recall F1 RSIM

GeNeVA-GAN [12] 66.64 52.66 58.83 35.41 92.39 84.72 88.39 74.02
SSCR [13] 58.17 56.61 57.38 39.11 73.75 46.39 56.96 34.54
TIRG [21] 76.56 73.40 72.40 46.64 94.30 92.96 93.71 77.55

LatteGAN [34] 81.50 78.37 77.51 54.16 97.72 96.93 97.26 83.21

CDD-ICM (ours) 90.61 87.55 89.05 57.39 99.99 99.94 99.96 85.66

Table 1. Performance comparison on CoDraw and i-CLEVR.

where Egen and Egt denote the edges interconnecting
Ogen ∩ Ogt in the generated target image and the ground-
truth target image, respectively.

4.2. Implementation Details

We use PyTorch [43] to implement CDD-ICM, and use
HuggingFace’s Transformers [71] to load CLIP. In the three
CLIP-based encoders, we adopt the basic version of CLIP
(i.e. CLIP-ViT-B/32) as the backbone, set the backbone ac-
tivity ratio η to 0.001, and set the output dimensionality d
of all the linear projection layers to 512. In the denoising
diffusion mechanism, we use 1000 time steps for the train-
ing (i.e. T = 1000), and use the 250 time steps uniformly
distributed among them for the inference. For ICM guidance,
we set ψ to 2. For classifier-free guidance, we set the value
of λ to 0.2 and ϕ to 3. To calculate Lcdd, we set γ to 1.5.
To calculate Licm and Ln−icm, we initialize τ to e−1. To
calculate Ljoint in the second training stage, we set δ to
0.1. For the optimization in each training stage, we apply
an AdamW optimizer [31] with an initial learning rate of
0.0001 and a weight decay factor of 0.01. We perform the
optimization on 8 NVIDIA V100 16GB GPUs in parallel,
and set the mini-batch size on each GPU to 32. We calcu-
late the average loss on the validation subset after every 10
epochs. If the resulting number is reduced, then we save the
current CDD-ICM model, otherwise we restore the CDD-
ICM model to the previous saved version. We decay the
learning rate by 50% after each restoration, and terminate
the optimization after the 5th restoration.

4.3. Experimental Results

On each dataset, we train a CDD-ICM model by using
the training set for optimization and using the validation
set for model selection. To compare CDD-ICM with the
existing M-CIG methods, we use the test set for evaluation,
and finally report the precision, recall, F1 score, and RSIM
over all the M-CIG samples in the test set. As shown in
Table 1, we achieve SOTA performance on both datasets.
Specifically, on CoDraw, CDD-ICM outperforms the exist-
ing M-CIG methods by a large margin, where the advantage
in precision, recall, and F1 score is relatively larger than
that in RSIM. On i-CLEVR, although the existing M-CIG

methods did not leave too much room for improvement in
precision, recall, and F1 score, CDD-ICM is still better than
them in these metrics, reaching almost perfect numbers, and
also outperforms them in RSIM.

From all the M-CIG methods in Table 1, we observe two
regularities. On the one hand, the performance of these meth-
ods on CoDraw is generally worse than that on i-CLEVR. By
comparing CoDraw with i-CLEVR, we speculate that this is
mainly because the modification texts in CoDraw are com-
monly longer and more complicated than those in i-CLEVR,
which makes it more difficult to generate the desired target
images. On the other hand, the performance of these meth-
ods in object presence, which is reflected by precision, recall,
and F1 score, is generally better than that in object topology,
which is reflected by RSIM. By investigating both datasets,
we speculate that this is mainly because good performance in
object presence just requires correctly identifying the names
and attributes of objects from the modification texts, while
that in object topology usually requires comprehensively
understanding the modification texts.

4.4. Case Study

To visually demonstrate the capability of CDD-ICM, we
select several representative M-CIG samples from the test set
of both datasets, and use the inference results of CDD-ICM
on them as demo cases. A demo case from CoDraw and
another one from i-CLEVR are shown in Figure 3, and more
demo cases are available in the appendix. In the demo cases
from CoDraw, the generated target images contain most of
the desired objects, but there are still some extra and missing
objects. Besides, it also shows that on CoDraw, CDD-ICM
struggles with accurately positioning and orienting objects.
In the demo cases from i-CLEVR, the generated target im-
ages are very similar to the ground-truth target images, where
only a few objects are misaligned.

4.5. Ablation Study

To probe the performance contribution from each design
point of CDD-ICM, we conduct the following five ablation
experiments. As shown in Table 2, in each ablation experi-
ment, we change a corresponding design point, and report
the resulting F1 score and RSIM on each dataset.



Figure 3. Demo cases from CoDraw and i-CLEVR. For the convenience of display, we only include the utterances of the drawer in the
modification texts of CoDraw.

Method CoDraw i-CLEVR

F1 RSIM F1 RSIM

CDD-ICM 89.05 57.39 99.96 85.66

w/o ICM 75.86 50.58 89.92 74.49

w/o ICM Guidance 87.69 56.94 96.27 81.32

w/o Classifier-free
Guidance 86.34 56.11 94.91 80.28

Fine-tuning of CLIP:
Frozen 80.63 54.89 87.24 72.44

Fine-tuning of CLIP:
Fully-Trainable 58.52 39.97 65.83 44.76

w/o Iterative Setting 92.51 75.93 100.00 96.20

Table 2. Results of ablation experiments.

ICM. We disable ICM by skipping the first training stage
and setting δ to 0 when calculating Ljoint in the second
training stage. As a result, we observe a significant drop
in F1 score and RSIM. This verifies the effectiveness of
learning ICM as an auxiliary objective of CDD. Besides, we
also observe a significant drop in the converging speed of
the second training stage. This further verifies that learning
ICM is beneficial for learning CDD.

ICM Guidance. We disable ICM guidance by skipping
the third training stage and setting ψ to 0. As a result, we
observe a drop in F1 score and RSIM. This verifies the
effectiveness of ICM guidance.

Classifier-free Guidance. We disable classifier-free guid-
ance by setting λ to 0 and setting ϕ to 1. As a result, we

observe a drop in F1 score and RSIM. This verifies the ef-
fectiveness of classifier-free guidance.

Fine-tuning of CLIP. For the fine-tuning of CLIP, which
is controlled by the backbone activity ratio η, we exam-
ine two extreme cases. On the one hand, we make CLIP
frozen by setting η to 0. On the other hand, we make CLIP
fully-trainable by setting η to 1. As a result, we observe a
significant drop in F1 score and RSIM in both cases. This
verifies the necessity of applying η.

Iterative Setting. In the evaluation, we disable the itera-
tive setting by using the ground-truth target image at each
turn of M-CIG as the reference image of the next turn, which
actually downgrades M-CIG to CIG. As a result, we observe
a significant rise in F1 score and RSIM. This verifies that
M-CIG is more challenging than CIG.

5. Conclusion and Limitation

In this paper, we focus on M-CIG, which is a challenging
and practical image generation task, and propose a diffusion-
based method named CDD-ICM, which achieves SOTA per-
formance on CoDraw and i-CLEVR. The limitation of CDD-
ICM mainly lies in its inference efficiency. Although we
have accelerated the inference of CDD-ICM by traversing
only a part of the time steps in a deterministic manner, it
still takes 3 GPU seconds for CDD-ICM to generate a target
image, which is much slower than the GAN-based methods.
In the future, we plan to further accelerate the inference
of CDD-ICM by applying latent diffusion models [49] and
knowledge distillation methods [33, 55].



References
[1] Kenan E. Ak, Ying Sun, and Joo-Hwee Lim. Learning cross-

modal representations for language-based image manipula-
tion. 2020 IEEE International Conference on Image Process-
ing (ICIP), pages 1601–1605, 2020. 5

[2] Martin Arjovsky and Leon Bottou. Towards principled meth-
ods for training generative adversarial networks. In ICLR,
2017. 1

[3] Yoshua Bengio, Eric Laufer, Guillaume Alain, and Jason
Yosinski. Deep generative stochastic networks trainable by
backprop. In ICML, pages 226–234. PMLR, 2014. 6

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis. In
ICLR, 2019. 1

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
ICLR, 2019. 6

[6] Andrew Brock, Theodore Lim, James M Ritchie, and Nick
Weston. Neural photo editing with introspective adversarial
networks. In ICLR, 2017. 1

[7] Ryan Dahl, Mohammad Norouzi, and Jonathon Shlens. Pixel
recursive super resolution. In ICCV, pages 5439–5448, 2017.
5

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, 2021. 2, 4, 6

[9] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image super-
resolution. In ECCV, pages 184–199. Springer, 2014. 5

[10] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. IEEE transactions on pattern analysis and machine
intelligence, 38(2):295–307, 2015. 5

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In ICLR, 2021. 3

[12] Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, De-
von Hjelm, Layla El Asri, Samira Ebrahimi Kahou, Yoshua
Bengio, and Graham W Taylor. Tell, draw, and repeat: Gen-
erating and modifying images based on continual linguistic
instruction. In ICCV, 2019. 1, 2, 6, 7

[13] Tsu-Jui Fu, Xin Wang, Scott Grafton, Miguel Eckstein, and
William Yang Wang. SSCR: Iterative language-based im-
age editing via self-supervised counterfactual reasoning. In
EMNLP, 2020. 1, 7

[14] Tsu-Jui Fu, Xin Wang, Scott Grafton, Miguel Eckstein, and
William Yang Wang. Sscr: Iterative language-based im-
age editing via self-supervised counterfactual reasoning. In
EMNLP, pages 4413–4422, 2020. 6

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 1

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In NeurIPS, 2020. 1, 2, 3, 4,
6

[17] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffusion
models for high fidelity image generation. Journal of Machine
Learning Research, 2022. 2, 6

[18] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 2

[19] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018. 5

[20] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, pages 4401–4410, 2019. 6

[21] E Ak Kenan, Ying Sun, and Joo Hwee Lim. Learning cross-
modal representations for language-based image manipula-
tion. In 2020 IEEE International Conference on Image Pro-
cessing (ICIP), 2020. 7

[22] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Dif-
fusionclip: Text-guided diffusion models for robust image
manipulation. In CVPR, 2022. 2, 5

[23] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accu-
rate image super-resolution using very deep convolutional
networks. In CVPR, pages 1646–1654, 2016. 5

[24] Jin-Hwa Kim, Nikita Kitaev, Xinlei Chen, Marcus Rohrbach,
Byoung-Tak Zhang, Yuandong Tian, Dhruv Batra, and Devi
Parikh. CoDraw: Collaborative drawing as a testbed for
grounded goal-driven communication. In ACL, 2019. 2

[25] Jin-Hwa Kim, Nikita Kitaev, Xinlei Chen, Marcus Rohrbach,
Byoung-Tak Zhang, Yuandong Tian, Dhruv Batra, and Devi
Parikh. Codraw: Collaborative drawing as a testbed for
grounded goal-driven communication. In ACL, pages 6495–
6513, 2019. 6

[26] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In CVPR, pages 4681–4690, 2017. 5

[27] Daniel Levy, Matthew D. Hoffman, and Jascha Sohl-
Dickstein. Generalizing hamiltonian monte carlo with neural
networks. In ICLR, 2018. 6

[28] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS
Torr. Manigan: Text-guided image manipulation. In CVPR,
pages 7880–7889, 2020. 5

[29] Hongyu Liu, Bin Jiang, Yibing Song, Wei Huang, and Chao
Yang. Rethinking image inpainting via a mutual encoder-
decoder with feature equalizations. In ECCV, pages 725–741.
Springer, 2020. 5

[30] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B Tenenbaum. Compositional visual generation with
composable diffusion models. In ECCV, pages 423–439.
Springer, 2022. 6

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 7

[32] Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Srflow: Learning the super-resolution space with
normalizing flow. In ECCV, pages 715–732. Springer, 2020.
5



[33] Eric Luhman and Troy Luhman. Knowledge distillation in it-
erative generative models for improved sampling speed. arXiv
preprint arXiv:2101.02388, 2021. 8

[34] Shoya Matsumori, Yuki Abe, Kosuke Shingyouchi, Komei
Sugiura, and Michita Imai. Lattegan: Visually guided lan-
guage attention for multi-turn text-conditioned image manip-
ulation. IEEE Access, 2021. 1, 6, 7

[35] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi,
and Cynthia Rudin. Pulse: Self-supervised photo upsampling
via latent space exploration of generative models. In CVPR,
pages 2437–2445, 2020. 5

[36] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative adver-
sarial networks. In ICLR, 2018. 1

[37] Seonghyeon Nam, Yunji Kim, and Seon Joo Kim. Text-
adaptive generative adversarial networks: manipulating im-
ages with natural language. NeurIPS, 2018. 5

[38] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Z Qureshi,
and Mehran Ebrahimi. Edgeconnect: Generative image
inpainting with adversarial edge learning. arXiv preprint
arXiv:1901.00212, 2019. 5

[39] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. In ICML, 2022.
2, 4, 5, 6

[40] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In ICML, 2021. 2,
3, 4, 6

[41] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 4

[42] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In ICML, pages 4055–4064. PMLR, 2018.
5

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 7

[44] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In CVPR, pages 2536–2544, 2016. 5

[45] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In ICML, 2021. 2, 6

[46] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. OpenAI, 2018. 3

[47] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image genera-
tion with clip latents. arXiv preprint arXiv:2204.06125, 2022.
2, 6

[48] Yurui Ren, Xiaoming Yu, Ruonan Zhang, Thomas H Li, Shan
Liu, and Ge Li. Structureflow: Image inpainting via structure-
aware appearance flow. In ICCV, pages 181–190, 2019. 5

[49] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, 2022. 2, 6,
8

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 5

[51] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee,
Jonathan Ho, Tim Salimans, David Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. In ACM
SIGGRAPH 2022 Conference Proceedings, 2022. 2, 6

[52] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay
Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. arXiv preprint arXiv:2205.11487,
2022. 2, 6

[53] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sali-
mans, David J Fleet, and Mohammad Norouzi. Image super-
resolution via iterative refinement. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. 2, 6

[54] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In NeurIPS, 2016. 1

[55] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In ICLR, 2022. 8

[56] Tim Salimans, Diederik Kingma, and Max Welling. Markov
chain monte carlo and variational inference: Bridging the gap.
In ICML, pages 1218–1226. PMLR, 2015. 6

[57] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari.
How good is my gan? In ECCV, pages 213–229, 2018. 6

[58] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, 2015. 1, 6

[59] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. In ICLR, 2021. 1, 6

[60] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. In ICLR, 2021. 5

[61] Jiaming Song, Shengjia Zhao, and Stefano Ermon. A-nice-mc:
Adversarial training for mcmc. NeurIPS, 30, 2017. 6

[62] Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. In NeurIPS,
2019. 1, 6

[63] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equations.
In ICLR, 2021. 2, 6

[64] Yuhang Song, Chao Yang, Yeji Shen, Peng Wang, Qin Huang,
and C.-C. Jay Kuo. Spg-net: Segmentation prediction and
guidance network for image inpainting. In British Machine Vi-
sion Conference 2018, BMVC 2018, Newcastle, UK, Septem-
ber 3-6, 2018, page 97. BMVA Press, 2018. 5



[65] Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-
Fei, and James Hays. Composing text and image for image
retrieval-an empirical odyssey. In CVPR, pages 6439–6448,
2019. 5

[66] Hao Wang, Guosheng Lin, Steven CH Hoi, and Chunyan
Miao. Cycle-consistent inverse gan for text-to-image synthe-
sis. In Proceedings of the 29th ACM International Conference
on Multimedia, pages 630–638, 2021. 6

[67] Wei Wang, Ming Yan, and Chen Wu. Multi-granularity hier-
archical attention fusion networks for reading comprehension
and question answering. In ACL, 2018. 2, 3

[68] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European conference on computer vision
(ECCV) workshops, pages 0–0, 2018. 5

[69] Yi Wang, Xin Tao, Xiaojuan Qi, Xiaoyong Shen, and Jiaya Jia.
Image inpainting via generative multi-column convolutional
neural networks. NeurIPS, 2018. 5

[70] Zhaowen Wang, Ding Liu, Jianchao Yang, Wei Han, and
Thomas Huang. Deep networks for image super-resolution
with sparse prior. In ICCV, pages 370–378, 2015. 5

[71] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
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B. Demo Cases from i-CLEVR
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