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Abstract

The quality of recorded videos and images is signif-
icantly influenced by the camera’s field of view (FOV).
In critical applications like surveillance systems and self-
driving cars, an inadequate FOV can give rise to severe
safety and security concerns, including car accidents and
thefts due to the failure to detect individuals and objects.
The conventional methods for establishing the correct FOV
heavily rely on human judgment and lack automated mech-
anisms to assess video and image quality based on FOV. In
this paper, we introduce an innovative approach that har-
nesses semantic line detection and classification alongside
deep Hough transform to identify semantic lines, thus en-
suring a suitable FOV by understanding 3D view through
parallel lines. Our approach yields an effective F1 score
of 0.729 on the public EgoCart dataset, coupled with a no-
tably high median score in the line placement metric. We
illustrate that our method offers a straightforward means of
assessing the quality of the camera’s field of view, achieving
a classification accuracy of 83.8%. This metric can serve as
a proxy for evaluating the potential performance of video
and image quality applications.

1. Introduction

In today’s retail stores, data centers, and self-driving
cars, there exists a proliferation of cameras, ranging from
just a few to thousands per vehicle or establishment. Promi-
nent examples include AWS data centers, Amazon Go, and
self-driving fleets like Waymo and Cruise. The field of view
(FOV) of these cameras assumes a pivotal role in enhancing
the capabilities of downstream object detection and track-
ing systems, empowering them to interpret the environment,
objects, and human behaviors through computer vision.

In many instances, particularly in surveillance camera
deployments, a team of contractors is often tasked with
installing a multitude of ceiling-mounted cameras, trans-
mitting continuous video streams to the company’s server.

Consequently, these cameras can end up misaligned, point-
ing too high, too low, or even upside-down. Such miscon-
figurations severely impede the performance of computer
vision models, leading to suboptimal results and, at times,
outright failures in comprehending the store environment.

In the aforementioned context, one can envision the po-
tential advantages that automated systems would bring to
data centers and retail stores, offering the ability to assess
whether a camera’s field of view meets the quality require-
ments for accurate downstream applications. This paper ad-
dresses this challenge by presenting a method for detecting
and classifying prominent straight lines in image collections
that exhibit high uniformity, such as store aisles, thereby en-
abling field of view classification.

Our approach builds upon a modification of a previously
established model designed for detecting artistic composi-
tional lines in images [19]. To gauge the precision of our
approach, specifically in retail store scenarios, we conduct
evaluations using the publicly available EgoCart dataset
[15] [16], for which we introduce new labels tailored to our
novel line segmentation and classification model, where we
use parallel lines of aisles and racks to decide good FOV.
Our approach achieves a commendable F1 score of 0.729
for line detection and a great FOV classification accuracy
of 83.8%.

2. Related Work

Here, we describe the various methods and goals of ex-
isting line detection schemes.

2.1. Traditional Line Detection

Early work for detecting lines in images relied on clas-
sical computer vision techniques, such as Canny edge de-
tection. Some work using these methods focused on con-
structing wireframes, detecting line segments along planar
surfaces, and connecting them to form a schematic view
of the 3D space [13]. More recent methods leveraged
machine learning to improve the quality of wireframes in
challenging scenarios, such as occlusion, curves, and holes
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[3, 10, 18, 20]. Asynchronous event cameras have also re-
cently shown promise for further improving wireframe ac-
curacy from high-speed camera motion (e.g., upon a robot)
[1].

We distinguish wireframe parsing for scene analysis
from line detection aimed at addressing camera shortcom-
ings. We can divide the latter case into the categories
of camera calibration (e.g., correcting lens distortion) and
camera positioning (e.g., the camera is not aimed at the
scene optimally for some applications).

Gong et al. proposed a method for detecting, classi-
fying, and filtering line segments in roadside surveillance
cameras [4]. They then extracted the dominant angles and
determined the vanishing points of an image. The goal of
their work was to automate the detection of poor camera po-
sitioning and improve calibration. This work is most similar
to the problem we explore in this paper. Gong et al. clas-
sified only the directionality of the lines in their images,
however, whereas we are interested in the presence and se-
mantic meaning of particular lines, such as the top boundary
of a store shelf.

2.2. Semantic Line Detection

Lee and Kim et al. introduced the notion of semantic line
detection for images [12]. Their work focuses on finding
photographic compositional lines, such as horizon lines and
leading lines, by using a CNN-based architecture to predict
the four coordinates of these lines in Cartesian space. A
primary application the authors explored is composition en-
hancement, where the location and angle of a detected hori-
zon line may drive the automated correction of an image’s
rotation and crop region. Unlike the traditional line detec-
tion methods detailed above, this approach detects lines that
span between two image boundaries.

Jin et al. used a similar CNN approach but proposed an
attention-based mechanism to filter the most semantically
significant lines from a set of several predictions [7]. They
then refined this approach with a comparison mechanism
that seeks to maximize the compositional “harmony” of the
lines [8]. The latter work also offers a great speed improve-
ment over the original.

2.3. Deep Hough Transform

The Hough transform is a method for casting image fea-
tures from Cartesian space into parametric space [2]. Any
straight line can be represented in parametric space as the
tuple ⟨θ, r⟩. θ represents the angle of the line in radians,
and r represents the distance from the origin to an orthog-
onal point on the line (where the angle between the line
and the origin is 90 degrees). The Hough transform itself
works with a voting procedure. If we have an image with
reasonably straight lines, we can examine each combina-
tion of choices for θ, r, and “vote” with the intensity values

spanned by that line proposal. For standard image process-
ing, this step is best performed after running an edge de-
tector kernel. Then, the parametric representations of the
dominant n lines are those n combinations of θ, r, with the
highest accumulated response value. Zhao et al. proposed a
semantic line detection method that applies a Hough trans-
form to convolutional image features. Their Deep Hough
Transform (DHT) model calculates the training loss in para-
metric space using a θ, r line representation.

3. Proposed Method

After a preliminary investigation into the performance
and adaptability of the available methods, we chose to mod-
ify the original Deep Hough Transform [5, 19] to perform
semantic line classification.

3.1. Standard DHT Architecture

We here detail our PyTorch [14] implementation of the
Deep Hough Transform architecture introduced by Zhao et
al. [5, 19]. The standard DHT model follows an encoder-
decoder arrangement. The encoder uses a feature pyramid
network (FPN) to extract features from the original image
at four resolution levels. At each scale of the FPN output,
we run the feature maps through a Hough transform. Corre-
sponding to the four resolution levels, we have four levels of
granularity for the number of possible angles (#θ) and dis-
tances (#r) that we examine for these transforms, running a
voting procedure for each pixel and θ, r combination. Batch
normalization and rectified linear unit ReLU activations are
then applied to the accumulated matrices.

We interpolate these four scales of Hough-space activa-
tions to the same resolution and concatenate these matrices
together. Finally, we apply one last 2D convolution to get
our output. In the standard model, the output is a matrix of
dimension θ×r, and each pixel has a value in the range [0.0,
1.0]. To obtain the n dominant lines, we first isolate the con-
tiguous regions of activated pixels with scikit-image [17].
Then, the center coordinate of each region determines its θ
and r values. We simply order these center pixels accord-
ing to their activation level and take the top n activations
that exceed a given threshold (say, 0.1).

3.2. Model Modifications

The standard DHT architecture only performs line detec-
tion, not classification. That is, the model may predict any
number of lines for a given input image, and there is no in-
built scheme for determining each line’s semantic meaning.
The only method provided for distinguishing a given line
from any other is the strength of its activation, which only
carries semantic meaning if we limit the training dataset to
contain a single type of line (e.g., the horizon line) in each
image. For our purposes, we want to predict and classify



Figure 1. Our modified Deep Hough Transform architecture. We predict lines for multiple semantic classes and take only the single
strongest prediction for each class.

multiple specific lines, such as aisles and the tops of store
racks.

To accomplish classification, we modified the last con-
volutional layer of the DHT architecture to have a variable
number of output channels, N . Each output channel then
represents a single class in our training dataset, and we as-
sume that there can be no more than one instance of each
class. Then, instead of taking the n line predictions with
the strongest activation as described above, we simply take
the strongest single prediction for each class separately (if
it exceeds our confidence threshold). Thus, we can perform
semantic line classification with few changes to the archi-
tecture or inference code. We illustrate our modified archi-
tecture in Fig. 1.

The original DHT implementation also used a custom
CUDA kernel to perform the Hough transform. This kernel
was written in C++, requiring prior compilation to be called
within the core Python implementation. We reimplemented
this kernel in Python with CUDA acceleration through the
use of the Numba library, allowing for just-in-time compi-
lation [11]. With the low overhead afforded by this library
and a more optimized tensor addressing scheme, our im-
plementation decreases the model inference time by up to
12%.

4. Model Evaluation

4.1. Dataset

As there was no existing dataset for semantic line classi-
fication, we created our own labels for the EgoCart [15] [16]
image dataset. The dataset contains 19,531 RGB images

captured in a real-world grocery store, including varying
customer viewing angles from 9 videos. We selected im-
ages by uniformly sampling every 20 frames, resulting in a
total of 977 images. Using these sampled frames, we anno-
tated the following classes:

• AisleLeft: the intersection of the left store shelves
with the floor

• AisleRight: the intersection of the right store
shelves with the floor

• RackTopLeft: the upper boundary of the left store
shelves

• RackTopRight: the upper boundary of the left store
shelves

• WallEndCap: the intersection of the far wall with the
floor

We show examples of these ground truth labels in Fig. 2.

4.2. Backbone and Pre-Training

We used ResNet50 [6] as our encoder backbone, with the
default pre-trained weights from PyTorch on AWS Sage-
Maker. We did not employ transfer learning from the DHT
model weights, as it increased the time to model conver-
gence and offered no benefit to our model’s performance.

4.3. Evaluation Metric

The DHT paper introduces the robust Euclidean and An-
gular (EA) score to quantify the similarity of a predicted



Figure 2. Results on our test dataset. For visual clarity, we illustrate the original coordinates of the WallEndCap class in the ground truth
and trim it by its intersection with the Aisle lines in the prediction images. Images (a) through (c) show good predictions with all lines.
On images (d) through (f), we fail to predict the small WallEndCap line. Images (g) through (i) represent major failure cases where we
fail to predict several lines entirely. Image (j) shows a heavily skewed camera angle, with no classes predicted.

line, lp, and a ground truth line, lg . The EA score formula
given is

S =

((
1− θ(lp, lg)

π/2

)
·
(
1−D(lp, lg)

))2

, (1)

where θ(lp, lg) is the angle between the two lines (in ra-
dians) and D(lp, lg) is the Euclidean distance between the
midpoints of the lines [19]. The authors use a bipartite
graph to match the candidate line predictions to the corre-
sponding ground-truth lines.

Since we perform line classification and since our
ground truth contains no more than one line per class, we
obviate the need for line matching. Rather, if a class has any
activation exceeding a given threshold, the strongest activa-
tion for that class constitutes our prediction. We clarify the
following special cases to our calculation of the EA score:

S =


0 ∃lp,∃!lg
0 ∃!lp,∃lg
1 ∃!lp,∃!lg

(2)

By this, we heavily penalize false positives and false neg-
atives in the calculation of our loss function, so that we can
more accurately determine the binary presence of a line for
a given class.

4.4. Training

We randomly sampled 668 images (68%) from our
dataset. Of these images, we used 80% for training and
20% for validation. The remaining 309 images constituted
our test dataset. Images were rescaled to a 1200×1200 res-
olution and input in batches of 12. We used the Adam opti-
mizer [9] with a learning rate of 0.0002, momentum of 0.9,



Precision Recall Accuracy F1
AisleLeft 0.96 0.80 0.84 0.88
AisleRight 0.93 0.80 0.83 0.86
RackTopLeft 0.92 0.56 0.65 0.69
RackTopRight 0.96 0.63 0.72 0.76
WallEndCap 0.94 0.54 0.62 0.69

Table 1. Test results for each class in our dataset. We achieve
high precision for all classes but low recall for RackTopLeft,
RackTopRight, and WallEndCap.

and gamma of 0.1. We stopped training after 100 epochs.
For our modified Deep Hough model, we set #r = 150

and #θ = 150. We set our classification threshold at 0.01,
meaning that some pixel in a given class’ prediction matrix
must have an activation greater than 0.01 for that class to be
deemed present in the image.

4.5. Results

On our validation dataset during training, we achieved
0.729 on the F1 metric and 0.287 on the F1 metric with
95% confidence. For comparison, the original DHT model
achieved F1 scores of 0.786 and 0.719 on the SEL [12] and
NKL [19] datasets, respectively, which only involve line de-
tection (not classification).

We break down the per-class results of our evaluation
on the test dataset in Tab. 1, showing high precision in all
classes but low recall in the RackTop and WallEndCap
classes. Although some classes may not always have a line
prediction reaching our confidence threshold, these results
show that the presence of a line prediction means that we
can be highly confident about the spatial placement of that
line (based on the precision results). As further evidence
for this claim, we measured a mean EA score of 0.650 and
a median EA score of 0.910 across all line predictions on
our test dataset. Our mean EA score is much lower due to
the presence of incorrect line detections (see Eq. (2)).

We offer examples from our test dataset in Fig. 2. We
achieve strong results on images with two clearly-defined
sets of store shelves, where the camera has a clear view
of the end of the aisle. For example, Fig. 2 (a) through
(c) show such images where all five lines are predicted and
placed with high precision. However, we often do not pre-
dict the WallEndCap class, as in Fig. 2 (d) through (f).
This is not surprising, since the length of that line tends to
be very short compared to the other classes, so its features
are less prominent. More ambiguous images, as in Fig. 2
(g) through (i), lead to multiple classes missing predictions
altogether. These failures tend to occur when the primary
object on one or more sides of the image is not a standard
shelving unit. For example, refrigeration units are common
in the cross sections between aisles, as in Fig. 2 (g) and (h),
and these lines are often not predicted. Missing line detec-

tions can also occur when the camera is at a heavily skewed
angle and not pointing directly down an aisle, as in Fig. 2
(i) and (j).

5. FOV classification
We do not view these line detection failures as an out-

right negative result, however. As noted above, such failures
predominately occur when the camera is positioned such
that its view is atypical. Our work chiefly aims to detect
cameras with a poor field of view (FOV) for surveillance
applications, to optimize the positioning of many cameras,
and to ensure the availability of high-quality quality images
for downstream vision tasks. Therefore, if line detection
failure carries a semantic meaning in our model, we can
make informed decisions about the quality of a camera’s
FOV. Here, we describe an experiment for FOV classifica-
tion and discuss the implications.

5.1. Evaluation

We devise a scheme for a binary classification of store
camera FOV. An image can either have a good or bad
FOV. An image is said to have a good FOV when the fol-
lowing criteria are met:

• There is one clear aisle visible (the camera is not
pointed between two aisles)

• There are full-height shelving racks on both the left
and right sides

• The tops of both sets of shelving racks are visible

• The length of the aisle is roughly centered in line with
the camera (the right shelves proceed about as long as
the left shelves)

While the cameras in the EgoCart dataset are positioned at a
human eye level rather than ceiling-mounted, the definitions
of good and bad FOV are transferable to the surveillance-
style camera setups. For our ground truth, we hand-labeled
the test dataset with these criteria. 62.5% of the ground truth
test images were considered good FOV, while 37.5%
were bad. We provide examples of these FOV classes in
Fig. 3.

After understanding the typical failure cases of our line
classification model (Sec. 4.5), we devised a remarkably
simple criterion to predict FOV: If our modified DHT model
detects two Aisle lines and two RackTop lines, regard-
less of their exact placement, we classify the image as hav-
ing good FOV.

5.2. Results

With the above criteria, we classified the FOV of im-
ages in our test dataset with 83.8% accuracy. Since our



Figure 3. Example camera positions illustrated on the store layout from [16]. Red camera icons denote a bad FOV ground truth classifi-
cation according to the criteria in Sec. 5.1, while green icons denote a good FOV.

semantic line classification model fails predictably in cer-
tain cases, we see that such failures carry semantic mean-
ing. That is, if Aisle lines are not predicted, the camera
angle is likely to be skewed; if RackTop lines are not pre-
dicted, the camera may be too close to the end of an aisle or
not be positioned between two sets of shelves.

Our method reveals a direct metric for camera pose qual-
ity. We do not require multi-view analysis or depth data to
make this assessment, as we do not directly calculate the
camera pose. Rather, we use the quality of our semantic
line classification prediction as a proxy for the performance
of higher-level applications. In the scenario we proposed in
Sec. 1, for example, one can see that a shelf inventory track-
ing model will perform better if we can ensure its input is
high quality and consistent between various cameras.

6. Future Work

To continue this work, we will evaluate the efficacy of
our model and classification scheme on ceiling-mounted
surveillance camera data. While such a dataset of grocery
store images would be the most direct extension, we expect
the line classification model to perform well in any consis-
tent interior setting, such as data centers, warehouses, and
libraries.

Additionally, we will investigate the impact of FOV clas-

sification on higher-level vision applications, such as object
tracking and semantic segmentation. To simulate techni-
cians correcting bad FOV camera poses, we will require a
dataset with images from multiple camera views at the same
physical locations. Then, we may fully evaluate the effect
of FOV correction on the performance of these applications.

7. Conclusion

In summary, this paper introduces novel enhancements
to the Deep Hough Transform model, enabling it to not
only detect but also classify semantic lines. Through rigor-
ous testing on real-world images sourced from the EgoCart
dataset, we have achieved great accuracy in semantic line
classification with an F1 score of 0.729. Furthermore, our
study illustrates the practical application of semantic line
classifications in the context of the camera Field of View
(FOV) classification, attaining an impressive 83.8% accu-
racy rate. This novel approach enables the estimation of
image quality in relation to high-level vision applications,
offering an automated means to identify cameras in need of
manual pose adjustment or recalibration. In doing so, we
extend the utility of semantic line detection models beyond
their traditional role as aids for photographic composition,
showcasing their relevance and effectiveness in broader do-
mains.
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