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Abstract

Video quality can suffer from limited internet speed while
being streamed by users. Compression artifacts start to
appear when the bitrate decreases to match the available
bandwidth. Existing algorithms either focus on remov-
ing the compression artifacts at the same video resolution,
or on upscaling the video resolution but not removing the
artifacts. Super resolution-only approaches will amplify
the artifacts along with the details by default. We pro-
pose a lightweight convolutional neural network (CNN)-
based algorithm which simultaneously performs artifacts
reduction and super resolution (ARSR) by enhancing the
feature extraction layers and designing a custom training
dataset. The output of this neural network is evaluated for
test streams compressed at low bitrates using variable bi-
trate (VBR) encoding. The output video quality shows a 4-6
increase in video multi-method assessment fusion (VMAF)
score compared to traditional interpolation upscaling ap-
proaches such as Lanczos or Bicubic.

1. Introduction

Video streaming has become a major entertainment ac-
tivity in many households around the world. With the
recent popularity of AI/ML hardware accelerators, neu-
ral network-based upscaler has been of interests to be in-
tegrated on edge devices like 4K displays, laptops, mo-
bile phones, TVs, to achieve real time upscaling of video
contents. One of the challenges is that when the inter-
net bandwidth/bitrate is low, the input videos suffer from
compression artifacts such as blocking, ringing, flicker-
ing artifacts, color changes, etc. Machine learning and
neural network-based algorithms have been widely studied
to address the problem of removing compression artifacts
in videos, mainly based on convolutional neural networks
(CNNs) [18] [5]. Usually these models are heavy weight
and not feasible to run on resource constrained edge and

mobile devices, as they use multiple frames as the input to
produce one output frame, and often involves complicated
algorithms such as optic flow and motion compensation. In
this paper, we introduce a hardware friendly network that
simultaneously performs artifacts reduction and super reso-
lution (ARSR), by combining super efficient neural network
(SESR) [3], a lightweight CNN-based solution to super res-
olution, with an artifacts reduction approach used in AR-
CNN [6]. The network can produce output video quality
close to a state-of-the-art model, BasicVSR++, for video
super resolution (VSR) and video enhancement (VE) at a
significantly reduced model size.

The major contributions of this paper are: 1) propos-
ing a lightweight CNN-based model with 22K parame-
ters for ARSR. 2) using only one frame at a time to pro-
duce one output upscaled/enhanced frame, 3) using over-
parameterization on both feature extraction and non-linear
mapping layers to improve the inference efficiency and pic-
ture quality, and 4) using video multi-method assessment
fusion (VMAF) to evaluate video quality in test datasets.

2. Background

During the past few years, the trend for image restoration
and enhancement has been pivoted from single image su-
per resolution [20] to video super resolution and real world
video problems, especially on video enhancement and qual-
ity improvement on compressed videos. BasicVSR++ [4],
a winner of the NTIRE challenge held in 2021, has been
treated as a state-of-the-art model for video super resolu-
tion and compressed video enhancement. The subsequent
winners of this challenge [22] are heavily adapted from this
model. BasicVSR++ is based on recurrent network and uses
optical flow that uses second order grid propagation and
flow guided deformable alignment, both of which involve
complicated algorithms. In addition, the model has 7.3M
parameters and cannot be easily implemented in edge de-
vices.

Another popular architecture to address the video super



resolution and video enhancement problems is the gener-
ative adversarial networks (GAN) [10]. The advantage of
using GAN is the ability to use little input data to generate
realistic outputs. A GAN architecture is made of two net-
works, a discriminator network that distinguishes ground
truth high resolution images from upscaled ones, and a gen-
erator network that produces images that gradually look like
ground truth images. There is a notable work called SU-
PERVEGAN [2] that uses GAN network for video super
resolution. SUPERVEGAN combines dynamic upsampling
filters (DUF) and GAN to perform artifacts removal and su-
per resolution at the same time. However, it is using 5 low
resolution input frames to generate a single high resolution
frame. In addition, the model is developed initially as a soft-
ware approach to address the VSR and VE problems and is
not suitable for hardware implementations.

Super Resolution algorithms based on simple stacking of
convolution layers is favored due to the potential simplicity
of the algorithms and models. Several lightweight models
have been proposed, such as FSRCNN [8], ABRL [9], Lap-
SRN [14], CARN-M [1], etc. The number of weight pa-
rameters can be reduced to less than 30K in some of these
models and the amount of MACs can be reduced to less 100
billion when upscaling images from 360p to 720p resolu-
tion. A notable solution in this category is the super effi-
cient super solution (SESR) network [3], which uses over-
parameterization and collapsible linear blocks to reduce the
inference complexity, making it suitable for hardware in-
ference operations. However, SESR only performs super
resolution but not artifacts reduction. Recently, SRCNN [7]
model architecture has been modified to ARCNN [6] to deal
with compression artifacts removal. The number of convo-
lutional layers in ARCNN was expanded for feature extrac-
tion and feature enhancement. The non-linear mapping and
reconstruction layers remained the same. Inspired by [6],
we came up with the idea of extending SESR for artifacts
reduction by adopting similar techniques used for ARCNN.
Details will be elaborated in section 3.

Video multi-method assessment fusion, or VMAF [15]
was developed for perceptual video quality assessment. The
other video quality metrics such as PSNR or SSIM that use
pixel-based calculations may fail to capture human percep-
tion accurately [16]. VMAF, on the other hand, combines
human vision modeling with support vector machines to
produce a score that represents human perception. The final
metric score is calculated using the weighted scores from
several elementary metrics. The elementary metrics scores
were obtained using opinion scores through subjective ex-
periments. We adopted this method as it is open sourced and
can be directly used along with FFmpeg commands. For
measuring video quality shown on 4K TVs, we used the
VMAF model for 4K resolution while disabling enhance-
ment gain mode (NEG).
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Figure 1. Model architecture of the ARSR network. The low res-
olution (LR) frame goes through N Conv2d layers for feature ex-
traction, M Conv2d layers for non-linear mapping, a Conv2d layer
to match the upscaling factor, and a final depth-to-space layer to
upscale the frame to super resolution (SR). For later experiments,
unless specified, N = 3 and M = 11 are used.

3. Super Efficient Neural Network for Artifacts
Reduction and Super Resolution

Our neural network architecture was adapted from
SESR [3] which does not perform artifacts reduction and
focuses on single image super resolution. Various modifica-
tions of the neural network have been tested to optimize the
performance, such as architecture change, training dataset
modifications, loss function variations, different chroma
channel upscaling techniques. Also the network was stud-
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Figure 2. During training, the Conv2d operation is expanded into
two sequential Conv2d operations. This is an example where the
number of input and output channels are both 16 while the number
of internal expanded channel is 256.

ied to support different upscaling factors such as x2, x3
and x4. To make the network hardware friendly, techniques
such as grouped convolutions, quantization aware training,
power-of-two scaling were tested on video enhancement
tasks.

3.1. Overall ARSR Neural Network Architecture

The architecture of the CNN-based ARSR Network is
shown in Fig. 1. The network only processes the Y chan-
nel component of single images. There is a global resid-
ual layer feeding the input image (Y channel only) to the
depth-to-space layer at the end. On the other side, the input
image goes through N layers of feature extraction. A sec-
ond residual layer starts from the beginning of non-linear
mapping layers and ends at the end of the non-linear map-
ping layers. The number of non-linear mapping layers (M
in Fig. 1) can range from 5 to 11 depending on the image
quality or hardware cost requirements. The depth-to-space
layer at the end performs the actual upscaling of images,
therefore relaxing the memory requirements because the in-
termediate outputs of previous layers are at the low resolu-
tion (LR) image sizes.

The Conv2d layers all use over-parameterization tech-
niques where a normal convolution operation with n input
channels, m output channels, and f X f kernel sizes will be
expanded to two convolution operations where the first one
has n input channels, p output channels, with kernel size of
f x f, while the second one has p input channels, m output
channels, with kernel size of 1 x 1. Usually the value of p is
much larger than m and n. During training, the weight up-
dates are done on the expanded network, with npf f + pm
weights. During the inference, only the nmf f collapsed

weights are used, leading to more much efficient inference
operations. The over-parameterization scheme is shown in
Fig. 2.

3.2. Training Dataset Generation

In stead of using the traditional bicubic downscaled im-
ages as the low resolution samples in the training dataset,
we compressed and downscaled the original videos from
the Vimeo dataset [21] using H.265 codec at a low bitrate
- 50 kbps. We used extracted frames of the 4K resolu-
tion videos from the Vimeo dataset as the high resolution
samples, and the extracted frames of the compressed and
downscaled videos as the low resolution samples. Exam-
ples of the low resolution and high resolution video frames
are shown in Fig. 3. We also tried another method of inject-
ing JPEG compression artifacts into the traditional bicubic
downscaled low resolution samples but this method tends
to smooth out everything in the output image. Our adopted
method can smooth out area where there are artifacts and
still keep the high frequency details.

The dataset generated is based on single frame, meaning
that one input image frame is used to generate one output
frame. It is not uncommon that multiple input frames are
used in CNN to generate one output frame [12] for video
super resolution tasks. We explored the multi-frame ap-
proach by using three input frames as the input and the high
resolution version of the middle frame as the output. The
result looks almost the same as the single frame approach.

3.3. Loss Function Exploration

Different kinds of loss functions during training have
been explored, including the mean average error (MAE),
mean squared error (MSE), and Huber loss. We found that
MAE performs the best at artifacts reduction while Huber
loss and MSE preserves slightly more details at the cost
of not removing enough artifacts. A comparison between
using different loss functions during training is shown in
Fig. 4.

3.4. Expanding Feature Extraction Layers for Ar-
tifacts Reduction

Inspired by [0], we increased the number of feature ex-
traction layers (/N in Fig. 1) in the beginning of the network
from one layer to multiple layers to perform better artifacts
reduction. More feature extraction layers can extract more
features from the input or training images to construct better
output images and produce better training results. For three
layers of feature extraction, we adopted the 7 x 7 kernel size
in the first layer, followed by 5 x 5 and 3 x 3 kernel size
in the second and third layers. For two layers of feature ex-
traction, we adopted the 7 x 7 kernel size in the first layer,
followed by 5 x 5 kernel size in the second layer. The num-
ber of input and output channels are both 16. We found that



Input Resolution Output Resolution ~ Upscale Factor Number of Out- Use of Lanczos
put Channels in upscaler or not
the Last Conv2d
Layer

960 x 540 3840 x 2160 4 16 No

1280 x 720 3840 x 2160 3 9 No

1920 x 1080 3840 x 2160 2 4 No

960 x 540 2560 x 1440 8/3 4 Yes

1280 x 720 2560 x 1440 2 4 No

2560 x 1440 3840 x 2160 372 N/A Yes

Table 1. ARSR network can support different upscaling factors combining lanczos upscaler when needed.

(a) Low resolution (LR) image for training, compressed at 50 kbps
using H.265 codec.

(b) High resolution (HR) image for training.

Figure 3. Examples from the Vimeo dataset for training.

using two or three layers of feature extraction is sufficient
to remove the artifacts, as shown in Fig. 5.

3.5. Chorma Channels Upscaling Methods

While the ARSR neural network is used to upscale Luma
channel (Y channel) only, traditional upscaling method is
used to upscale the chroma channels (Cb, Cr channels).
From [7], we know that using neural network-based up-
scaler on luma channel only is sufficient to generate com-
petitive super resolution results. We explored using bicu-
bic, bilinear and nearest neighbor methods for chroma up-
scaling, and found that the bilinear method produces the
smoothest edges, while nearest neighbor method tend to add
some artifacts near the edges (Fig. 6). The nearest neigh-
bor method is the easiest to implement in hardware as it
has the lowest computation complexity, whereas the bicu-
bic method is the most difficult. We have decided to use
bilinear upscaling for chroma channels because it can re-
move the jaggedness on edges and produce smooth-looking
outputs.

We have also tried to modify the neural network to be 3-
channel models, either based on YCbCr or RGB. We found
that 3-channel models can produce slightly better output
image quality but there is color difference between the ex-
pected output and generated output. Therefore we didn’t
pursue this method further.

3.6. Supporting Different Upscaling Scenarios

The ARSR neural network can support x2, x3, and x4
upscaling factors by changing the number of output chan-
nels in the last Conv2d layer shown in Fig. 1, before the
depth-to-space layer. If the upscaling factor is n, the num-
ber of output channels would be n2. So a larger integer up-
scaling factor would require slightly more parameters in the
neural network. Tab. 1 shows different upscaling scenarios
for different input video resolutions and output video reso-
lutions. For upscaling scenarios where the upscaling factor
is not an integer, we upscale using the biggest integer that
will result in an output resolution lower than the desired out-
put resolution and then use the lanczos interpolation method
to upscale to the desired output resolution.
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Figure 4. Comparison between different loss functions during training.

(a) Input 540p frame with compres- (b) Upscaled 4K frame with 1 layer

sion artifacts. of feature extraction.

(c) Upscaled 4K frame with 2 layers (d) Upscaled 4K frame with 3 layers
of feature extraction.

of feature extraction.

Figure 5. Using different number of layers of feature extraction to reduce artifacts.

3.7. Techniques to Improve the Efficiency of ARSR
Neural Network

To reduce the number of parameters and computations
in the network, we propose to use the grouped convolu-
tions [13] to divide the 16 input and 16 output channels of
the non-linear mapping layers into n groups. The value of n
can be 8, 4 or 2. Normal Conv2d operations are performed

within each group of input channels and output channels.
The outputs from each group are finally concatenated into
the final output. The number of model parameters and com-
putations of the non-linear mapping layers is reduced by n.

Other techniques we adopted to make the network suit-
able for hardware implementation include quantization-
aware training [ 1] and power-of-two scaling factor during
quantization [17]. Power-of-two scaling during quantiza-



(a) Using Bilinear interpolation for chroma (b) Using Bicubic interpolation for chroma (c) Using Nearest Neighbor interpolation for

channels. channels. chroma channels.
Figure 6. Using different chroma channels upscaling methods.
Upscaling Method Average VMAF of 8 test videos Number of Parameters
ARSR FP32 52.89 41.2K
ARSR quantized 51.64 22.2K
Lanczos 47.55 N/A
Bicubic 45.37 N/A
BasicVSR++ 55.68 7.3M

Table 2. VMAF score comparison when upscaling 540p compressed videos to 4K videos. ARSR network is producing higher VMAF

scores than Lanzcos and Bicubic upscalers.

tion can convert the multiplication operation during quan-
tization/dequantization into bit-shift operations to simplify
the computation. However, using power-of-two scale fac-
tors can lead to lower accuracy due to the rounding errors so
we didn’t integrate this technique into our quantized model.

4. Experiment Results of the ARSR Neural
Network

Instead of using the popular PSNR or SSIM metrics to
evaluate picture quality, we use the VMAF score to mea-
sure quality as it can better evaluate the degree of artifacts
reduction in addition to detail enhancement. The model
of VMAF_4K_NEG is used because it measures the audi-
ence’s response when they are viewing the video on a 4K
TV. We selected 8 videos from the inter4K dataset [19] and
generated a testing dataset for ARSR evaluation. We com-
pressed the video using variable bitrate (VBR) encoding at
500 kbps and then upscale by ARSR network or other com-
parable methods. The baseline we chose are lanczos, which
is the most complicated traditional interpolation method,
and bicubic upscaling approaches.

We demonstrated the results of ARSR network by show-
ing the output of a quantized x4 network that uses group of
4 convolutions and 12 bit on weights and activations. The
test inputs are 540p compressed videos. The test outputs are
upscaled and enhanced 4K videos. In comparison, the out-
puts of the ARSR FP32 (Floating Point 32-bit) network, the
state-of-the-art BasicVSR++ network, and baseline Lanc-

zos upscaler are shown as well (Fig. 7). We see that the
Lanczos upscaler does not remove compression artifacts or
mosquito noise, while the BasicVSR++ performs the best at
removing artifacts. However, BasicVSR++ can sometimes
remove too much artifacts that it smooths out the details, as
shown in Fig. 8. The outputs of the quantized ARSR net-
work is slightly worse than the FP32 network, but still better
than the Lanczos upscaled outputs (Fig. 7).

To evaluate the video quality quantitatively, we mea-
sured the VMAF scores of the 8 upscaled output videos
and calculated the average. The result is shown in Tab. 2.
BasicVSR++ has the highest VMAF score, which indicates
the best video quality, followed by ARSR FP32 network
and ARSR quantized network. On the other hand, Ba-
sicVSR++ also uses the most complex model with 7.3M
parameters, whereas ARSR FP32 has 41.2K parameters and
ARSR quantized only has 22.2K parameters. The Lanczos
and Bicubic methods have the lowest VMAF scores. We be-
lieve this table has shown that our ARSR network and train-
ing method is effective in producing noticeable improve-
ment in video quality.

5. Conclusion

We have developed a CNN-based neural network for si-
multaneous artifacts removal and super resolution (ARSR).
It is lightweight, based on single frame, and easy to im-
plement in hardware. Based on a selected test dataset, the
performance of ARSR is about 4-6 higher in the VMAF



(a) Upscaled 4K frame by Lanczos (b) Upscaled 4K frame by ARSR (c) Upscaled 4K frame by ARSR (d) Upscaled 4K frame by Ba-
interpolation. quantized network. FP32 network. sicVSR++.

Figure 7. Comparison between different upscaling methods.

score than lanczos or bicubic methods. The state-of-the-art sible to run on resource constrained edge device hardware.
model, BasicVSR++ which has 7.3M parameters, is not fea- This is the first known hardware friendly network that per-



(a) Upscaled 4K frame by Lanczos (b) Upscaled 4K frame by ARSR (c) Upscaled 4K frame by ARSR (d) Upscaled 4K frame by Ba-

interpolation.

quantized network.

FP32 network.

sicVSR++.

Figure 8. One example showing too much artifacts reduction can lead to loss of details.

forms artifacts reduction and super resolution at the same

time.

Some of the future work can include recovering the pic-
ture quality loss from the quantized model, making different
training dataset for different input video bitrate/resolution
scenarios, and further reducing the network size by decreas-
ing the number of non-linear mapping layers, e.g. M = 5.
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