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Abstract

We introduce HIDRO-VQA, a no-reference (NR) video
quality assessment model designed to provide precise qual-
ity evaluations of High Dynamic Range (HDR) videos.
HDR videos exhibit a broader spectrum of luminance, de-
tail, and color than Standard Dynamic Range (SDR) videos.
As HDR content becomes increasingly popular, there is
a growing demand for video quality assessment (VQA)
algorithms that effectively address distortions unique to
HDR content. To address this challenge, we propose a
self-supervised contrastive fine-tuning approach to trans-
fer quality-aware features from the SDR to the HDR do-
main, utilizing unlabeled HDR videos. Our findings demon-
strate that self-supervised pre-trained neural networks on
SDR content can be further fine-tuned in a self-supervised
setting using limited unlabeled HDR videos to achieve
state-of-the-art performance on the only publicly avail-
able VQA database for HDR content, the LIVE-HDR VQA
database. Moreover, our algorithm can be extended to
the Full Reference VQA setting, also achieving state-of-
the-art performance. Our code is available publicly at
https://github.com/avinabsaha/HIDRO-VQA.

1. Introduction
Modern displays are able to present High Dynamic

Range (HDR) videos, representing wider ranges of bright-
ness and colors than Standard Dynamic Range (SDR). In
this way, HDR videos can deliver more realistic viewing
experiences.

Display luminance measures the amount of light pass-
ing through a specific area, also known as candela per unit
area or nits [59]. The ITU BT.709 [8] video standards were
designed for Cathode Ray Tube (CRT) displays, suggesting
the use of BT.709 transfer function (commonly known as
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Figure 1. HIDRO-VQA score prediction using the contrastive Fine
Tuned encoder. The encoder is frozen while the regressor learns
to map video representations to quality predictions.

gamma curve), Rec. 709 color space, and a luminance range
of 0.1 cd/m2 to 100 cd/m2. It is worth noting that the hu-
man eye can perceive a much wider range of luminances,
from 10−6 cd/m2 to 108 cd/m2 [27]. ITU BT.2100 [7]
introduced HDR-TV by recommending the use of the per-
ceptual quantizer (PQ) or hybrid log–gamma (HLG) trans-
fer functions [6, 58], along with Rec. 2020 color space
(wide color gamut), and a nominal peak luminance of 1,000
cd/m2 or more and the black level of 0.005 cd/m2 or less.
PQ and HLG systems aim to transform the original scene
light into a display-ready representation, better preserving
the vision of the artist creators.

The surge in HDR’s adoption and the influx of high-
caliber HDR content have significantly elevated viewers’
satisfaction ratio [44]. The demand for HDR content brings
a unique challenge, necessitating amplified compression
and innovative processing techniques for HDR. The piv-
otal role of Video Quality Assessment (VQA) models in
ensuring optimal HDR video quality during transmission
cannot be overstated. Contemporary VQA models play a
decisive role in automatically enhancing bitrate determina-
tions on diverse scales in commercial settings. However,
existing algorithms work best for SDR content and often
fail while delivering HDR content. NR-VQA has become
a core part of the video infrastructure for streaming and
media platforms such as Netflix, YouTube, Instagram, Tik-
Tok, X-platform, etc., which enables the streaming of both
professionally created content and User Generated Content
(UGC). VQA models are essential to objectively predict and
control the quality of video content and to help in control
the users’ Quality of Experience (QoE) [68]. Though effec-
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tive NR-VQA models for SDR content are available [51],
their direct application to HDR content consistently fails,
as shown in [13].

Very little work has been done in the field of HDR-VQA
as compared to SDR-VQA, and one major factor contribut-
ing to this is the lack of a large-scale dataset. Over the years,
a lot of effort has been put into gathering generic SDR-VQA
databases, such as CVD2014 [45], LIVE-Qualcomm [17],
LIVQ-VQC [56], KoNViD-1k [20], LSVQ [67], YouTube-
UGC [61], and DVL2021 [64] as well as domain-specific
SDR VQA databases focusing on High Frame Rate videos
[35], Live Streaming [54], Cloud Gaming [49] etc. All these
existing VQA datasets are small in scale; thus, the field
of VQA generally suffers due to limited labeled datasets.
At the same time, the availability of large-scale unlabelled
videos enables unsupervised or self-supervised approaches.
Whereas, in the case of HDR-VQA, there is a very limited
availability of HDR videos, and until recently, there has
been little work done to create a large-scale labeled HDR
dataset.

1.1. Relevance and Contribution

With the recent advancement in Deep Learning (DL)
methods, many data-driven quality assessment models have
been developed [10,23,60]. With the lack of large-scale la-
beled quality assessment datasets, it is still extremely chal-
lenging to train DL-based methods in a supervised man-
ner. Methods like CONTRIQUE [33] and Re-IQA [50] pro-
posed exploiting the abundant unlabeled images to learn the
quality-aware features without any quality score using con-
trastive learning. No such work has been done in the domain
of HDR NR-VQA, largely because of the lack of publicly
available HDR videos.

The market penetration of High Dynamic Range (HDR)
capable devices, such as the latest iterations of Apple’s
iPhones [21], has seen a significant uptick in the past few
years. The creator economy, thriving more than ever, has
ushered in a wave of high-quality video content, including
HDR videos, enriching the digital media ecosystem. This
paradigm shift has motivated prominent online platforms
like YouTube, TikTok, Meta, Instagram, etc., to improve
their infrastructure to host HDR content. Despite this, ob-
taining quality scores for large-scale HDR content poses
a formidable challenge, entailing substantial financial and
labor investments. To this end, following the philosophy
of contrastive learning, we propose a self-supervised learn-
ing approach for the HDR NR-VQA task. To the best of
our knowledge, this work is the first attempt to use self-
supervised learning-based approaches for the HDR NR-
VQA tasks on unlabeled HDR videos. We refer to the new
model as HIgh Dynamic Range Oracle for Video Quality
Assessment (HIDRO-VQA). Our contributions are as fol-
lows:

• The first contrastive learning-based approach for HDR
NR-VQA task leveraging unlabeled HDR videos.

• Our proposed model achieves state-of-the-art perfor-
mance on the LIVE-HDR [53] benchmark and out-
performs previous HDR VQA algorithms by a large
margin. Figure 1 shows the overview of our proposed
model.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses a brief overview of the literature relating to
VQA models and self-supervised learning. Section 3 pro-
vides details of the proposed model and data pre-processing
strategies. Section 4 and 5 provide experimental results and
ablation study, respectively. We also discuss extending our
HIDRO-VQA model to FR-VQA in Section 6. Finally, Sec-
tion 7 concludes the paper by summarizing the contribu-
tions of the paper and discussing avenues for future work.

2. Related Work
VQA models can be broadly divided into hand-crafted

feature extraction models and DL-based feature extraction
models. Hand-crafted feature extraction model are often
training-free and are usually limited in their generalization
ability. Learning-based approaches require large-scale la-
beled datasets but often generalize well on diverse con-
tent sets. The NR-VQA task is more challenging, given
the enormous range of time-varying distortion combina-
tions that occur on videos. NR-IQA methods can be applied
to videos frame-by-frame to estimate the quality scores
and then pooled across the temporal dimension, but this
often excludes modeling of temporal distortions. To our
knowledge, no DL-based HDR NR-VQA method exists that
achieves high correlations against human subjective quality
scores.

The prevailing design approach behind numerous mod-
els involves a dedicated feature extraction framework fol-
lowed by a regressor to map features to quality scores. In
classical models, artifact modeling facilitates feature extrac-
tion. A popular example of this approach are models that
use Natural Scene Statistics (NSS) or Nature Video Statis-
tics (NVS). NSS models extract features from a transform
domain, wherein deviation from expected statistical regular-
ities due to distortions lead to quality estimators. Examples
of NSS models include DIIVINE [41] with its use of steer-
able pyramids, V-BLIINDS [48], which uses discrete co-
sine transform coefficients of frame differences, BRISQUE
[39], and the unsupervised model NIQE [40] which lever-
ages mean subtracted contrast normalized (MSCN) coeffi-
cients of luma to acquire quality-aware features. In COR-
NIA [66] and HOSA [65], visual codebooks crafted from
local patches are used to obtain quality-aware features. HI-
GRADE [26] an IQA exploits the statistical patterns of the
gradient and log-derivative of each channel in CIELAB [52]



color space. ChipQA [12] models the statistics of space-
time chips, which are highly localized space-time slices of
MSCN frames. TLVQM [25] uses several hand-designed,
low-complexity features for most recurring distortions like
blur, blockiness, motion artifacts, jerkiness, interlacing, etc.
High-complexity features (HCF) were sub-sampled at 1 Hz
to capture sharpness, blockiness, noise, color, and contrast
in CIELAB space. All these hand-crafted feature extraction
methods perform well on a limited number of synthetic dis-
tortions, but they often fail on real-world distortions. In the
experimental section, following HDR-ChipQA [13], we re-
implemented methods that use CIELAB color space to use
HDR CIELAB [16] designed for HDR content.

DL-based models aim to extract semantic and quality-
aware features using specialized model architecture, loss
functions, or training strategies. Most DL-based IQA ap-
proaches use ImageNet [47] pre-trained models and then
fine-tune them for the quality assessment task. RAPIQUE
[60] was designed for the SDR User Generated Content
(UGC) VQA task; it combines NVS features and deep CNN
features pooled over time. Similar to RAPIQUE, the au-
thors of [10] proposed GAMIVAL, which uses a combina-
tion of a CNN and neurostatistical NVS features for VQA
of SDR gaming videos.

Minimal exploration has been done on the HDR NR-
VQA problem. HDR-BVQM [2] uses BRISQUE [39] fea-
tures, the log-derivative features defined from HIGRADE
[26], and the temporal features from V-BLIINDS [48]. The
HDR-BVQM [2] design measures statistical consistency
only on SDR videos, and thus, we do not treat it as an HDR
NR-VQA algorithm. NorVDPNet [5], an HDR-specific
method, uses a CNN network trained on proxy quality
scores from HDR-VDP [37] between reference and dis-
torted image pairs. In HDR-ChipQA [13], the authors ex-
tend ChipQA [12] by adding HDR-specific features. HDR-
ChipQA [13] applies non-linearity on the luma values of
each HDR frame of a video and extracts the same NVS fea-
tures as in ChipQA.

Self-supervised learning is directed toward obtaining
representations from unlabeled data. This is achieved by
tapping into the existing structural information in the im-
age data. Recent SOTA methods use auxiliary tasks that
do not require labeled datasets. This includes tasks like ro-
tation prediction [18], transitioning between grayscale and
color images [28, 69], and inpainting [46]. In the context of
quality assessment, discrimination of distortion types and
levels can be utilized as a self-supervision task. CON-
TRIQUE proposed the use of contrastive learning to exploit
large-scale unlabeled synthetic and authentically distorted
image databases. Following the same path, Re-IQA also
uses contrastive learning but for both quality and content-
related features. CONVIQT is another well-recognized
VQA model that leverages the pretrained CONTRIQUE’s

model for spatial feature extraction and further trains a GRU
[11] model to extract temporal quality-aware features in a
self-supervised setting.

3. Method : HIDRO-VQA
Our objective is to acquire low-level quality-aware fea-

tures that accurately characterize HDR videos. Utilizing
self-supervised learning, we can achieve this without rely-
ing on specific quality scores for HDR videos. We aim to
leverage a pre-trained SDR quality-aware model, which has
been trained on extensive and diverse datasets, then fine-
tune it using a limited collection of HDR videos in a self-
supervised setting to obtain final quality-aware HDR rep-
resentations. Our initial investigation, as demonstrated in
Table 2, reveals that self-supervised pre-trained models like
Re-IQA, CONTRIQUE, and CONVIQT exhibit strong gen-
eralization capabilities on the LIVE-HDR database, even
though they were never trained on HDR database. Among
these, we deployed CONTRIQUE as our SDR pre-trained
model due to its use of a straightforward single-backbone,
which contrasts with Re-IQA and CONVIQT, which use
multiple sub-models.

Much like CONTRIQUE, our approach involves the ac-
quisition of 4096-dimensional feature vectors for any given
input video. This vector is derived by extracting frame-level
features and averaging them across all frames. Our method
diverges from HDR-ChipQA by eliminating the need for
NSS-inspired feature extraction. In contrast to CONVIQT,
we keep the process simple by abstaining from temporal
transformations. We ensure our model attains a grasp of
perceptual distortion features commonly associated with
HDR content through our data preparation and fine-tuning
strategies. Our HDR quality-aware fine-tuning procedure
is illustrated in Figure 2 and will be discussed in detail in
Section 3.3.

3.1. HDR Data Collection & Preparation

As access to publicly available HDR databases remains
limited, research in the field of HDR quality assessment is
still in its early stages. We believe that leveraging unlabeled
User-Generated Content (UGC) in HDR format, available
in the public domain or under a Creative Commons 4.0 li-
cense [1], is a fundamental step for advancing the develop-
ment and validation of HDR-VQA models. The inherent
real-world and diverse characteristics of UGC data provide
an added unique advantage toward facilitating the modeling
and comprehension of the diverse quality distortions intrin-
sic to HDR videos.

Figure 3 depicts an overview of our database prepara-
tion procedure. Following [9, 22, 24, 53], we sourced 4K
HDR videos. These videos were in HDR10 standard, ad-
hering to the Rec.2020 color gamut, with either HLG or
PQ OETF, and were 10-bit with a maximum luminance



Figure 2. Illustration of fine-tuning pipeline of HIDRO-VQA.

Figure 3. Overview of HDR Fine-tuning database preparation. We obtained the source 4K HDR videos at considerably high bitrates,
followed by generating scene-separated 10-second clips and introducing compression and scaling distortions.

Resolution Bitrate (Mbps)
4K 15, 6, 3

1080p 9, 6, 1
720p 4.6, 2.6
540p 2.2

Table 1. Bitrate Resolution ladder for Distortions.

of 1000 nits. Our collection strategy was skewed towards
high bitrate (≈ 30 Mbps) videos to preserve pristine qual-
ity. We then manually filtered the videos to maintain the
content diversity within our dataset. Finally, we collected
411 source videos. Figure 4 shows example frames from
source videos for content diversity. Given the equal split of
PQ and HLG transfer functions in the sourced videos, we re-
encoded them all to PQ to ensure a consistent data represen-
tation format across the dataset and stabilized training. We
included videos of varying lengths of more than 4 minutes
only. We chose this design based on the assumption that
longer videos, which are likely recorded using professional-
grade equipment and appropriate HDR settings, would pro-
vide a richer and more representative dataset for our study.
In contrast, shorter source clips may have been recorded
using non-professional-grade equipment and by individuals
with limited HDR expertise, potentially offering lower qual-
ity and less representative data.

We further split the 411 videos into 10-second clips,
resulting in a total of 6375 clips. The clipping process
was done by segmenting 2-minute continuous scenes, from
which a random 10-second clip was extracted. We ensured

no overlap occurred between different clips, maintaining the
diversity in video scenes of the clips obtained from each
source video as shown in Figure 5. The final step in our
dataset creation involved generating a bitrate-resolution lad-
der, as per [53], to simulate a practical deployment use-
case of HDR content on the internet. Figure 6 shows the
bitrate-resolution ladder generation steps. We employed
four resolution scales and nine bitrates, as detailed in Table
1. Note that in addition to distorted videos, we also retained
the original pristine clips in the dataset, generating 63750
clips. We believe that this systematic approach in creating
the fine-tuning HDR database significantly contributed to
the superior performance of the HIDRO-VQA model. The
hyperlinks to the source videos will be released on GitHub.

3.2. Self-Supervised SDR Pretraining

Using self-supervised learning with an auxiliary task of-
fers a feasible route for leveraging the abundant unlabeled
data within the video domain, eliminating the need for qual-
ity scores. This framework enables the learning of robust
and distinctive features from the unlabeled data that are
helpful quality-aware representations.

As discussed earlier, we use CONTRIQUE as our pro-
posed model’s pre-trained SDR quality-aware feature ex-
tractor that is fine-tuned with the HDR videos we collected
in Section 3.1. CONTRIQUE’s architecture consists of two
primary parts: an encoder f(.) and a projector g(.). The
encoder used is the popular convolutional neural network
ResNet-50 [19] and focuses on feature extraction, while the
projector, a multi-layer perceptron (MLP), reduces the di-



Figure 4. Sample frames from the 411 Source videos depicting content diversity.

Figure 5. Generation of scene-separated clips from a given HDR
video. Each frame on the right is obtained from a different clip.

Figure 6. A generic resolution-bitrate ladder creation step fol-
lowed by a resolution upsampling step to 4K. R and B represent
resolution and bitrate, respectively.

mensional of the representation from the encoder. CON-
TRIQUE incorporates multi-scale learning and cropping
techniques to capture the inherent multi-scale characteris-
tics of images and their distortions. By analyzing images
at two different scales, native resolution, and half-scale res-
olution, the model gains the ability to capture both local
and global image features that are crucial for quality assess-
ment. During training, only two transforms, horizontal flip-
ping and color space conversion, are used.

CONTRIQUE assigns a distortion class label to all syn-
thetically distorted images (and their scaled and trans-
formed versions) generated from pristine images with a spe-
cific type and degree of distortion. Each image stemming
from authentic distortions (UGC type) is treated as a dis-
tinct distortion class. For a given image x ∈ R3×H×W

h = f(x), z = g(h) = g(f(x)) h ∈ RD, z ∈ RK

where h is the D-dimensional output from the encoder, and
z is a K-dimensional output from the projector. The dot
product is the similarity measure between a pair of repre-
sentations ϕ(u, v) = uT v/||u||2||v||2. The loss function
used in CONTRIQUE is the normalized temperature-scaled
cross entropy (NT-Xent), and for image xi belonging to a
synthetically distorted class, it is defined as

Lsyn
i =

1

|C(i)|
∑

j∈C(i)

− log
exp(ϕ(zi, zj)/τ)∑N

k=1 1k ̸=i exp(ϕ(zi, zk)/τ)

(1)

where N is the total number of images in the batch, 1 is the
indicator function, τ is the temperature parameter, C(i) is a
set containing image indices belonging to the same class as
xi (excluding the index i) and |C(i)| is its cardinality, and
τ is the temperature parameter.

Each UGC image is treated as a unique class. Thus, for
a UGC image xi, only its scaled and transformed version
xj belongs to the same class. The loss function for UGC
images is given by

LUGC
i = − log

exp(ϕ(zi, zj)/τ)∑N
k=1 1k ̸=i exp(ϕ(zi, zk)/τ)

(2)

The overall loss function is given by :

L =
1

N

N∑
i=1

1(xi /∈UGC)Lsyn
i + 1(xi∈UGC)LUGC

i (3)

CONTRIQUE is trained on 1.3M images sourced from pub-
licly available databases [15,30,31,38,42]. The framework
is trained to handle the diverse mix of unknown distortions
present in UGC images as well as synthetic distortions.

Our motivation to opt for CONTRIQUE as the pre-
trained backbone and fine-tune it using our limited HDR
dataset rather than starting from scratch is driven by its
demonstrated effectiveness in handling SDR content under
various synthetic and real-world distortions. This choice is
further validated in our ablation study, as outlined in Sec-
tion 5.2. The initial pre-training on SDR data provides a
robust foundation, rendering the model well-suited for sub-
sequent fine-tuning on our curated HDR videos. This is



also motivated by the fact that quality-aware representations
acquired from SDR data can expedite the learning process
when working with a comparatively smaller HDR dataset.

3.3. HDR Quality-Aware Contrastive Fine Tuning

HDR videos encompass a wider range of luminance and
color, introducing features and distortions that are either ab-
sent or less pronounced in SDR videos. This distinction
emphasizes the importance of fine-tuning using HDR data
to ensure the model is further adapted to the quality-aware
features of HDR content and can be effectively used to eval-
uate HDR video quality.

Leveraging the 63,750 video clips acquired through the
data processing detailed in Section 3.1, we learned the
HIDRO-VQA, model via contrastive fine-tuning. These
video clips were generated by applying a distinct resolution-
bitrate distortion to reasonably high-bitrate encoded videos.
Following the approach utilized in CONTRIQUE for syn-
thetic distortions, we could assign one of the ten distortion
class labels to each video clip. These labels cover nine res-
olution bitrate distortions and the source clip case.

However, we propose to perform contrastive fine-tuning
on the spatial frames and then employ a simple mean pool-
ing technique to derive video-level features. To achieve
this, we randomly select one frame from each video in our
database before the start of the training process and fine-
tune the SDR pre-trained CONTRIQUE checkpoint using
contrastive loss functions. Given the non-uniform distribu-
tion of bit allocation across frames in videos during video
compression, the resulting frames from the video clips can-
not be attributed to one of the ten distortion classes. Con-
sequently, we assume that each frame exhibits a unique
type of distortion, similar to the UGC-specific distortion
in CONTRIQUE. Thus, our fine-tuning objective for each
frame can be expressed as follows:

LHDR−Frame
i = − log

exp(ϕ(zi, zj)/τ)∑N
k=1 1k ̸=i exp(ϕ(zi, zk)/τ)

,

(4)

where zi and zj represent the outputs of the projector
MLP for xi and xj , which correspond to the input frame
and its scaled and transformed counterpart. During the
fine-tuning process, we adopt a simplified approach by
only applying horizontal flips and the multi-scale feature
extraction methodology used in CONTRIQUE.

4. Experiments & Results
4.1. HDR Fine-tuning Configurations

The HDR Fine-Tuning was conducted with a batch size
set to 768, achieved by selecting frames from the videos

obtained in Section 3.1. The selected frames were sub-
sequently cropped to a resolution of 256x256. To extract
patch features, we selected a patch size of 64x64, resulting
in 4 non-overlapping patches per frame. For each patch,
the resultant feature was computed using an adaptive aver-
age pooling layer at the end of the ResNet-50 encoder. The
temperature parameter (τ ) was set to 0.1. The model was
fine-tuned for 25 epochs, employing a stochastic gradient
descent optimizer with an initial learning rate of 0.1. To
ensure stabilized training, the learning rate was subjected
to an initial linear warm-up for the first two epochs, fol-
lowed by a cosine decay schedule without restarts [32]. It
should be noted that in our experiment, 25 epochs using
only 63750 frames is equivalent to a single epoch of CON-
TRIQUE training. This shows the data efficiency of our
method. The implementations were carried out in Python,
making use of the PyTorch framework, and were executed
on a workstation equipped with three NVIDIA A100 GPUs.

4.2. Databases

We demonstrate the state-of-the-art performance of our
model on the LIVE-HDR database. This database consists
of 310 videos quality-labeled by human participants under
two distinct ambient conditions. The videos were created by
applying nine different combinations of compression and
downsampling to 31 source videos. The two ambient set-
tings encompassed a dimly lit environment with an incident
luminance of less than 10 lux and a well-illuminated setting
with an incident luminance of 200 lux. We conducted sepa-
rate evaluations of HIDRO-VQA on both sets of scores.

4.3. Evaluation Protocol

We utilized a Support Vector Regressor (SVR) with a
linear kernel, trained on the features extracted from the
fine-tuned ResNet-50 network, to predict the Mean Opinion
Scores (MOS) of the videos. Our training protocol involved
the following steps: We divided the database into a train-
ing set and a test set, maintaining an 80:20 ratio, and en-
suring that videos with the same content were exclusively
present in one set. This practice aligns with the standard
approach for evaluating the performance of Video Quality
Assessment (VQA) algorithms and prevents the regressor
from capturing content-specific cues.

To determine the hyperparameters of the SVR, we con-
ducted a 5-fold cross-validation exclusively on the training
set without including videos from the test set. This proce-
dure was iterated 100 times, and the metrics reported reflect
the median and standard deviation values.

4.4. Performance Metrics

We evaluated the performance of HIDRO-VQA using
three metrics. We calculated Spearman’s Rank-Ordered
Correlation Coefficient (SROCC) between the predicted



Viewing Condition Dark Ambient Bright Ambient
Algorithm SROCC↑ LCC↑ RMSE↓ SROCC↑ LCC↑ RMSE↓

Image Quality Metrics using
Handcrafted Features

HIGRADE [26] 0.7088 (0.0827) 0.6827 (0.0710) 14.2545 (2.0780) 0.6862 (0.0973) 0.6664 (0.0808) 13.7339 (2.0078)

BRISQUE [39] 0.7251 (0.0955) 0.7139 (0.0881) 12.6404 (2.1651) 0.7133 (0.1004) 0.7139 (0.0885) 12.6404 (2.0428)

Video Quality Metrics using
Handcrafted Features/

Supervised Pre-Trained
Deep Networks

TLVQM [25] 0.5781 (0.1014) 0.5552 (0.0919) 14.999 (1.9098) 0.5549 (0.1162) 0.5504 (0.1008) 15.2480 (1.8562)

RAPIQUE [60] 0.4553 (0.2533) 0.4864 (0.1171) 15.7134 (1.7415) 0.4470 (0.2171) 0.4910 (0.1393) 15.6088 (1.9382)

HDR BVQM [3] 0.6020 (0.0944) 0.5844 (0.086) 14.5930 (1.8276) 0.5411 (0.1102) 0.5436 (0.0986) 15.4146 (1.8312)

VSFA [29] 0.7127 (0.1079) 0.6918 (0.1114) 13.0511 (2.4003) 0.5549 (0.1162) 0.5504 (0.1008) 15.2480 (1.8562)

V-BLIINDS [48] 0.7483 (0.1446) 0.7193 (0.1141) 12.7794 (2.3715) 0.7248 (0.1304) 0.7009 (0.1180) 12.896 (2.3606)

ChipQA [12] 0.7435 (0.0895) 0.7334 (0.0819) 12.1549 (1.9106) 0.7437 (0.0815) 0.7312 (0.0864) 12.3509 (1.843)

HDR-ChipQA [13] 0.8250 (0.0589) 0.8344 (0.0562) 9.8038 (1.7334) 0.8316 (0.0580) 0.8287 (0.0552) 10.1903 (1.6664)

Self-Supervised Pre-Trained
Image & Video

Quality Algorithms

CONTRIQUE [33] 0.8106 (0.0666) 0.7801 (0.0673) 11.5173 (1.8860) 0.8276 (0.0693) 0.7889 (0.0680) 11.2970 (2.0186)

Re-IQA [50] 0.7755 (0.0701) 0.7764 (0.1021) 11.1334 (2.6541) 0.8237 (0.0791) 0.7989 (0.1038) 10.8499 (2.6619)

CONVIQT [34] 0.8170 (0.0672) 0.7875 (0.0705) 11.2514 (2.0548) 0.8184 (0.0694) 0.7857 (0.0700) 11.4064(2.0756)

HIDRO-VQA (Ours) 0.8793 (0.0672) 0.8678 (0.0643) 8.8743(1.7538) 0.8930 (0.0548) 0.8773 (0.0557) 8.7110 (1.7911)

Table 2. Median SROCC, LCC, and RMSE on the LIVE-HDR Database on scores collected under the dark and bright ambient conditions
of all the compared NR-VQA algorithms. Standard deviations are shown in parentheses. The best-performing algorithm is bold-faced.
Results of Algorithms: HIGRADE, BRISQUE, TLVQM, RAPIQUE, HDR BVQM, VSFA, V-BLIINDS, ChipQA, HDR-ChipQA taken
from [13].

scores generated by HIDRO-VQA and the actual ground
truth Mean Opinion Scores (MOS). Further, we fit the pre-
dicted scores to the MOS using a logistic function

l(x) =
β1 − β2

1 + exp(− (x−β3)
β4

) + β5

(5)

and then calculated Pearson’s Linear Correlation Coeffi-
cient (LCC) and Root Mean Square Error (RMSE) between
the fitted scores and the MOS, following the standard prac-
tice in the evaluation of VQA algorithms [55].

4.5. Quantitative Results

We conducted a performance evaluation of popular
NSS-based NR-VQA models, including BRISQUE [39],
HIGRADE [26], TLVQM [25], V-BLIINDS [48], HDR
BVQM [3], VSFA [29], RAPIQUE [60], ChipQA [12], and
HDR-ChipQA [13], alongside the popular self-supervised
SDR pre-trained models such as CONTRIQUE, Re-IQA,
and CONVIQT, using the LIVE-HDR database. In Table
2, we compared the results obtained from our newly intro-
duced model, HIDRO-VQA, with the performance of ex-
isting models in our analysis. We adopted the evaluation
strategy outlined in [13] for all the NSS-based models. For
CONTRIQUE, Re-IQA, and CONVIQT, we converted the
videos in the LIVE-HDR database from Y’CbCr to R’G’B’,
followed by scaling the pixel values to the range [0,1] before
feature extraction using publicly accessible checkpoints.

The results in Table 2 indicate that among the NSS-
based models, HIGRADE, BRISQUE, V-BLIINDS, and
ChipQA obtained similar performance levels. RAPIQUE,
a state-of-the-art NR-VQA model, shows notably poor per-
formance on the LIVE-HDR database, potentially attributed
to the resizing of frames performed during feature extrac-
tion with its ImageNet pre-trained model. TLVQM, another

popular NR-VQA algorithm, exhibits less-than-ideal per-
formance on the HDR content, which might be attributed
to the extensive fine-tuning of parameters specific to SDR
VQA databases, resulting in difficulties with generalization
when applied to HDR databases. An intriguing observation
from our analysis reveals that the quality-pretrained deep
models, CONTRIQUE, CONVIQT, and Re-IQA, demon-
strate remarkable generalization capabilities despite never
being trained on HDR databases. Our proposed model,
HIDRO-VQA, which uses contrastive fine-tuning of CON-
TRIQUE on HDR videos, outperformed all the other mod-
els we evaluated, enhancing the benchmark on the LIVE-
HDR database by 5%. HIDRO-VQA also achieved a nar-
rower range of SRCC, LCC, and RMSE values compared
to most of the compared algorithms, demonstrating its reli-
ability across test sets.

5. Ablation Studies

5.1. Effect on Number of Fine-Tuning Epochs

This section presents a comprehensive analysis of
the NR-VQA performance achieved by the proposed
model, HIDRO-VQA, using varying numbers of fine-tuning
epochs. Our approach involved training HIDRO-VQA over
four numbers of distinct epochs: 10, 20, 25, and 30, using
the training configurations described in Section 4.1. The re-
sults, summarized in Table 3, unveil a significant and con-
sistent trend in performance. We observed continuous and
substantial improvement as the number of epochs increased,
with significant improvements seen up to 25 epochs. Be-
yond 25 epochs, the performance plateaued and did not im-
prove on further increasing the fine-tuning epochs. This
empirical analysis highlights the pivotal role of determin-
ing the optimal number of fine-tuning epochs to achieve the
highest level of NR-VQA while optimizing training costs.



Viewing Condition Dark Ambient Bright Ambient
HDR Contrastive

Finetuning Epochs SROCC↑ LCC↑ RMSE↓ SROCC↑ LCC↑ RMSE↓

10 0.6383 0.6064 14.4268 0.6974 0.6809 13.4858
20 0.8266 0.8123 10.6680 0.8432 0.8357 10.0781
25 0.8793 0.8678 8.8743 0.8930 0.8773 8.7110
30 0.8765 0.8692 8.8834 0.8945 0.8798 8.7254

Table 3. Number of Fine-tuning Epochs vs. Median SROCC,
LCC, and RMSE on the LIVE-HDR Database on scores collected
under the dark and bright ambient conditions.

Viewing Condition Dark Ambient Bright Ambient
SDR Pretrained? SROCC↑ LCC↑ RMSE↓ SROCC↑ LCC↑ RMSE↓

No 0.3460 0.3166 17.1745 0.3325 0.2939 17.2928
Yes 0.8793 0.8678 8.8743 0.8930 0.8773 8.7110

Table 4. Effect of SDR Pre-Training on Median SROCC, LCC,
and RMSE on the LIVE-HDR Database on scores collected under
the dark and bright ambient conditions.

5.2. Effect of SDR Pre-Training

Furthermore, we explore the impact of pre-training on
SDR content on the final performance of our proposed
model. To illustrate the efficacy of employing pre-trained
SDR models in enhancing the final performance of HDR-
VQA, we initiated the training of HIDRO-VQA with ran-
domly initialized model weights instead of using weights
from CONTRIQUE as described in Section 3.3. The train-
ing followed the configurations detailed in Section 4.1.
The results, presented in Table 4, provide evidence of the
substantial positive influence of SDR quality-aware pre-
training on the final performance. This demonstrates the
marked improvement achieved by incorporating SDR con-
tent pre-training in the context of HDR-VQA.

6. Extension to Full Reference VQA
Our proposed HIDRO-VQA framework is a flexible ap-

proach for obtaining general representations in a Full Ref-
erence VQA setting. We refer to this model as HIDRO-
FR. We refrained from conducting any additional fine-
tuning specifically for FR-VQA, opting to directly employ
the learned representations obtained through the fine-tuning
process described in Section 3.3. To apply these learned
representations to FR-VQA, we adopt a straightforward ap-
proach. We computed the absolute difference between the
features of reference and distorted videos. The representa-
tions for the reference and distorted videos were obtained
by average pooling the frame feature representations along
the temporal dimension, similar to NR-VQA. Like the NR-
VQA approach, we employed a Support Vector Regressor
(SVR) for the regression task, mapping the obtained rep-
resentation from the reference and test video to the corre-
sponding Differential Mean Opinion Score (DMOS).

Table 5 shows the FR-VQA performance of HIDRO-
VQA, along with other state-of-the-art methods. Our eval-

Dataset LIVE-HDR (Dark Ambient)
Algorithm SRCC PLCC

HDRMAX [14] 0.7681 (0.0913) 0.7400 (0.0958)

PSNR 0.6242 (0.1504) 0.6357 (0.1331)

PSNR+HDRMAX 0.8263 (0.0684) 0.8206 (0.0615)

SSIM [62] 0.5208(0.1611) 0.4898(0.1595)

SSIM+HDRMAX 0.7771 (0.0866) 0.7529 (0.0964)

MS-SSIM [63] 0.6007 (0.1228) 0.5810 (0.1260)

MS-SSIM+HDRMAX 0.7645 (0.0838) 0.7258 (0.0868)

ST-RRED [57] 0.6863 (0.0700) 0.6569 (0.0744)

ST-RRED+HDRMAX 0.7896 (0.0607) 0.7595 (0.0603)

SpEED-QA [4] 0.6110 (0.1243) 0.6196 (0.1066)

SpEED-QA+HDRMAX 0.7581 (0.0921) 0.7107 (0.0993)

VMAF [43] 0.6753 (0.0493) 0.6086 (0.0583)

VMAF+HDRMAX 0.8528 (0.0543) 0.8342 (0.0632)

HDR-VDP-2 [36] 0.7041 (0.1198) 0.6722 (0.1081)

HDR-VDP-2+HDRMAX 0.7431 (0.0770) 0.7208 (0.0764)

HIDRO-FR (ours) 0.8699 (0.0388) 0.8519 (0.0452)

Table 5. Median SROCC and LCC were obtained using FR-VQA
models. Standard deviations are shown in parentheses. The best-
performing algorithm is bold-faced. Results of all algorithms ex-
cept HIDRO-FR taken from [14].

uation protocol follows the one in [14], and we report
Spearman’s Rank Order Correlation Coefficient (SROCC)
and Linear Correlation Coefficient for all the compared
methods. In HDRMAX [14], the authors introduced a
non-linear transformation to transform the luminance val-
ues. This enhancement was designed to improve the per-
formance of SDR VQA algorithms for HDR quality as-
sessment. We compare the performances of these algo-
rithms with HIDRO-FR. From Table 5, it can be observed
that HIDRO-FR achieves superior performance compared
to other FR-VQA models without using the transformations
proposed in [14]. This underscores the adaptability and
broad applicability of our proposed approach.

7. Conclusion

In this research endeavor, we have introduced a deep
learning-based No-Reference Video Quality Assessment
(NR-VQA) algorithm tailored to the specific demands of
HDR content. We proposed a self-supervised contrastive
fine-tuning methodology using unlabeled HDR videos. Our
findings underscore the potential of self-supervised pre-
trained neural networks initially designed for SDR content
to undergo further refinement in a self-supervised context
using limited HDR content, culminating in state-of-the-art
performance as evidenced by results on the publicly ac-
cessible LIVE-HDR VQA database. Although our model
achieves state-of-the-art performance by a high margin,
there is a scope for improvement. For example, efficient ex-
traction of temporal quality-aware features could further in-
crease VQA performance, and a large-scale database could
further benefit the HDR-VQA research community. The
source code for HIDRO-VQA will be available on GitHub.



8. Change Log
• v1: First Upload to arXiv on 18th Nov 2023

• v2: Fixed CONTRIQUE NR-VQA result typo in stan-
dard deviation values, updated captions for Table 2,5.
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