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Abstract

We present COMEDIAN, a novel pipeline to initialize
spatiotemporal transformers for action spotting, which in-
volves self-supervised learning and knowledge distillation.
Action spotting is a timestamp-level temporal action de-
tection task. QOur pipeline consists of three steps, with
two initialization stages. First, we perform self-supervised
initialization of a spatial transformer using short videos
as input. Additionally, we initialize a temporal trans-
former that enhances the spatial transformer’s outputs with
global context through knowledge distillation from a pre-
computed feature bank aligned with each short video seg-
ment. In the final step, we fine-tune the transformers to
the action spotting task. The experiments, conducted on
the SoccerNet-v2 dataset, demonstrate state-of-the-art per-
formance and validate the effectiveness of COMEDIAN’s
pretraining paradigm. QOur results highlight several ad-
vantages of our pretraining pipeline, including improved
performance and faster convergence compared to non-
pretrained models. Source code is available here: https:
//github.com/juliendenize/eztorch.

1. Introduction

The field of computer vision has witnessed remarkable
progress in recent years, and in particular in video analysis
since the Deep Learning era. To make the best use of Deep
Learning models, vast amounts of data and high computa-
tional power are needed. Temporal Action Detection (TAD)
has been gaining attention as it has different applications in
our lives ranging from home automation to sports analysis.
TAD involves the identification of when specific actions oc-
cur within a video, enabling comprehensive understanding
and meaningful insights into the dynamics of a given sce-
nario. Action Spotting [23] is a specific TAD task whose

goal is to predict actions at a precise timestamp and there-
fore requires a temporally precise prediction. Modeling ac-
tions in videos faces several issues such as the sparsity of
actions and the intricate relationships between them.

While a lot of video data is readily available, annotating
actions presents significant challenges. It suffers from the
inherent subjectivity of annotators to interpret when an ac-
tion starts or ends. Moreover, the process of manual anno-
tation requires considerable time and resources, limiting the
scalability of annotating large datasets.

Recent advancements in vision Transformers [17,35] for
video analysis [1, 36,47] showed them surpassing the tra-
ditionally used Convolutional Neural Networks (CNNs) but
required dedicated architecture design to reduce computa-
tional cost [1, 3, 39,41, 58-60]. By capturing long-range
dependencies and leveraging global context, Transformers
analyses better complex sequences. However, their effec-
tiveness crucially depends on proper initialization and ac-
cess to ample labeled training data [1,36].

The use of pretraining methods has shown tremendous
progress in enhancing the capabilities of Transformers [1,7,

]. Pretraining can be achieved through two approaches:
Supervised Learning (SL) using labeled data that requires
extensive annotation efforts, and Self-Supervised Learning
(SSL) that leverages unlabeled data. SSL for video repre-
sentation learning [15,21,52,57] has shown promising re-
sults, demonstrating significant improvements in general-
ization and narrowing the gap with supervised learning ap-
proaches. Knowledge Distillation (KD) [28] also serves as a
powerful tool to initialize a network by transferring knowl-
edge from another network or a collection of models. De-
pending on how the networks are obtained and the losses
used to distill, KD can be considered as SL [53] or SSL [22].

In this work, we propose the COMEDIAN approach,
which combines self-supervised learning and knowledge
distillation to initialize a spatio-temporal transformer for
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Figure 1. Overview of COMEDIAN training pipeline. Step 1: Pretraining of the spatial transformer. Step 2: Pretraining of the spatial and
temporal transformers. Step 3: fine-tuning to the action spotting task.

action spotting. Our method involves two transformers: a
spatial transformer, which learns short context information
from frames extracted from small videos, and a temporal
transformer, which enriches the local context with global in-
formation. The initialization process consists of two stages:
the first stage focuses on the spatial transformer via SSL,
while the second stage initializes both spatial and temporal
transformers via KD. KD is employed from a pre-computed
bank of representations aligned with each output temporal
token. Importantly, COMEDIAN leverages unlabeled video
data for initialization, effectively addressing the aforemen-
tioned challenges associated with transformers.

To evaluate our approach, we conducted experiments on
the action spotting task on the SoccerNet-v2 [14] dataset,
which contains soccer matches with 17 distinct actions
varying in semantics and occurrence. Our contributions can
be summarized as follows:

We propose COMEDIAN a combined self-supervised
learning and knowledge distillation pipeline illustrated in
Fig. 1 to initialize transformers for action spotting.

We demonstrate that COMEDIAN achieves state-of-the-
art performance for action spotting on the SoccerNet-
v2 dataset, showcasing the effectiveness of our self-
supervised and knowledge distillation pipeline.

We provide a comprehensive analysis of the benefits of
pretraining with knowledge distillation, including im-
proved performance and faster convergence compared to
non-pretrained models.

2. Related Work

Video Transformers. Vision Transformers [17] (ViT)
capture long-term dependencies better than recurrent mod-
els or convolutional networks. It relies on a tokenizer,
that embeds patches of the input, and self-attention [55].
Standard self-attention is computationally heavy and sev-
eral other attention mechanisms have been proposed such

as Swin [35] or DelT [53]. Transformers can be applied
to videos by adapting the tokenizer [I, 3, 36]. However
as videos increase the number of tokens, video transform-
ers are computationally heavy, and various strategies have
been proposed to reduce their cost. VIN [41] adds a tem-
poral encoder on top of a ViT while ViViT [1] and TimeS-
former [3] propose several factorizations of space-time at-
tention. ViViT as VTN found a spatio-temporal hierarchi-
cal model offers the best trade-off between performance and
cost which led to several methods [4, 3 1]. Previously men-
tioned transformers focused on short videos, e.g. < 5 sec-
onds and some architectures have been developed to cap-
ture long-range dependencies on longer videos via a sliding
window that keeps relevant information from the past with
a memory [58,59] or a recurrence [39,60] mechanism.

In our work, we consider a spatio-temporal hierarchi-
cal model without changing specifically the architecture to
capture long-term dependencies as we also want to capture
bidirectional short-term dependencies.

Pretraining. Pretraining has been crucial to unleashing
image [ 7] and video [ ] transformers either via Supervised
Learning (SL) on a large dataset [17] or Self-Supervised

Learning (SSL) [7, 10]. Contrastive learning [54] is a kind
of state-of-the-art SSL on images [6, 9, 16, 18,25,27] that
has been adapted to video [13, 15,21,37,45,46]. It pulls

representations of positive views based on the input while
pushing a large number of other representations. Recently,
SCE [15] has shown that leveraging estimated inter-instance
relations with contrastive learning improves performance.
Masked Modeling approaches emerged with transformers
and showed better performance than contrastive learning to
learn local features [2,26,42,64]. It masks a part of the input
and reconstructs the signal either at pixel-level like MAE
[20,26,52], at features-level [22,57], or by predicting visual
tokens [50, 56]. However, these methods assume lots of re-
dundancies are present in the video which is true for short
videos with few view variations but does not hold for com-



plex videos such as soccer matches. Finally, Knowledge
distillation (KD) [28] is another pretraining approach that
distills information from a teacher or a collection of teacher
models to a student and has been successfully applied for
Supervised Learning [53] as well as Self-Supervised Learn-
ing [19,22,34,43]. Multiple approaches emerged to learn
spatial and temporal features separately or decoupled to
learn a global representation [30, 44]. Notably, [63] pro-
poses a multi-step pretraining method that decouples spatial
and temporal information through two different networks
recoupled via a self-distilled network. [62] performs spatial
and temporal contrastive learning at multiple hierarchies in
the model to separate spatial and temporal features.

In our work, we pretrain our hierarchical model with
a contrastive SSL initialization of the spatial transformer.
Then, our global model is pretrained with a KD loss from
an extracted bank of features aligned with all the output to-
kens. This loss leverages temporal masking and soft con-
trastive learning to maintain local-temporal information en-
riched in a global context. Therefore, our goal is to learn
multiple local-temporal representations, not one global.

Action Spotting. Action Spotting is a timestamp-level
Temporal Action Detection (TAD) first introduced for the
dataset SoccerNet [23]. This dataset has been extended to
more videos and more actions in SoccerNet-v2 [14] and the
tight-Average mean Average Precision (t-AmAP) has been
introduced to evaluate precise detection within thresholds
of 1 to 5 seconds. Several approaches have been proposed
to tackle this task that can be divided into two categories.
First, most approaches build a temporal architecture on top
of a feature extractor [5,8, 11, 12,24,38,40,48,49,51,65],
and second, few others train an end-to-end network [29,66].
The first kind of approach reduces the computational cost of
experiments however makes them rely on a feature extrac-
tor for generalization. Notably, Baidu [65] proposed the ex-
traction features of five 3D CNN models pretrained on Ki-
netics [32] and finetuned on SoccerNet-v2. The features are
then plugged into a temporal action detector. Spivak [49]
used these Baidu features coupled with features from a pre-
trained ResNet-152 to train an anchor-based approach that
first classifies actions falling in a few-second temporal ra-
dius and shifts the predictions using a temporal regressor.
For end-to-end approaches, E2E-spot [29] proposed to train
a CNN spatial encoder on top of a simple recurrent model
that performed competitively with the previous approach.
As for other domains, the attention mechanism has been
studied to improve performance [40,48,49,65,60].

In our work, we propose an end-to-end transformer-
based action spotting approach that assigns actions that fall
in frames in a small temporal radius.
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Figure 2. Pretraining of the spatial transformer.

3. Method
3.1. Overview

Our approach seeks to learn locally precise temporal
features enriched with a larger context for action spotting.
Therefore our model is composed of three different parts:

* A spatial transformer embeds the information of a small
temporal window and outputs one token embedding.

* A temporal transformer that takes as input the token out-
puts of the spatial transformer on consecutive windows
and outputs the same number of tokens. The temporal
transformer enriches the representation of local windows
with the knowledge of a larger context.

* A linear head is applied on each temporal output token to
perform the classification of the action classes.

To train the model, we perform three different training
steps described in the latter subsections: (1) pretraining of
the spatial transformer on small windows in Sec. 3.2, (2)
pretraining of the spatial and temporal transformers on large
windows in Sec. 3.3, (3) fine-tuning of the model on the
action spotting task in Sec. 3.4.

3.2. Spatial pretraining

To train the spatial transformer, we follow the Self-
Supervised Contrastive method MoCo [27] illustrated in
Fig. 2. We use a Siamese architecture containing an online
and a target branch. For the online branch, the model con-
tains a transformer f and a predictor g,. The target branch
contains a copy of the transformer updated by the exponen-
tial moving average, or ema, of the online transformer.

Each video X € RT=xHxWXC of T frames, width W,
height H, and C channels from the dataset is augmented by
two different distributions of data augmentations A' and A2
to form positive views X! = a!(X), X? = a*(X) with
a' ~ Al and a® ~ A%. We pass both views in both trans-
formers to compute the representations z'* = g, (fs(X1)),
z? = gs(.fs(X2))’ 7't = ft(Xl) and z* = ft(XQ) A
momentum memory buffer @ of size M >> N is main-
tained on the target representations to provide negatives.
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Figure 3. Pretraining of the spatial and temporal transformers via
knowledge distillation of a bank of features with the SCE loss.
Some spatial output tokens are masked.

We apply the MoCo loss on each representation as fol-
lows:

1
Laroco = =5 (I (2", 2”) + b (2%, 21)) (1)

exp(z - k/1)
exp(z-k/T)+ >0 exp(z-Q;/T) )
2)

Iy (z,k) = log (

3.3. Spatio-temporal pretraining

To pretrain the spatial transformer fs; and the tempo-
ral transformer ts;, we adapt the Soft Contrastive Self-
Supervised loss SCE to perform knowledge distillation as
illustrated in Fig. 3. To do so, we consider the following in-
puts:

* Alarge video X € RTo-C-H:W of T frames that is divis-
ible by T with T; = T, /T, sampled from a dataset.

+ A bank of spatio-temporal features P € RM#:Dt of size
Mp and dimension D; that can be aligned temporally
with small window of T frames within any sampled large
video. More specifically, each small window is associated
with the temporally closest feature of its middle frame.
Therefore for each sample X a set of features PX ¢
RT::DPt is selected from P. As a preprocessing stage, this
bank of features is extracted from a pretrained model.

The video is augmented with a® ~ T3 such as
X? = a*(X). Each global window is split into 7; =
Ty/Ts smaller windows and the input is reshaped to
(T, Ts,C, H,W). It passes through the spatial transformer
to output h = f,(X?) with h € RT**? and D the output
dimension of the spatial transformer. A masking ratio
is applied to replace «v; * T; tokens with a learned mask to-
ken. The temporal transformer adds a positional embedding
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Figure 4. Fine-tuning to the action spotting task. Some spatial
output tokens are masked.

to each token and computes z = ¢, (h) with z € RT:-P* and
D, the dimension of the temporal output tokens.

The SCE loss is applied on each token of z with the as-
sociated set of features PX as follows. First, a target rela-
tion distribution s is computed on each of the features in
PX with the complete bank. A one-hot label is mixed with
this distribution with a coefficient A to form the target dis-
tribution w2. Then, each token in h predicts this target dis-
tribution by computing its similarity distribution s with the
complete bank of features. Finally, the loss is applied:

exp(z} - Pi/T
sl = kB B/ 3)
Zj:l -exp(z; - B /7)

]lpixyépk ~exp(PX - Py/7m)

Stk = —7 )
Zj:Pl ILPixyépj : eXP(Pz’X - P /Tm)
wi, = Mpx_p, + (1= N)si, )
1 &
Lsce = T Z;WZQ log(s;)- (©)

The KD enforces that each temporal token contains the
information of its corresponding smaller window while
allowing contextual information from the larger window
thanks to the temporal transformer. The SCE loss enables
the spatio-temporal token representation to model the rela-
tions among spatio-temporal small windows that the bank
of features contains. Depending on how the features are
extracted, the KD can be considered as supervised or self-
supervised as discussed in Sec. 4.2.



3.4. Fine-tuning

The input video X considered in this section has the
same shape as for spatio-temporal pretraining and passes
through the spatial and temporal transformer that outputs
z = ts(fs(a*(X))) with a* ~ A*, a data augmentation.

To train the model to the action spotting task with C'
classes, a classification head c, is placed upon the tempo-
ral transformer and is applied on each of the temporal out-
put tokens to predict § = c4(z) with y € RT>C as illus-
trated in Fig. 4. Each token is associated with the average
timestamp to the corresponding small window they repre-
sent. The masking strategy from the spatiotemporal pre-
training is maintained during training by randomly masking
ao X Tj spatial output tokens.

For supervision, each ground truth action that falls into
the T;; sampled window is associated with the input frame
timestamps that fall into a temporal radius displacement €
with the action. For each T smaller window, if at least one
of its frames is associated with an action, the label associ-
ated with its temporal output token is 1 and otherwise O to
form the vector of label y € R7::C.

The action classes are considered independently, there-
fore we apply a Sigmoid activation function to the classi-
fier. During training, the Binary Cross Entropy (BCE) loss
is computed for each class at each timestamp as follows:

T, C

1 N
Loow =75 3 yiclog(ie) (7)

t=1 c=1

During inference, the predictions are assigned to the out-
put timestamps of their temporal token. A sliding window
with overlap is performed on the videos. For overlapped
predictions, a strategy is applied to only keep one predic-
tion per class per timestamp, such as keeping the maximum
or the average of predictions.

4. Empirical study

In this section, we will first review the implementation
details of each step, then perform an ablation study on the
different parts of our pipeline, and finally compare our-
selves with the state of the art.

4.1. Implementation details

We launched our experiments on three seeds and aver-
aged the results.

Dataset. We performed our study on the SoccerNet-v2
[14] action spotting dataset. It contains soccer matches di-
vided into two halves of about 45 minutes. It has three anno-
tated splits of 17 classes with 300 matches for training, 100
for validation, and 100 for testing. There is also a challenge
split that contains 50 videos for which annotations are not
given. The metric used is the tight-Average mean Average

Precision, t-AmAP for short, which evaluates predictions
that fall on average between 1-5 seconds. We extracted the
video frames at resolution 398 x 224 at 2 Frames Per Second
(FPS). The dataset provides pre-computed Baidu [65] fea-
tures at 1 FPS for all splits. We performed a PCA on these
features to reduce the dimension to 512 for distillation.

Spatial and Temporal transformer architectures. For
the spatial transformer, two different architectures are used:
ViT [17] and Swin [35]. The temporal transformer is a stack
of 4 attention layers from a ViT architecture. For ViT, the
global architecture corresponds to the ViViT model 2 [1].
We keep this name and refer to the Swin-based architecture
as ViSwin. More details can be found in the supplemen-
tary material. For optimization, we used the ADAMW opti-
mizer with a weight decay of 0.05. The initial learning rate
depends on the step as well as the backbone and is detailed
in the supplementary material.

Spatial pretraining. To perform the pretraining of the
spatial transformer, we follow SCE [15]. More specifically
we use a projector for the online and target branches and a
predictor for the online branch. For data sampling, all sub-
videos of 1 second are used. Details can be found in the
supplementary material.

Spatio-temporal pretraining. To perform the pretrain-
ing of the spatial and temporal transformers, we follow SCE
[15]. We apply a projector on top of each output tempo-
ral token and we distill information from the reduced Baidu
features. Details can be found in the supplementary mate-
rial. For data sampling, we randomly extract 150 videos of
32 seconds, or 64 frames, per match at each epoch.

Fine-tuning. To perform fine-tuning, common data aug-
mentations are applied as well as mixup [61]. For data sam-
pling, 100 videos per match per epoch are sampled uni-
formly. The classifier is first initialized and then the whole
backbone is fine-tuned. Details can be found in the supple-
mentary material.

Inference. During inference, a sliding window with
half overlap is applied on all videos. For multiple times-
tamp classifications, the maximum of predictions per ac-
tion is kept. No data augmentation is applied. A hard Non-
Maximum Suppression (NMS) of a 5-second window is ap-
plied. The 6 first and last seconds of each window are ig-
nored to keep predictions with past or future context.

4.2. Ablation study

In this subsection, we will make various ablations to
highlight the advantages of our 3-step approach, our mask-
ing strategy, and how the model and data sampling affect
performance. The majority of the ablation study is per-
formed on ViViT Tiny to reduce the cost of training. The
models in this section are trained on the training split and
evaluated on the validation split.



Model Params (M) GFLOPs t-AmAP (%)
ViViT T 7.5 41.2 64.7
ViViT S 290.1 149.5 65.9
ViSwin T 55.9 145.6 66.1

Table 1. Influence of the model architecture on the t-AmAP.

Depth  Params (M) GFLOPs t-AmAP (%)
4 7.5 41.2 64.7
6 8.3 41.3 65.4
8 9.2 41.3 65.3

Table 2. Influence of temporal depth on ViViT-T for the t-AmAP.

Architectures. We test two architectures for the spatial
part, ViT [17] and Swin [35]. Because the output embed-
ding dimension of the spatial transformer is the one used
for the temporal transformer, the number of parameters in-
creases quadratically with the spatial dimension. As going
deeper with Swin increases the token dimension, its output
dimension token is large which leads to a larger number of
parameters for ViSwin’s temporal encoder in comparison
with ViViT’s. We compare the performance of ViViT and
ViSwin in Tab. 1. ViSwin Tiny shows an improvement over
ViViT Tiny with +1.4 percentage points (p.p). However,
this improvement comes with a price of about 7.5 times
more parameters. Going from Tiny to Small for ViViT im-
proved by +1.2 p.p for about 4 times parameter. But, its
GFLOPs are slightly higher than ViSwin Small suggesting
the Swin spatial transformer is more efficient for larger net-
works.

We also test a deeper temporal transformer as the ma-
jority of computation comes from the spatial transformer
by design [1]. Indeed for ViT, it sees for a global window
6,272 tokens whereas the temporal transformer only has 32.
Therefore, besides increasing the number of parameters,
the cost of making a deeper temporal transformer is com-
putationally negligible in comparison with a deeper spatial
transformer. The baseline is a depth of 4 blocks of attention
and we increase it to 6 and 8. The results are reported in
Tab. 2 and show that increasing the temporal depth to 6 in-
creases the t-AmAP by 0.7 p.p and going deeper decreases
performance. In contrast with ViViT applied to action clas-
sification [1] we increase performance with a deeper tem-
poral transformer probably because action spotting requires
modeling more complex temporal dependencies.

Size of context. Intuitively, the size of the temporal con-
text influences how our model perceives actions. We study
this influence in Tab. 3 by increasing 2 times and 4 times the
temporal context. To keep the computational cost the same
between different sizes, we adapt the batch size adequately.
Increasing it 2 times improved the results by +1.3 p.p and

Window duration (s) t-AmAP (%)
32 64.7
64 66.0
128 65.5

Table 3. Influence of temporal length on ViViT-T on the t-AmAP.

aq a2 t-AmAP (%)

None

0.00 0.00 64.7
Only fine-tuning

0.00 0.50 55.5
Only pretraining

0.25 0.00 64.9
0.50  0.00 65.1
0.75 0.00 64.8
Both

025 0.25 65.2
0.50 0.50 65.0
0.75 0.75 63.5

Table 4. Influence of masking ratio during spatio-temporal pre-
training («v1) and fine-tuning (a2) on ViViT-T on the t-AmAP.

a larger context shows a slight decrease. This verifies that
for a better understanding of soccer actions, a large tempo-
ral context is necessary.

Masking. Steps 2 and 3 of our training pipeline incor-
porate a temporal masking strategy. This masking has two
goals: limit the overfitting of our model and make the tem-
poral transformer focus on contextual information instead
of just aligning its output with its input. We show the ad-
vantage of this masking strategy in Tab. 4 by masking only
during pretraining, only during fine-tuning, or both. First,
masking during only fine-tuning drastically decreases per-
formance by —9.2 p.p. Masking during pretraining in-
creases results by up to 0.4 p.p for 50% tokens masked and
masking during both steps increases up to 0.5 p.p for 25%
tokens masked. Performance decreases with further mask-
ing. These results suggest it is necessary to initialize the
mask token during pretraining. Also, the percentage of to-
kens to mask seems to be different for optimal performance
during pretraining and fine-tuning, and fewer masking dur-
ing fine-tuning seems better.

Steps. Our training pipeline consists of three steps, each
adding complexity. Here, we validate the usefulness of each
step. We evaluate the quality of our learned representation
in step 1 by comparing its performance with a supervised
pretrained ViT Tiny model on ImageNet 21k that contains
14 million labeled diverse images. To ensure a fair compar-



Stepl Step2 Step 3 epochs t-AmAP (%)

X X 100F 48.1
SN X 100F 54.7

IN X 100F 57.7
SN v 50F 62.2

X v 30C + 20F 60.0
SN v 30C + 20F 64.7

IN v 30C + 20F 65.0

Table 5. Influence of the pretraining steps and the number of
fine-tuning epochs on ViViT-T on the t-AmAP. SN stands for
SoccerNet-v2 MoCo self-supervised pretraining, and IN for Ima-
geNet21k supervised pretraining. C stands for training the classi-
fier and F for fine-tuning the whole model.

Depth  Sequence Masking t-AmAP (%)
X X X 64.7
v X X 65.4
X v X 66.0
X X v 65.2
v v X 66.1
X v v 66.2
v v v 66.6

Table 6. Influence of best parameters for temporal depth and
length, and the masking strategy on ViViT-T on the t-AmAP.

ison with spatiotemporal pretrained backbones, when step 2
is not performed, we perform a longer fine-tuning.

We report results in Tab. 5. Each step consistently im-
proves performance. Indeed, training from scratch reaches
48.1% t-AmAP. Adding step 1 increases up to 54.7% for
SSL pretraining and 57.7 % for ImageNet pretraining. This
suggests that the spatial transformer takes advantage of ini-
tialization from a large diversity of data and that our SSL
pretraining can be improved. Step 2 further improves re-
sults, even with random spatial initialization which reached
60.0% t-AmAP. With SoccerNet weights, it increases to
64.7%, and with ImageNet weights, it reaches 65.0%. The
gap between SoccerNet and Imagenet pretraining in step 1
is almost closed in step 2. As our SSL approach was trained
on videos, while ImageNet weights were obtained on im-
ages, we argue that our second pretraining stage benefits
from having initial spatiotemporal features. Initializing the
temporal transformer accelerates convergence and improves
results compared to training from scratch or step 1. This re-
duces the cost of pretraining, allowing future work to per-
form fast experiments in the fine-tuning phase.

All together. In Tab. 6, we test adding together the dif-
ferent best hyperparameters for a deeper temporal trans-
former, larger temporal context, and temporal masking.
Previously, we showed that the larger improvement came

Pretraining
Features Dataset  Fine-tuned CAmAP (%)
SCE [15] K400 63.6
SCE [15] K400 v 65.7
Baidu [65] K400 v 66.6
Table 7. Influence of features to perform KD on ViViT-T

on t-AmAP. Supervised features provide best results and self-
supervised features of SCE achieve good performance.

NMS Ignore (s) Window (s) t-AmAP (%)
Default inference

hard 6 5 66.6
Best inference for soft and hard NMS

hard 12 3 67.1

soft 12 10 68.0

Table 8. Best inference parameters on ViViT-T on the t-AmAP.

from increasing the temporal context so we add other com-
ponents to it. Increasing temporal depth adds 0.1% whilst
using the masking strategy adds 0.2% which makes them
marginal in comparison with previous improvements. How-
ever, combining the three improves 0.6% to attain our best
result of 66.6%. This confirms that a large temporal context
is the most determining component to improve performance
and that the masking strategy scales with the number of pa-
rameters and ensures new information is learned.

Bank of features. We change the bank of features used
from Baidu [65], which necessitates fine-tuning of 5 models
pretrained on Kinetics400 [33] to obtain, with two options:
extracted features from SCE [15] pretrained R3D50 on Ki-
netics400, and its fine-tuned version to the action spotting
task. The clips used for the R3D50 last 4 seconds and fine-
tuning is performed on the middle frame. We report results
in Tab. 7. Baidu features achieve best performance thanks
to its 5 aggregated models, but SCE fine-tuned, which is
1 model, is enough to achieve competitive performance.
Also, using the self-supervised model loses —2.1p.p but
opens an interesting perspective toward pretraining a self-
supervised model on a closer domain for feature extraction.

Inference pipeline. The inference has also a huge im-
pact on performance. There are 3 parameters that we take
into account: whether to use hard or strong NMS, the num-
ber of seconds to ignore at the beginning and end of each
window prediction, and the size of the NMS window. In
Tab. 8, we provide the results of the best parameters that
we found for hard and soft NMS which are detailed in the
supplementary material and we empirically observe a better
performance for soft NMS.



Method Input  t-AmAP (%)
NetVLAD++ [24] F 11.5
AlmagelLLab RMSNet [51] F 28.8
Baidu [65] F 47.1
Faster-TAD [8] F 54.1
SpotFormer [5] F 60.9
E2E-Spot [29] 1 61.8
Spivak [49] F 65.1
COMEDIAN (ViViT-T) 1 70.7
COMEDIAN (ViSwin-T) 1 71.6
COMEDIAN (ViViT-T - ens.) 1 72.0
COMEDIAN (ViSwin-T - ens.) 1 73.1

Table 9. Comparison with the state of the art on the test split of
SoccerNet-v2. F stands for methods using a feature extractor, / for
methods end-to-end with image inputs.

Method Input  t-AmAP (%)
Challenge 2022 leaderboard

Baidu [65] F 49.56
Transformer-AS [66] I 52.04
Faster-TAD [8] F 64.88
E2E-Spot [29] I 66.73
Spivak [49] F 67.81
Challenge 2023 submission

Spivak* [49] F 68.33
COMEDIAN (ViViT-T - ens.) I 68.38

Table 10. Comparison with the state of the art on the challenge
split of SoccerNet-v2. F stands for methods using a feature ex-
tractor, / for methods end-to-end with image inputs.

4.3. Comparison with the State of the Art

Implementation details. For comparison with the state
of the art, we take the best settings found in the ablation
study for fine-tuning and inference. The results labeled ens.
means we use the average predictions of 3 seeds. We evalu-
ate on the test split as well as the challenge split. When we
evaluate on the test split, spatiotemporal pertaining and fine-
tuning are performed on the training and validation splits,
and for the challenge all annotated splits are used.

Comparison on test split. We report our results in
Tab. 9. We compare ourselves with methods that use a se-
quence of images as input or a feature extractor. We ob-
serve that COMEDIAN with ViViT Tiny provides a signifi-
cant improvement over the state of the art by +5.6 p.p on t-
AmAP. ViSwin Tiny increases performance by 0.9 p.p but
at a high cost in terms of computational usage. Finally us-
ing an ensemble of our 3 seed, we achieve 72.0% t-AmAP
for ViViT Tiny and 73.1 % for ViSwin Tiny. These results
empirically prove that our approach even with a small net-
work produces state-of-the-art results by using our initial-

izing pipeline. It is worth noting that we perform a simple
fine-tuning stage. Previous approaches only focused on the
fine-tuning part and because the two are not mutually ex-
clusive, it opens interesting perspectives for future work to
build better fine-tuning upon our approach.

Comparison on challenge split. We report our results in
Tab. 10. We compare with some participants from the Chal-
lenge 2022. We also report the result of the baseline of the
Challenge 2023 [49] in which we participated, which is an
improved version of the winner of 2022. Our proposed CO-
MEDIAN achieves 68.38% on global t-AmAP for ViViT
Tiny. Contrary to the test split we do not have a gap with
previous state-of-the-art methods and achieve +0.56 p.p in
comparison with 2022 best result and 4-0.05 p.p in compar-
ison with 2023’s. Because of the opacity of the challenge
split’s labels, it is difficult to investigate the discrepancy be-
tween the test and the challenge. Compared with the best
end-to-end methods E2E-Spot [29], our approach achieves
a more significant improvement of 4+-1.64 p.p on t-AmAP.

5. Discussion

We discuss potential improvements and future directions
for enhancing COMEDIAN. For spatial pretraining, we
identify three directions: increasing the amount of training
data, the number of frames, and designing a SSL task for se-
mantically sparse images. For spatio-temporal pretraining,
we suggest exploring temporal models better suited to ac-
tion spotting and improving KD by using SSL-learned fea-
tures from a large close domain. In the fine-tuning stage, we
suggest improving the labelization and designing losses that
make use of relationships between different action classes
and are capable of dealing with challenging actions such
as card-related ones. Finally, our study focused on soc-
cer action spotting and studying the generalization to other
datasets and general TAD is an interesting perspective.

6. Conclusion

In this chapter, we introduce COMEDIAN a novel ap-
proach for Action Spotting that leverages self-supervised
learning and knowledge distillation to initialize a spatio-
temporal transformer. It achieves state-of-the-art results on
the SoccerNet-v2 action spotting task, demonstrating the
effectiveness of the proposed pipeline. By utilizing unla-
beled video data for pretraining, we address the subjective
and resource-intensive manual labeling processes for action
spotting. The pretraining cost is leveraged by a faster and
better convergence during fine-tuning. While our approach
shows promising results, there are areas for improvement in
the pretraining and fine-tuning steps and we hope that our
approach will open the path to new methods to increase per-
formance on action spotting and temporal action detection
with spatio-temporal transformer models.
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A. Implementation details
A.1. Architectures

Encoders. For the spatial encoder, two different trans-
former architectures are used: ViT [17] and Swin [35]. By
default, the temporal encoder is a stack of 4 attention layers
as in ViT architecture. For ViT, the global architecture cor-
responds to the ViViT model 2 [1]. We keep this name and
refer to the Swin based-architecture as ViSwin. In Tab. 11,
we provide the input dimension of tokens for the spatial
and temporal encoders, and their number of parameters and
GFLOPs for ViViT Tiny, ViViT Small, and ViSwin Tiny.

For all models, the majority of the computations are per-
formed in the spatial encoder which sees a lot of tokens,
and the temporal encoder computational cost is negligible.
However, the number of parameters does not scale well with
the output dimension of the spatial encoder, due to the self-
attention mechanism, which is reflected in ViSwin Tiny. It
has 4 times more temporal parameters than ViViT small but
only 1.25 times more spatial parameters. However, as Swin
has less reduced computational usage in comparison with
ViT by design [35] it scales better to deeper spatial archi-
tectures.

A.2. Optimizers

We use the optimizer ADAMW for pretraining and fine-
tuning with a weight decay of 0.05. The initial learning rate
depends on the training step as well as the backbone as de-
tailed below. However, the steps follow different linear scal-
ing rules for an initial learning rate 7:

batch_size

* Step L: Nscated = N X 25555

batch_size

e Step 2 and 3: Nscaled = M X 256
the number of global frames per video.

T, .
X &1 with T

Step 1. The initial learning rate is 7 = 5 x 10~% with
10 epochs of warmup and a cosine annealing scheduler is
applied throughout training.

Step 2. The initial learning rate is 7 = 0.002 with 10
epochs warmup and cosine annealing scheduler that ends at
0.01 x 7.

Step 3. The initial learning rate is n = 5 x 10~* for
ViViT and 7 = 3 x 10~ for ViSwin that ends at 0.01 x 1.

A.3. Spatial Pretraining.

To perform the pretraining of the spatial encoder, we
follow practices introduced by pMoCo [21] and SCE [15].
More specifically we use a 3 layers Multi-Layer Perceptron
(MLP) on top of the online and target encoders of hidden
size 1024 and output size 256 that is discarded after this
step. The online predictor is a 2 layers MLP with the same
hidden and output size as the projectors. The data augmen-
tation distributions are the standard contrastive ones used
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on images [ 5] and the temperature applied is 7 = 0.1. The
momentum buffer size is 65,536. For data sampling, all
sub-videos of 1 second, or 2 frames, are used. The model is
trained for 100 epochs with a batch size of 1024.

A 4. Spatio-temporal pretraining.

To perform the pretraining of the spatio-temporal en-
coder, we follow practices introduced by SCE [15]. More
specifically we use a 3-layer MLP on top of the temporal en-
coder of hidden size 1024 and output size 512 to match the
dimension of the Baidu [65] features. The projector is later
discarded. For the SCE loss parameters we use 7 = 0.1,
Tm = 0.07, A = 0.5. The data augmentation used is the
strong. without cropping reported in the SCE paper. For
data sampling, we randomly extract 150 videos of 32 sec-
onds or 64 frames per game at each epoch. The batch size
for 32-second videos at 2 FPS is 64. For longer clips, the
batch size is inversely proportional to the length and num-
ber of windows. For example, for 64 seconds, the batch size
is 32 and the number of windows sampled per match is 75.

A.S. Finetuning.

A linear classifier is applied to each output temporal to-
ken to perform fine-tuning. Each video sampled is aug-
mented by using color jittering with probability 0.8 and of
strength 0.4 on brightness, contrast, and saturation and 0
for hue to avoid changing the color of cards. Random Gaus-
sian blur is also applied with probability 0.5 and a kernel
size of 23 with o € [0.1, 2.]. A horizontal flip of probability
0.5 is also applied followed by a mixup [01] whose mixing
coefficient is sampled by a Beta law 5(0.1,0.1).

The classifier is first trained during 30 epochs for its ini-
tialization and then the whole architecture is fine-tuned for
20 epochs for ViViT and 10 for ViSwin. The learning rate
is reset for the second part.

For data sampling, 100 videos per match are uniformly
sampled whilst enforcing that the beginning and end of each
half are selected to avoid missing kickoffs and last-second
actions. The batch size for 32-second videos at 2 FPS is
128. For longer clips, the batch size is inversely propor-
tional to the length and number of windows. For example,
for 64 seconds, the batch size is 64 and the number of win-
dows sampled is 50 per match.

B. Inference hyper-parameters search

During inference, a sliding window with half overlap
is applied on all videos. For multiple timestamp classi-
fications, the maximum of predictions per action is kept.
No data augmentation is applied. By default, a hard Non-
Maximum Suppression (NMS) of a 5-second window is ap-
plied. The 6 first and last seconds of each window predic-
tion are ignored to keep predictions that have past and fu-
ture context.



\ ViViT Tiny

ViViT Small | ViSwin Tiny

Input dim \ CxTyx HxW

CxTyx HxW | OxTyxHxW

Spatial encoder

Input tokens dim | (£ x W 1) x T x 192 | (£ x W 4 1) x T2 x 384 | L x W x Ts x 96
Num parameters 5.7TM 22.0M 27.56M
GFLOPs 41.19 149.30 144.68
Temporal encoder

Input tokens dim % x 192 % x 384 % X 768
Num parameters 1.8M 7.1M 28.4M
GFLOPs 0.06 0.24 0.96
Global model

Num parameters 7.5M 29.1M 55.9M
GFLOPs 41.25 149.54 145.64

Table 11. Comparison of the ViViT Tiny, ViViT small, and ViSwin Tiny spatial and temporal encoders and global model in terms of

computational usage.

Seconds t-AmAP (%)
0 66.4
2 66.6
4 66.7
6 66.6
8 66.6
10 66.8
12 66.8
14 66.8
16 66.7

Table 12. Influence of the number of seconds ignored at the start
and end of each window prediction on the t-AmAP.
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Figure 5. Influence of the soft and hard NMS and its window size
in second on the t-AmAP.
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In Tab. 12, we study the effect of varying the number of
seconds to ignore. Taking all predictions has the worst re-
sult of 66.4% t-AmAP showing that it is interesting to re-
move predictions on edge that do not have access to the con-
text from the past or the future. The results increase up to
66.8% at 10 seconds and are stable for further seconds ig-
nored. The increase in performance is relatively low and
can be explained by the fact that the inference sliding win-
dow allows for some undetected predictions on edges to be
retrieved by past or future windows.

In Fig. 5, we study the effect of using Hard or Soft NMS.
As for [49], we see an increase in using soft NMS over
hard NMS. Depending on the NMS type the optimal tempo-
ral window size for NMS is not the same. The best results
are achieved for a hard NMS with a 4-5 seconds window at
66.8% t-AmAP and 68.0% for a soft NMS with an 11-17
seconds window. The results show that not only does soft
NMS perform better than hard NMS but is also more stable.
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