
Evaluating Pretrained models for Deployable Lifelong Learning

Kiran Lekkala, Eshan Bhargava, Yunhao Ge, Laurent Itti
klekkala@usc.edu, ebhargav@usc.edu, yunhaoge@usc.edu, itti@usc.edu

Thomas Lord Department of Computer Science
University of Southern California

First two authors contributed equally

Abstract

We create a novel benchmark for evaluating a Deploy-
able Lifelong Learning system for Visual Reinforcement
Learning (RL) that is pretrained on a curated dataset, and
propose a novel Scalable Lifelong Learning system capable
of retaining knowledge from the previously learnt RL tasks.
Our benchmark measures the efficacy of a deployable Life-
long Learning system that is evaluated on scalability, per-
formance and resource utilization. Our proposed system,
once pretrained on the dataset, can be deployed to perform
continual learning on unseen tasks. Our proposed method
consists of a Few Shot Class Incremental Learning (FS-
CIL) based task-mapper and an encoder/backbone trained
entirely using the pretrain dataset. The policy parameters
corresponding to the recognized task are then loaded to per-
form the task. We show that this system can be scaled to in-
corporate a large number of tasks due to the small memory
footprint and fewer computational resources. We perform
experiments on our DeLL (Deployment for Lifelong Learn-
ing) benchmark on the Atari games to determine the efficacy
of the system.

1. Introduction
Humans have an innate ability to sequentially learn and

perform new tasks without forgetting them, all while lever-
aging prior knowledge during this process. Continual learn-
ing is an imperative skill that needs to be acquired by any in-
telligent machine. This is especially true in the real-world,
where environments keep evolving; thus, agents need to re-
member previously executed tasks in order to perform these
tasks in the future without forgetting. Current continual
learning methods use complex memory modules and data
augmentations that become difficult to scale and deploy on
real-world robotic systems. Furthermore, it’s important that
models are pretrained offline using large datasets so that
when deployed they offer good inductive bias to warm-start
the learning process.

Figure 1. An example run for a typical Lifelong Learning system.
The agent is given tasks sequentially with an objective of maximiz-
ing performance and minimizing total training time and resource
utilization. Training time is counted only during the Learn mode.

As an attempt to solve the Lifelong Learning problem
for Visual Reinforcement Learning (RL), especially those
having more representation complexities than the control,
we propose a simple, yet efficient Lifelong Learning system
that can be pretrained on a large dataset offline and deployed
on a real-world system. The core of our system consists of
a meta task-mapper that learns to identify tasks, even when
new tasks are given on the fly. Our method’s primary nov-
elty lies in the fact that the system is pretrained on a dataset
and performs continual learning on a benchmark, with no
overlap between both the data distributions.

Lifelong Learning has gained massive popularity in the
recent years. [8] proposes a self-improving Lifelong Learn-
ing framework for mobile robot navigation to improve be-
haviour purely based on its own experience and retain the
learnt tasks, but such robots have to retain the experiences
of the previous environments. Methods like CRIL [5] ap-
ply deep generative replay to alleviate Catastrophic Forget-
ting by generating pseudo-data to train new tasks. Deep

ar
X

iv
:2

31
1.

13
64

8v
2

 [
cs

.L
G

]
 1

7
D

ec
 2

02
3

Figure 2. Evaluating Deployable Lifelong Learning system involves pretraining a system on a dataset and then deploying it. This process
consists of freezing the model parameters and allowing the system to quickly learn and adapt to unseen tasks on the fly. As we can see in
the above figure, during deployment, the model sequentially accommodates continual learning on a variable number of tasks by adding a
few parameters or datapoints in the data-buffer.

Reinforcement learning (RL) amidst Lifelong Learning is
explored by [2]. Progressive networks [13] start with a
single column and a new column for new tasks, although
this method is limited by parameters growing faster than
the number of tasks. [2] introduces hypernetworks, a meta-
model that generates the parameters of a target network that
solves the task by using a trainable task embedding vector
as an input.

[14] follows a similar setting as ours as it uses pretraining
and then online learning, however only the policy and the
critic are pretrained and data collected is mixed and filtered.
Likewise, DARC [3] uses domain adaptation and transfer-
learning. The model can overcome the difference between
the source and target environment, including dynamics, by
estimating δr using a pair of binary classifiers. Online adap-
tion or forward transfers are explored in [6, 1]. Distillation-
based methods [12, 16] are well suited for model/data com-
pression, imitation and multi-task learning. [16] involves
model distillation by keeping the policy closer to the be-
haviour policy that generated the data.

Offline pretraining is a fast growing field that involves
using unlabeled, unorganized data that can be used to learn
a pretrained representation model [1]. This model can be
used to learn the inductive bias of tasks (like temporal se-
quencing), relationships of actions with states, and value
function estimates corresponding to a state. Currently, the
only forward transfer we have in our system is the priors that
the backbone/encoder model learns during the offline pre-
training, but we are currently working on improving trans-

fer within the games pertaining to the same type.
Existing Lifelong Learning benchmarks evaluate many

aspects of the system. [11] is one of the first few proposed
benchmarks for RL. Compositional Lifelong Learning, like
[9], evaluates on the functional aspects of Lifelong Learn-
ing. In the OpenAI Atari suite, Gym Retro [10] consists of a
large-scale game emulator that has over 1000 games, which
could be used to train RL agents. Unlike the above, our
benchmark primarily focuses on scalability and resource
utilization for deployable Lifelong Learning systems. The
following are the outlined contributions for this paper:

1. We collect YouTube videos of Atari games (not in the
OpenAI Atari suite) played by human experts and cre-
ate a dataset that is used by a Lifelong Learning system
for pretraining. The model is evaluated on sequential
learning of unseen games that are based on OpenAI
Gym, and have no overlap with games in the pretrain
dataset.

2. To evaluate Deployable Lifelong Learning system on
performance and resource utilization, we propose a
novel benchmark. The code and leaderboard for using
the benchmark are made available.

3. Lastly, we propose a novel method that uses the above
dataset and benchmark. Our method is based on Few
Shot Class Incremental Learning (FSCIL) to learn task
differences from the pretrain dataset collected offline
and quickly generalize to unseen games.

Figure 3. Proposed architecture of our system. Our system contains an encoder and a task-mapper that are pretrained on a large offline
dataset. When deployed, our system can identify the previously learned task using the observation from the game. By detecting the task,
the appropriate policy can be loaded. On the top, we have the task-mapper, whose last layer is adapted based on the policies the model is
currently learning. Arrows and the red modules represent the current policy, selected and loaded, by the task-mapper.

2. Dataset and Benchmark

Before describing our proposed method for Scalable and
Deployable Lifelong Learning, we first detail our dataset
and benchmark for evaluation. These could be used by re-
searchers to evaluate their models to asses the ability when
deployed on real-world systems.

2.1. Dataset for Pretraining

To pretrain the system, we collected a dataset using
expert-played YouTube videos, such that every video was
extracted at 10fps to obtain a sequence of observations. All
of these games are different from the games in OpenAI
Atari suite. A total of 1,116,275 images with a dimension
of 360 × 480 were collected as part of the pretrain dataset.
All the images were cropped and resized to 84 × 84. The
list of the games and the format of the dataset can be found
here 1

For each video frame, we also extract associated rewards
directly from the frame. Every Atari game consists of the
score that is awarded from the start of the game. We use
Tesseract OCR engine [7] by providing the bounding box
of the reward location for each video in order to obtain the
reward value for each frame. All the rewards are normalized
across both the video and the game by only computing the
difference of rewards of the frames as given in the equation
below:

1https://klekkala.github.io/atari101

rtnorm =

{
0, rt − rt−1 = 0,

1, rt − rt−1 > 0.
(1)

The dataset consists of 101 folders, each corresponding
to a specific game. Each folder consists of a set of Numpy
files that consists of a sequence of observations along with
the normalized reward value.

Along with the pretrain dataset, we also provide a meta
file describing each of the games in the pretrain dataset. The
meta file consists of the following attributes

1. Game Name: Name of the specific game.

2. Game Type: Genre of the game. Various Atari games
are classified under genres like Shoot’em up, Maze etc.

3. Input Text: A brief description of the game’s objec-
tive. This would enable the agent to understand the
game and reuse any previously learnt skills.

4. Minimum Reward: Minimum reward required by the
agent to not switch to learn mode. This reward is com-
puted by evaluating a specific game using a frozen,
randomly initialized model.

5. Maximum Reward: Reward obtained by an end-to-
end trained agent. We used a CNN Encoder and the
PPO Algorithm for training.

https://klekkala.github.io/atari101

Figure 4. Pictorial overview of our method. With every new game the agent learns, the task-mapper needs to adapt the last layer parameters
such that it’s able to include the new game in the class prediction. Blue training curves represent the model training on a specific game.

2.2. Benchmarking Deployable Lifelong Learning

Once a model is trained on the above dataset during
the pretraining phase, we then evaluate the model’s perfor-
mance on the DeLL benchmark. Note, that we use the term
”model” not only for the checkpoint but also as a program
for the entire system that takes in an input from the bench-
mark. The benchmark loads the pretrained model and per-
forms evaluation.

A specific Benchmark DeLL is parameterized by α and
β. α corresponds to the total number of unique games
present in the benchmark, and β corresponds to the total
number of games the agent is given one after the other.
Note that for all cases, β > α. A specific DeLL bench-
mark consists of .yaml file that has a list of games and
the specific game type. Its always assumed that all the
game types present in the benchmark are also present in
the pretrain dataset, although none of the game themselves
are present in the pretrain dataset. For example, the games
DemonAttack and SpaceInvaders are part of the bench-
mark and Xevious and Galaga are part of the pretrain
dataset, although all of them fall under Shoot up games.

We urge the reader to take note of some terminology that
is beneficial for understanding the benchmark. Firstly, we
use the term task and game interchangeably since we are
currently concerned with Atari games. A specific bench-
mark DeLL(α, β) consists of sequentially evaluating the
model on β games, which we call a run. In a run of β
games, there are α unique games. A model learns or per-
forms inference on any game in the β games during a ses-

sion. A high-level overview of a run is presented in Figure
1.

Any method/model that is evaluated on a specific bench-
mark yields 4 different metrics. The following metrics are
employed to evaluate the Lifelong Learning system that cor-
responds to a specific benchmark DeLL(α, β). α and β
correspond to the number of unique games and the total
number of games the agent is given one after the other, re-
spectively.

1. Model Size (MS) (In MB): The size of the model when
deployed.

2. Model Inference time (MI) (In ms): Mean inference
time of the model on all the β games in a run.

3. Learn Switches (LS): Number of times the agent
switches to learn mode. If the agent obtains a
score lower than the minimum reward, then the agent
switches to learn mode.

4. Model Growth (MG): Every time the model switches
to learn mode, and thereby learns a task, there is an
increase in buffer size, model size or both. This value
estimates the average percentage increase (in MB) of
the model after every learn switch.

5. Buffer Size (BS): A metric (in KB) the model uses to
avoid Catastrophic Forgetting. This could be any form
of data, including images, embeddings, rewards and
actions.

Figure 5. Reconstructions obtained from the trained VAE model
on the test-dataset. Note that the model has not been trained on any
of the above games. Odd rows correspond to the reconstructions
of the subsequent even rows.

6. Buffer Growth (BG) The average percentage increase
of the data buffer increase after every learn switch.

7. Mean Avg Reward (MAR) Measured during evalu-
ation of a game. This is an array metric, where the
length of the array corresponds to the total number of
unique games (α) in a run. This excludes the sessions
that the agent used for learning the game.

8. Total Normalized Mean Reward (TNMR): We nor-
malize all the values in the MAR array using the min-
imum and the maximum reward of the corresponding
game, and then compute the mean of the array to get
TNMR.

3. Proposed Method
We propose a Lifelong Learning system designed to

identify its originating task using minimal resources, mak-
ing it well-suited for real-time systems. One of the most im-
portant features of our method is that, unlike other methods,
it scales well when the number of tasks increases. The most
significant novelty of our method is that the entire system
is pretrained on a dataset that is different from the dataset
used in deployment.

3.1. Pretrained Encoder

We use a pretrained encoder to extract the relevant fea-
tures from the observations required for task identification

and downstream policy execution. During the deployment
phase, the pretrained encoder is frozen and used to infer the
embeddings, which are then utilized by the task-mapper.
Currently, we use a VAE-based encoder that is trained on
the pretrain dataset. The reconstructions obtained using the
encoder model is presented in Figure 5.

3.2. Meta Task-mapper

One of the major challenges in Lifelong Learning, apart
from reusing prior knowledge, is to continually adapt and
remember previous tasks. We tackle Catastrophic Forget-
ting by transforming Continual Learning into a task iden-
tification problem. By predicting the appropriate Task ID
during classification, we can load the appropriate policy that
was previously learnt, and perform the task. Since the poli-
cies are a 1 layer neural network, the number of tasks can
be scaled easily.

We utilize a meta task-mapper that is also trained of-
fline, along with the backbone, to recognize task differ-
ences. Given a few observations, the task-mapper learns
to identify which of the previously learnt tasks the current
task falls into. The task-mapper, denoted by, gϕ parameter-
ized by ϕ is trained on a large pretrain dataset. Since the
task-mapper has already recognized the differences in the
tasks during the pretraining phase, it only needs to adapt to
the new tasks using a few-shot learning setting.

In many real-world instances, the agent needs to keep
track of a diverse number of tasks that may keep increas-
ing. In this case, the task-mapper must also accommo-
date the newer predictions. To allow this, we apply CEC-
FSCIL [15], which was originally proposed to solve class-
incremental continual learning. This method uses a trained
graph neural network to learn the correspondences and rela-
tions of the classes. During the training phase, the method
uses pseudo-incremental training by simulating sequences
of different classes in the pretrain dataset. This would
mimic how each class would be included in every session
during test time. Furthermore the graph model allows a
trained task-mapper to be extended to indefinite number of
classes by aggregating a list of last-layer parameters corre-
sponding to each class. In the below equation, N corre-
sponds to the N -way classification:

Wlast = {w0, w1, w2, w3, ..., wN} (2)

Once the task-mapper receives the data embeddings for
the new sessions, the learnt classifiers in the current ses-
sion and previous sessions are fed to the graph model for
adaptation. The adaptation is done using the support data
for N way K shot classification. At any given point during
deployment, the data buffer would consist of N ∗ K dat-
apoints, where N is the number of learnt tasks (tasks that
made the model switch to learn mode). Finally, the updated

classifiers can be used for evaluation. As a baseline com-
parison, we also use a Meta learning [4] based task-mapper,
which unlike our FSCIL based task-mapper has no plastic-
ity. Nonetheless, it can still perform the task-mapping for
unseen data during deployment. In which case, for every N ,
there needs to be a different task-mapper. Although this is a
naive approach, compared to our task-mapper, we show that
even at the expense of more parameters, the CEC-FSCIL
based task-mapper outperforms Meta learning based task-
mapper for larger values of N .

Algorithm 1 System Pre-training

Require: Offline dataset DTrain containing only sequence
of observations {oi1, oi2, .., oiT }Mi=1

1: Train a ResNet VAE using DTrain

2: Freeze and obtain Encoder fθ from ResNet VAE
3: Initialize Task-mapper gϕ
4: while training not done do
5: Select train tasks τi ∼ pTrain

6: Obtain (Image, class) pairs
(o1, c1), (o2, c2), ..(oK , cK) corresponding to τi

7: Estimate and apply gradients using Meta learning or
FSCIL loss on gϕ

8: end while

Algorithm 2 System Evaluation

Require: Pretrained Backbone fθ
Require: Pretrained task-mapper gϕ
Require: List of learnt policies P of size N .
Require: Initialize Task-mapper output to N
Require: Initialize buffer dataDbuf containing N∗K data-

points
1: while not done do
2: Request task τ for evaluation
3: if mode = TRAIN then
4: Obtain data O and trained policy p through

O, p← RL-Procedure(τ)
5: Selective-Sample Offline data O into Ô
6: Update list of learnt policies P ← P ∪ p
7: Update buffer data Dbuf ← Dbuf ∪ Ô
8: Update output size for the task-mapper gϕ to N+1

9: Perform N way, K shot adaptation on gϕ
10: else
11: Obtain test observation(s) o ∼ τ
12: Infer Task ID i using the task-mapper gϕ(o)
13: Load Policy i from P and perform task τ
14: end if
15: end while

Once the backbone and the task-mapper are pretrained

on the offline data, using the procedure mentioned in Al-
gorithm 1, they are then deployed on a real-world system
and the last layer parameters of the task-mapper are updated
using K shot adaptation through the support set. In order
to obtain a maximum performance gain using the support
set, it’s important that we are selective about these K shot
support samples from the copious amount of data generated
during the RL procedure for learning the new task. Further-
more, by eliminating all the redundant data, we can min-
imize the computational overhead and accommodate more
tasks. Currently, we choose K random samples in a task
and store them in a buffer that gets propagated with new
sessions, although more optimal methods for selecting the
support set may exist. We will be exploring this in our fu-
ture work. We also show the evaluation/deployment of the
system in Algorithm 2.

3.3. Policy

To perform a specific task, we employ a 1-Layer pol-
icy that receives the feature embedding for action. Using a
Float16 quantized format, we store each policy in under 1.5
MB, tagged with its class-id from the task-mapper.

4. Evaluation and Results
We use a ResNet-based architecture for the VAE En-

coder. The encoder and the decoder block are built for a
84 × 84 image and result in a latent vector of size of 512.
The entire network was end-to-end trained for 100 epochs
which took about 27 hours on a NVIDIA V100 GPU. The
task-mapper consists of a Feed forward Neural Network
that has a variable last layer based on the number of learnt
tasks. The last layer weights are the only parameters that
are continuously updated as the agent keeps learning unseen
tasks, and the remaining parameters stay frozen.

4.1. Evaluation of the system

We perform experiments by evaluating our system on a
set of 11 Atari games from OpenAI Gym. The list of games
and their corresponding results are outlined in Table 2. Note
that for all these evaluations, the encoder was trained on the
pretrain dataset and frozen, and only the policy is trained on
the respective game. We also provide the results obtained
using our benchmark on our proposed Lifelong Learning
system and 3 other baselines (Random encoder, E2E (End to
end trained) and Meta learning based task-mapper) in Table
3.

4.2. Ablation experiments for task-mapper

The results obtained from the CEC-FSCIL task-mapper
are presented in Table 1, alongside a baseline comparison
from the Meta learning-based task-mapper. From these ta-
bles, we can see that the CEC-FSCIL task-mapper results

Table 1. On the left we see the accuracy of a Meta learning based task-mapper. On the right, we see the accuracy of a CEC-FSCIL based
task-mapper. The disadvantage of using a Meta learning based task-mapper is the need for separate last layer for each of the row, whereas
in the CEC-FSCIL based task-mapper a single pretrained task-mapper can be used for sequential adaptation.

1-shot 2-shot 5-shot 10-shot

5-way 0.80 0.84 0.93 0.94
10-way 0.65 0.77 0.84 0.88
20-way 0.55 0.62 0.75 0.80
30-way 0.42 0.51 0.56 0.57

1-shot 2-shot 5-shot 10-shot 15-shot

1-way 0.76 0.77 0.77 0.78 0.79
2-way 0.74 0.78 0.78 0.79 0.78
3-way 0.76 0.78 0.77 0.77 0.77
4-way 0.77 0.77 0.77 0.77 0.78
5-way 0.78 0.76 0.79 0.79 0.78
6-way 0.79 0.77 0.79 0.79 0.78
7-way 0.79 0.77 0.79 0.77 0.81
8-way 0.76 0.78 0.80 0.78 0.78
9-way 0.78 0.79 0.77 0.78 0.79

10-way 0.77 0.79 0.80 0.81 0.77
11-way 0.74 0.80 0.78 0.81 0.79
12-way 0.77 0.78 0.78 0.80 0.80
13-way 0.76 0.77 0.77 0.78 0.79
14-way 0.78 0.78 0.78 0.78 0.79
15-way 0.81 0.78 0.82 0.82 0.78
16-way 0.80 0.79 0.79 0.77 0.77
17-way 0.81 0.80 0.81 0.78 0.78
18-way 0.75 0.76 0.81 0.78 x
19-way 0.77 0.82 0.77 0.78 x
20-way 0.77 0.80 0.81 0.82 x

Table 2. Performance of the proposed system when evaluated on the games sequentially. Note that the reward values are formatted with
the respective mean/median value. Random and Trained correspond to the random or pretrained encoders that are frozen. Net-mean total
reward corresponds to the average value of the reward after multiplying the CEC accuracy to the Trained-agent reward value. This value
estimates the performance of our system during sequential evaluation of the games. Note that for all the sequentially executed tasks, the
CEC based task-mapper performs better than the baseline (Meta learning based task-mapper).

Name Random ML CIFL Trained Net-mean
AirRaid-v4 605.0/605.0 1.0 1.0 750.0/712.5 750.0
Assault-v4 272.0/268.0 0.8 0.76 300.3/315.0 228.2

BeamRider-v4 420.0/425.0 0.8 0.74 440.0/440.0 325.6
Carnival-v4 2123.0/2242.0 0.8 0.76 2639.0/2810.0 2005.64

DemonAttack-v4 240.0/255.0 0.8 0.77 276.0/257.5 212.5
NameThisGame-v4 3923.0/4310.0 0.65 0.78 4052.0/4230.0 3160.56

Pooyan-v4 1020.0/1120.0 0.65 0.79 1106.5/997.5 874.13
Gopher-v4 732.1/733.0 0.65 0.76 746.0/620.0 566.96

Riverraid-v4 2723.0/2740.0 0.65 0.78 2886.0/2815.0 2251.08
Solaris-v4 1001.0/1101.0 0.65 0.77 1094.0/840.0 842.38

SpaceInvaders-v4 401.0/435.0 0.55 0.74 427.0/385.0 315.98

stay consistent throughout different N way, whereas for the
Meta learning based task-mapper performs well with a low
N but the performance significantly drops with increasing
N .

5. Discussion and Conclusion

We propose a dataset and benchmark that allows for eval-
uating deployable Lifelong Learning systems. The dataset
consists of sequences of games and rewards obtained from
human expert played YouTube videos. A model, when pre-
trained on the offline dataset, is used as a warm-start to

Table 3. Performance of each baseline on our benchmark with
α = 5 and β = 10 parameters. Please refer to Page-5 for the
definitions of the metrics. Note that Random and E2E backbones
don’t have any buffer.

MS MG BS BG TNMR

Random 235 0 0 0 0.41
E2E 236 0 0 0 0.48
ML 257 0.51 1.2 5.6 0.67
CEC 242 0.13 1.2 5.7 0.71

adapt to unseen tasks. Furthermore, we propose a simple,
yet scalable framework for Lifelong Learning that involves
a task-mapper and a backbone that are both pretrained using
an offline dataset. The task-mapper evolves with each new
task and learns to identify a new task based on previously
seen tasks. The entire system is evaluated on a suite of test
tasks. Although our method is simple, it scales well, even
with a large number of tasks.

In this paper, we use a representation bottleneck that
learns embeddings of the observations solely based on ap-
pearance. Even when there are differences in appearances,
if the skills learnt are similar, the games can still be played
using a single set of parameters. For example, even though
Phoenix and AirRaid have different appearances, they share
the same action space and are both Shoot Up games. We
are currently working on incorporating representations that
are skill/dynamic-aware, as opposed to those based solely
on appearance, like VAEs. This would not only identify
previously learnt tasks, but also help reuse existing policy
parameters to play a new game sharing existing skills.

References
[1] Maruan Al-Shedivat et al. “Continuous Adaptation

via Meta-Learning in Nonstationary and Compet-
itive Environments”. In: 6th International Confer-
ence on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net, 2018.
URL: https://openreview.net/forum?
id=Sk2u1g-0-.

[2] Sayantan Auddy et al. “Continual Learning from
Demonstration of Robotic Skills”. In: CoRR
abs/2202.06843 (2022). arXiv: 2202.06843. URL:
https://arxiv.org/abs/2202.06843.

[3] Benjamin Eysenbach et al. “Off-Dynamics Rein-
forcement Learning: Training for Transfer with Do-
main Classifiers”. In: 9th International Conference
on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL: https : / / openreview . net /
forum?id=eqBwg3AcIAK.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
“Model-Agnostic Meta-Learning for Fast Adapta-
tion of Deep Networks”. In: Proceedings of the
34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-11 Au-
gust 2017. Ed. by Doina Precup and Yee Whye Teh.
Vol. 70. Proceedings of Machine Learning Research.
PMLR, 2017, pp. 1126–1135. URL: http : / /
proceedings.mlr.press/v70/finn17a.
html.

[5] Chongkai Gao et al. “CRIL: Continual Robot Imita-
tion Learning via Generative and Prediction Model”.
In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2021, Prague, Czech Re-
public, September 27 - Oct. 1, 2021. IEEE, 2021,
pp. 6747–5754. DOI: 10 . 1109 / IROS51168 .
2021.9636069. URL: https://doi.org/
10.1109/IROS51168.2021.9636069.

[6] Rituraj Kaushik, Timothée Anne, and Jean-Baptiste
Mouret. “Fast Online Adaptation in Robotics through
Meta-Learning Embeddings of Simulated Priors”.
In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS 2020, Las Vegas,
NV, USA, October 24, 2020 - January 24, 2021.
IEEE, 2020, pp. 5269–5276. DOI: 10 . 1109 /
IROS45743 . 2020 . 9341462. URL: https :
//doi.org/10.1109/IROS45743.2020.
9341462.

[7] Anthony Kay. “Tesseract: An Open-Source Opti-
cal Character Recognition Engine”. In: Linux J.
2007.159 (2007), p. 2. ISSN: 1075-3583.

[8] Bo Liu, Xuesu Xiao, and Peter Stone. “A Lifelong
Learning Approach to Mobile Robot Navigation”. In:
IEEE Robotics Autom. Lett. 6.2 (2021), pp. 1090–
1096. DOI: 10 . 1109 / LRA . 2021 . 3056373.
URL: https://doi.org/10.1109/LRA.
2021.3056373.

[9] Jorge A. Mendez et al. “CompoSuite: A Compo-
sitional Reinforcement Learning Benchmark”. In:
Conference on Lifelong Learning Agents, CoL-
LAs 2022, 22-24 August 2022, McGill Univer-
sity, Montréal, Québec, Canada. Ed. by Sarath
Chandar, Razvan Pascanu, and Doina Precup.
Vol. 199. Proceedings of Machine Learning Re-
search. PMLR, 2022, pp. 982–1003. URL: https:
/ / proceedings . mlr . press / v199 /
mendez22a.html.

[10] Alex Nichol et al. “Gotta Learn Fast: A New
Benchmark for Generalization in RL”. In: CoRR
abs/1804.03720 (2018). arXiv: 1804.03720. URL:
http://arxiv.org/abs/1804.03720.

https://openreview.net/forum?id=Sk2u1g-0-
https://openreview.net/forum?id=Sk2u1g-0-
https://arxiv.org/abs/2202.06843
https://arxiv.org/abs/2202.06843
https://openreview.net/forum?id=eqBwg3AcIAK
https://openreview.net/forum?id=eqBwg3AcIAK
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1109/IROS51168.2021.9636069
https://doi.org/10.1109/IROS51168.2021.9636069
https://doi.org/10.1109/IROS51168.2021.9636069
https://doi.org/10.1109/IROS51168.2021.9636069
https://doi.org/10.1109/IROS45743.2020.9341462
https://doi.org/10.1109/IROS45743.2020.9341462
https://doi.org/10.1109/IROS45743.2020.9341462
https://doi.org/10.1109/IROS45743.2020.9341462
https://doi.org/10.1109/IROS45743.2020.9341462
https://doi.org/10.1109/LRA.2021.3056373
https://doi.org/10.1109/LRA.2021.3056373
https://doi.org/10.1109/LRA.2021.3056373
https://proceedings.mlr.press/v199/mendez22a.html
https://proceedings.mlr.press/v199/mendez22a.html
https://proceedings.mlr.press/v199/mendez22a.html
https://arxiv.org/abs/1804.03720
http://arxiv.org/abs/1804.03720

[11] Sam Powers et al. “CORA: Benchmarks, Baselines,
and Metrics as a Platform for Continual Reinforce-
ment Learning Agents”. In: Conference on Life-
long Learning Agents, CoLLAs 2022, 22-24 Au-
gust 2022, McGill University, Montréal, Québec,
Canada. Ed. by Sarath Chandar, Razvan Pascanu,
and Doina Precup. Vol. 199. Proceedings of Machine
Learning Research. PMLR, 2022, pp. 705–743. URL:
https://proceedings.mlr.press/v199/
powers22b.html.

[12] Andrei A. Rusu et al. “Policy Distillation”. In: 4th
International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2016. URL: http : / /
arxiv.org/abs/1511.06295.

[13] Andrei A. Rusu et al. “Progressive Neural Net-
works”. In: CoRR abs/1606.04671 (2016). arXiv:
1606 . 04671. URL: http : / / arxiv . org /
abs/1606.04671.

[14] Annie Xie and Chelsea Finn. “Lifelong Robotic Re-
inforcement Learning by Retaining Experiences”.
In: Conference on Lifelong Learning Agents, CoL-
LAs 2022, 22-24 August 2022, McGill Univer-
sity, Montréal, Québec, Canada. Ed. by Sarath
Chandar, Razvan Pascanu, and Doina Precup.
Vol. 199. Proceedings of Machine Learning Re-
search. PMLR, 2022, pp. 838–855. URL: https://
proceedings.mlr.press/v199/xie22a.
html.

[15] Chi Zhang et al. “Few-Shot Incremental Learn-
ing With Continually Evolved Classifiers”.
In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021. Computer Vision Foun-
dation / IEEE, 2021, pp. 12455–12464. DOI:
10 . 1109 / CVPR46437 . 2021 . 01227. URL:
https : / / openaccess . thecvf . com /
content/CVPR2021/html/Zhang_Few-
Shot_Incremental_Learning_With\
_Continually_Evolved_Classifiers\
_CVPR_2021_paper.html.

[16] Wenxuan Zhou et al. “Offline Distillation for Robot
Lifelong Learning with Imbalanced Experience”. In:
CoRR abs/2204.05893 (2022). DOI: 10.48550/
arXiv . 2204 . 05893. arXiv: 2204 . 05893.
URL: https://doi.org/10.48550/arXiv.
2204.05893.

https://proceedings.mlr.press/v199/powers22b.html
https://proceedings.mlr.press/v199/powers22b.html
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1511.06295
https://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671
https://proceedings.mlr.press/v199/xie22a.html
https://proceedings.mlr.press/v199/xie22a.html
https://proceedings.mlr.press/v199/xie22a.html
https://doi.org/10.1109/CVPR46437.2021.01227
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Few-Shot_Incremental_Learning_With_Continually_Evolved_Classifiers_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Few-Shot_Incremental_Learning_With_Continually_Evolved_Classifiers_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Few-Shot_Incremental_Learning_With_Continually_Evolved_Classifiers_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Few-Shot_Incremental_Learning_With_Continually_Evolved_Classifiers_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Few-Shot_Incremental_Learning_With_Continually_Evolved_Classifiers_CVPR_2021_paper.html
https://doi.org/10.48550/arXiv.2204.05893
https://doi.org/10.48550/arXiv.2204.05893
https://arxiv.org/abs/2204.05893
https://doi.org/10.48550/arXiv.2204.05893
https://doi.org/10.48550/arXiv.2204.05893

