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Abstract

In the realm of efficient on-device learning under extreme
memory and computation constraints, a significant gap in
successful approaches persists. Although considerable ef-
fort has been devoted to efficient inference, the main obsta-
cle to efficient learning is the prohibitive cost of backprop-
agation. The resources required to compute gradients and
update network parameters often exceed the limits of tightly
constrained memory budgets. This paper challenges con-
ventional wisdom and proposes a series of experiments that
reveal the existence of superior sub-networks. Furthermore,
we hint at the potential for substantial gains through a dy-
namic neuron selection strategy when fine-tuning a target
task. Our efforts extend to the adaptation of a recent dy-
namic neuron selection strategy pioneered by Bragagnolo
et al. (NEq), revealing its effectiveness in the most strin-
gent scenarios. Our experiments demonstrate, in the aver-
age case, the superiority of a NEg-inspired approach over
a random selection. This observation prompts a compelling
avenue for further exploration in the area, highlighting the
opportunity to design a new class of algorithms designed
to facilitate parameter update selection. Our findings usher
in a new era of possibilities in the field of on-device learn-
ing under extreme constraints and encourage the pursuit of
innovative strategies for efficient, resource-friendly model
fine-tuning.

1. Introduction

In recent years, the dynamic landscape of deep learning
has witnessed remarkable progress across a multitude of
domains, spanning from computer vision [23, 35] and
speech recognition [4] to natural language processing [37].
This evolution, coupled with the escalating prowess of
novel model architectures, has firmly entrenched deep
learning as a pivotal technological force. The accel-
erated growth in hardware capabilities, alongside the
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Figure 1. Comparison between static neuron update selection (up-
right corner) and dynamic selection (down). While the static strat-
egy evaluates the neurons to update on generic datasets and the
sub-network will remain static for the whole training on the down-
stream (DS) task, with the dynamic selection it can change after
every epoch.

advent of Al-dedicated processing units, has enabled
the training of increasingly expansive models, as indi-
cated by prior work [1]. Yet, the intrinsic demand for
substantial computational resources during training, and
the consequential surge in energy consumption [32],
underscore a pressing challenge. Whether it is at infer-
ence or training time, the inextricable interplay between
three vital factors—computational resource utilization,
energy efficiency, and inference time—requires meticulous
attention. The mission at hand is twofold: to empower
smaller institutions to partake in the development and
training of state-of-the-art models and to conscientiously
curtail the carbon footprint of the deep learning community.

On-device training stands as a pivotal advancement
in the realm of artificial intelligence, carrying profound
implications across various applications [14]. One of its



primary merits is its ability to facilitate continuous model
improvement even after deployment (when combined with
online learning strategies) [12]. This becomes especially
beneficial when the nature of the data evolves or when
user interactions are integral to the application. Language
models, for instance, can adapt to ever-changing linguistic
trends, colloquialisms, and user preferences, resulting
in more accurate and relevant predictions. Moreover,
on-device training empowers models with lifelong learning
capabilities: this means they can accumulate knowledge
and adapt as they encounter new data, making them invalu-
able in fields such as healthcare where medical knowledge
is continually evolving [28]. On-device training also ushers
in the era of user customization, allowing models to adapt
to individual preferences and writing styles, thus enhancing
the user experience.

Although making models efficient at inference is a well-
known and even currently explored challenge, efficient on-
device learning under extreme memory and computation
budget is a relatively new one. More specifically, compared
to inference, the biggest obstacle resides in the cost of per-
forming backpropagation (BP) (computing the gradient and
updating all the parameters in the network quickly exceeds
tight memory budgets). Although some approaches to per-
form learning on-device are alternatives and modifications
to BP such as unsupervised learning for image segmenta-
tion [38] or the recently proposed Forward-Forward algo-
rithm [13] and PEPITA [26], they are currently below the
performance achieved by BP. Building on this, Lin et al.
was finally able to successfully fine-tune a deep model with
an extreme memory budget (under 256kB) [2 1] by statically
determining which parts of a pre-trained model should be
updated on any downstream task. The authors here implic-
itly whisper that there is essentially a sub-network provid-
ing sufficiently general features to be adapted to most of the
downstream tasks, and can be kept frozen while updating
a minor part of it. This hypothesis can be also seen, in a
certain sense, as an extension of the lottery ticket hypothe-
sis [8] applied on the BP graph in isolation [34], where just
a sub-network needs to be updated to find a target perfor-
mance.

In this paper, we challenge the vision by Lin et al. under
extreme memory budget constraints, proposing some exper-
iments where we observe that better sub-networks exist. We
summarize our contributions as follows.

* We modify a dynamic neuron update selection strat-
egy, NEq [3], to work under extreme memory budgets
(Sec. 3.3).

* We compare the static selection strategy [2 1] to our dy-
namic approach (Fig. 1), reporting in the average case
the superiority of the dynamic one (Sec. 4.1).

* We introduce a random dynamic neuron selection
baseline, where neurons to update are chosen ran-
domly. Our proposed strategy, in the majority of the
tested setups, shows its superiority (Sec. 4.2). Such
observation opens the road to more study in the field,
where a new class of algorithms for parameter update
selection should be designed.

2. Related work

On-device learning On-device learning is a growing field
of research due to the increasing number of embedded
devices for IoT applications. To this day, the principal
modus operandi is to train a model offline and then com-
press and deploy it on-device for inference only. However,
such methodology often yields poor performance due to real
data distribution shifts from training data [30]. Research
in continual learning shows that it is an efficient solution
to adapt models to distribution shifts in post-deployment
scenarios. Continual learning mimics human behavior in
sequentially acquiring and retaining knowledge across var-
ious tasks [25, 40]. Evidently, in such a scenery catas-
trophic forgetting, which is the undesired loss of informa-
tion acquired from previous tasks, is massively addressed
by the research community [10, 16,25] defined as the sig-
nificant loss of earlier acquired knowledge during the learn-
ing of new tasks. However, embedded devices are highly
constrained in computational and memory resources while
training: especially backpropagation is very costly, making
it a true challenge to achieve without significantly affecting
model performance. For on-device learning based on back-
propagation, we can distinguish two types of approaches,
often combined to attain the best training accuracies under
resource constraints: improving the architecture’s efficiency
and performing sparse updates.

Efficient architectures. The first is to design resource-
efficient neural networks such as MobileNets [29], Effi-
cientNets [33] or MCUNet [20], or even some efficient
versions of transformers [7]. From a certain perspective,
this method consists of the reduction of trainable parame-
ters, impacting directly on memory and computation reduc-
tion. This method is also often paired to quantization to
reduce the memory footprint on-device. More general ap-
proaches in such perspective involve automatic Neural Ar-
chitecture Search (NAS) [11,19,22]. NAS automates the
exploration of neural network architectures, optimizing fac-
tors like model size, performance in terms of accuracy, and
required FLOPs, often employing multi-objective optimiza-
tion. Evidently, despite the big effort in making these strate-
gies as efficient as possible [15,27, 39], fine-tuning a pre-
trained, off-the-shelf architecture remains the least energy-
consuming approach.

Sparsely update the model. The second method is to
sparsely update the network. As shown in [5], the memory



footprint of backpropagation is greatly due to the loading of
each layer’s input tensor from which the gradient is com-
puted. However, in the context of fine-tuning a pre-trained
model given a shifted distribution, it is better to surgically
select a subset of layers to train while freezing the rest of
the network [18], leading to drastic savings regarding ac-
tivation costs while achieving good performances. Such a
concept is what led Lin et al. to design the Sparse Update
(SU), an optimized static selection of a subset of layers to
train while on-device [21]. However, the SU configurations
are very costly to find as they require an evolutionary algo-
rithm to iterate over many trainings. In the next section, we
will present an approach embodying a different philosophy,
challenging a static update graph allocation but rather iden-
tifying dynamically the partition of the model better to be
updated.

3. Sub-network selection under constraint:
from static to dynamic

In this section, we present our novel contributions, which
extend upon SU and NEq selection techniques. We dis-
cuss the inherent limitations of these methods within the
on-device learning domain, starting from an overview of
SU schemes, and finally introducing two innovative ap-
proaches, inspired by the NEq approach. Our primary ob-
jective is to address these limitations by proposing dynamic
online neuron selection mechanisms, tailored to accommo-
date stringent memory budgets.

3.1. Unboxing Sparse Update

In [21], Lin et al. present a pioneering algorithm-system
co-design framework, enabling on-device training to adapt
models to sensor data without compromising privacy. Over-
coming the memory limitations of IoT devices, they were
indeed able to achieve on-device training with just 256kB of
memory. The authors were able to accomplish this thanks
to a combination of four elements:

1. SU, corresponding to a selection of a subset of lay-
ers and weights to optimize during training, in order to
reduce the memory footprint of gradient computation
during backpropagation;

2. the usage of networks specifically conceived for
tight resource environments, such as MobileNetV2 or
MCUNet;

3. the introduction of a quantization-aware scaling in or-
der to stabilize quantized gradient update;

4. the design of “Tiny Training Engine”, an efficient
training system transforming the actual training into
slim binary codes.

The SU approach builds on top of the assumption that
just a sub-network can be fine-tuned to achieve good perfor-
mance. To validate this, Lee et al. demonstrate that when
fine-tuning a pre-trained model on a target dataset, specifi-
cally selecting a subset of layers to train depending on the
type of distribution shift does not affect performance nega-
tively and instead can even improve it [ 1 8]. The reduction of
training memory usage through selective layer training dur-
ing fine-tuning is especially interesting when considering
on-device learning where models are typically pre-trained
offline on a large dataset. Lin ef al. took this further by an-
alyzing the impact of training the bias at different depths as
well as different layer update rates, finding a positive cor-
relation between combined training results and individual
accuracy gains. Their methodology is the following: for a
classification model pre-trained on ImageNet-1k, the objec-
tive is to determine the influence on accuracy gain of train-
ing different individual bias and layer configurations on the
downstream task of Visual Wake Word classification [6], in
comparison with only training the classifier layer.

Bias update utility. Lin ef al. conducted a comprehensive
quantitative evaluation to assess the impact of bias updates
within the network. Specifically, they conducted a series
of individual training sessions, where every bias from the
[-th layer onward (from the [-th layer to the output) was
updated. Each training iteration resulted in a relative accu-
racy improvement AAY* when compared to training only
the classifier. Through their empirical analysis, the authors
noted a steady increase in accuracy enhancement, eventu-
ally reaching a point of saturation at a specific depth within
the network.

Layer update utility. At each network layer, Lin et al.
performed a series of experiments to assess the impact of
training with varying channel ratios ¢ € {0, §7 %, %, 1} on
the relative accuracy gains AA}’fC. This process entailed
performing a set of training sessions equal to the number
of network layers, each multiplied by the number of ratios
tested.

Cost of individual configurations. The analysis of mem-
ory usage for each layer reveals that early layers of the net-
work have a high activation cost Cj*' (cost of loading the
layer’s input tensor to compute the gradient) and a low-
weight memory cost C}' (cost of loading the layer weights
in memory). Late layers in the network have the opposite
behavior and middle layers have both low activation and
memory cost.

SU scheme selection. Given each bias depth and layer ratio
relative accuracy gains, Lin ef al. observe that the aggre-
gation of different configurations leads to a final accuracy
that is positively correlated with the sum of relative accu-
racy gains from each individual configuration. They use this
empirical observation in an evolutionary algorithm to opti-
mize the final sum of {AA}, AAY®IVYI, C, given a mem-



ory budget constraint. This evolutionary search results in
a specific subset of layers ratios and bias depth to update
which is referred to as the SU scheme.

Beyond SU. The SU approach is labor-intensive and costly,
requiring multiple trainings for various layers and update
combinations followed by an evolutionary search to find
the optimal configuration. Additionally, Lin ef al. com-
pute the relative accuracy gains on one downstream task and
then apply the SU scheme found to many different target
datasets. As demonstrated theoretically by Lee et al. [18]
and then validated empirically by Kwon et al. [17], the op-
timal subset of layers to fine-tune depends on the target
dataset, meaning that the contribution analysis should be
performed for each downstream task. Additionally, the SU
configuration remains unchanged throughout network fine-
tuning, leading to the same neurons being updated over and
over until potential over-fitting while other neurons remain
frozen even though they could require some training to im-
prove performance. This motivated us to move to dynamic
update schemes - here follow the preliminaries to set up
bases for a dynamic update scheme under a memory (and
computation) budget.

3.2. A dynamic approach: Neurons at Equilibrium

In this section, we will present NEq, an algorithm pro-

posed by Bragagnolo et al. which targets energy consump-
tion reduction at training time with no performance loss [3].
NEq aims at reducing training time and cost without af-
fecting performance by progressively selecting neurons to
freeze throughout training.
Let us define the output of the ¢-th neuron when the input x
is fed to the whole model trained after ¢ epochs as y! . For
a given set of inputs © € D,, (where D,, is the validation
set), we can compare each n-th output y; , ,, with yf;ln by
computing the cosine similarity ¢! between all the outputs
of the ¢-th neuron at time ¢ and at time ¢ — 1 for the whole
validation set Dy,:

Ni o
= Ui (1)

€Dy n=1

where N; z is the cardinality of the output for the ¢-th neu-
ron when x is fed as input to the neural network. The vari-
ations of ¢; over different epochs inform us about the sta-
bility of the relationship between the input and the output
of the i-th neuron. To quantify the amount of variation be-
tween epochs, we compute the relative variation

Agl = ¢t — gl )

What is defined as “equilibrium” corresponds here to the
value of the similarities between epochs remaining con-
stant, traducing the idea that the i-th neuron has learned its

input-output relationship. To account for the temporal trend
of A¢;, a velocity is computed as:

vf =A@t — pieqvi ™, 3)

where pieq is a momentum term, allowing the velocity to
carry a memory of its previous values.

A neuron is then considered at equilibrium when its ve-
locity satisfies the following condition:

lvf] <&, e>0. 4)

As the learning process advances (and eventually the
learning rate decreases), the neurons’ velocities gradually
“slow down”, resulting in more neurons reaching equilib-
rium. When a neuron is at equilibrium, it can be frozen,
allowing for computational savings (as its gradient should
not be computed) without hurting the final accuracy (as it
has already learned its input-output relationship). In other
terms, in the early stage of the training, few neurons are
typically frozen as the network is moving to a different loss
subspace [9]. As the training progresses, the network stabi-
lizes: many neurons have learned their target function and
do not require further update steps.

From a very different perspective, NEq proposes an in-
teresting alternative to SU: it does not require any prior
knowledge of the target dataset and thus skips the tedious
process of analyzing the contributions layers and bias as
well as the heavy evolutionary search. Furthermore, it is
computed dynamically, selecting the best neurons to update
in the network for each epoch. However, it is not off-the-
shelf ready to be applied to on-device learning, since in the
first epochs many neurons have a high velocity exceeding
the threshold value ¢, leading to the gradient computation
and backpropagation being out of memory.

3.3. Overhauling the velocity threshold: a budget
constraining approach

We present here our approach to adapt NEq for enabling
effective training complexity reduction satisfying a fixed
maximum budget. Intuitively, the online fine-tuning of a
network pre-trained on large datasets should endow the neu-
ral network with much fewer neurons to update. The pre-
training leads the network to learn a latent representation
that will be useful for learning the downstream task; thus,
as described by Lee et al., only a subset of parameters needs
to be updated [ 1 8]. We thus replace the e-threshold freezing
condition with a budget for the whole neural network 5%,
expressed here in terms of the number of updatable param-
eters. To determine which are the parameters to update, we
rank all the neurons in the network along the absolute value
of their velocity, from the fastest to the slowest. Given C}"
the number of parameters of the i-th neuron, we evaluate
the total parameter’s cost including the j-th fastest neurons
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Figure 2. Selection of neurons to update given a network of M neurons and a budget B,,. The cost C;’ is proportional to the size of the
circle which represents the i-th neuron. The neurons selected for the update are in green, while those frozen in red.

as

J
By =) CFlvi>v;, 1<i<j<M, (5)
=1

where M is the total number of neurons of the neural net-
work. We will then try to greedily solve the problem of
selecting the highest j according to

mjax{B;-V < By} (6)
A graphical representation of the problem in (6) is provided
in Fig. 2. In the figure, the neurons’ sizes are proportional
to C}'. The neurons on the left side of the budget threshold
are updated during BP, whereas the neurons on the right are
frozen. The budget threshold overlaps a neuron since the
cumulative sum grows incrementally with steps of size C}".
This way, we can fit a network training under a given budget
constraint and dynamically select the best neurons to update
at each epoch.

Although (6) provides a formulation of the neurons that
are changing more rapidly their function, we identify an un-
fair selection towards neurons having a higher number of
parameters. To compensate for this effect, we propose a
measure estimating the average velocity-per-parameter

~ V;

v; = é @)
This re-weighted velocity allows us to focus on the neurons
with the highest per-parameter average velocity instead of
the neurons with the highest global velocity.
A random selection baseline. To the best of our knowl-
edge, our proposal is the very first approach attempting to
dynamically select a sub-network to update. A very intu-
itive baseline we can build consists of randomly selecting
neurons to be updated, until the budget BY,, is met.

3.4. Training algorithm for a dynamic neuron’s up-
date selection strategy

To summarize, the on-device learning strategies all in-
volve pre-training a model on some upstream task, which is

Network trained on
up-stream task

Deployment
on-device

On-device network

A Computation of
Selected: neurons neuron velocities
'
for , update Dya
) 4
Training Dirain

Figure 3. Overview for the on-device learning when dynamic neu-
ron selection is applied.

then loaded to the target device. Subsequently, either a static
or a dynamic neuron selection strategy can take place - for
a neuron velocity-based selection the use of a validation set
Dy is required - and training on the Dy, data of the target
down-stream task takes place (as synthetically visualized in
Fig. 3). Overall, the neuron selection strategy for on-device
fine-tuning is composed of three distinct phases.

1. Select the sub-network to be updated for the first
epoch: this phase can leverage knowledge from an
evolutionary search algorithm as in SU, or in a ran-
dom selection for the subgraph to update, in compli-

ance with the maximum budget B, .

2. Train for one epoch.

3. Evaluate which part of the whole model should be
updated for the next epoch. The sub-graph of neu-



Table 1. Comparison of pretrained MobileNetV2 final topl test accuracies across different neuron selection methods for three different
memory budgets expressed in percentage of network updated and in number of parameters. For the first epoch the neurons to update are
given by the associated SU scheme. We highlight with different colors the best method for each budget (blue for Velocity, red for Random

and green for SU).

% of network updated B Method Cifar 10

Cifar 100 VWW

Flowers Food Pets CUB

Sparse Update  95.13+0.21 78.60+0.22  90.66+0.29 93.77+£0.38 77.81+0.26 85.82+0.22 67.82+0.29

8.8 192 311 Velocity 95.25+029 79.46+0.12 91.40+0.16 93.03+0.47 79.16+0.16 85.50+0.17 67.52+0.05
Random 94.41+0.13  78.15+0.26  90.29+0.05 92.19+0.17 77.78+0.00 85.50+0.28 65.56+0.45

Sparse Update  95.30+0.10  78.84+0.20 91.29+0.18 94.28+0.36 78.26+0.07 84.63+0.15  68.04+0.28

212 464 639 Velocity 95.364+0.07 79.67+0.28 91.48+0.39 93.34+0.08 79.63+0.17 84.91+0.82 68.23+0.61
Random 94.61+0.16  78.28+0.31 90.51+0.25 92.43+0.10 78.26+0.07 84.73+0.29 66.30+0.13

Sparse Update  95.16+0.29 78.62+0.18 91.46+0.21 94.22+0.14 78.03+0.08 84.38+0.28 67.59+0.22

30.8 675 540 Velocity 95.49+0.16  79.43+0.19 91.57+0.20 93.77+0.26  79.56+0.24 84.44+0.50 68.26+0.36
Random 94.57£020 78.58+0.11 90.58+0.10 92.83+0.03 79.00+0.11 84.39+042 66.17+0.42

rons to be updated will not change when using SU,
it can change when employing either a velocity-based
selection or a random selection. The training is iter-
ated back to step 2 until some target training termina-
tion conditions are met (in our case, a wall number of
epochs).

This very general framework allows for plugging any dy-
namic neuron selection strategy, and we will use it to com-
pare static neuron selection (SU), velocity-based selection,
and random selection. In the next section, we will present
some results obtained on popular benchmarks.

4. Experiments

In this section, we will describe the experiments con-
ducted to validate our hypotheses. We selected 7 target
datasets to fine-tune our models upon, mostly to compare
our results with SU performances as these are the datasets
they selected in their study. The datasets are Cifarl0, Ci-
far100, CUB [36], Flowers [24], Food [2], Pets [41] and
Visual Wake Words [6]. We selected three models to test
on (MobileNetV2, Resnet18, and Resnet50) and we aver-
aged the results over 3 different seeds. Our fine-tuning pol-
icy is the same for all the experiments: we use SGD with
no momentum and no weight decay and a cosine annealing
scheduler over 200 epochs, ranging from 0.125 to 0 with
5 warm-up epochs. We report the final topl accuracy ob-
tained on the test set Dyg. All the experiments were con-
ducted on an Nvidia RTX3090Ti with 24GB, algorithms are
implemented in Python, using PyTorch 2.0.0."

'The code wused to run experiments is available at
https://github.com/aelQuelennec/-WACV-2024-Ways-to-Select-Neurons-
under-a-Budget-Constraint.
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Figure 4. Comparison of MobileNetV2 testing accuracy through
training on C100. We update 8.8% of the network’s parameters.

4.1. Dynamic neuron selection VS SU

Our first set of experiments is the comparison of perfor-
mance between SU and dynamic neuron selection methods.
We isolated the SU code from the other technologies de-
scribed in the original article and compared the results of
fine-tuning with Velocity and Random (Table 1). We tested
on MobileNetV2 with three different levels of budget con-
straint provided by the exact SU configurations Lin et al.
designed for the network [21]. We calculate the number of
parameters updated by a given SU scheme and we use that
number as a budget for Velocity and Random. It is impor-
tant to note that for the first epoch, we can not compute the
neurons’ velocities: we thus use the SU scheme to compare



Table 2. Comparison of final topl test accuracies between Baseline, Sparse Update (SU), Random and Velocity neuron selection over
various pretrained models, datasets, and budgets. For the first epoch the neurons to update are randomly selected. For each budget,
highlighted results correspond to the best accuracy between neuron selection methods (green if SU is better, blue for Velocity, and red for

Random, in bold the overall best performance regardless of the budget).

Model By« Method  Cifar 10 Cifar 100 VWW Flowers Food Pets CUB
SU 94.88+0.12  78.15+£0.13  90.754+0.17 92.70+0.06 75.02+0.23 86.93+0.22 66.48+0.41
192 311 Velocity  95.35+£0.35 79.41+£021 90.954+0.16 92.98+0.29 79.18+0.07 85.56+0.47 67.92+0.27
Random 94.46+0.16 78.03+0.21 90.20+0.13  92.11+0.15 77.5740.16 85.16+£0.07 65.96+0.06
SU 95.00+£0.08 78.69+0.19 90.804+0.24  92.86+0.33 76.50+0.23 86.64+0.27 67.81+0.23
464 639  Velocity  95.49+0.02 79.524+0.11 91.41+0.19 93.32+0.15 79.67+0.19 84.36+0.76 = 68.19+0.24
VbV Random 94.51+0.05 78.49+0.19 90.55+0.24 92.64+0.32 78.48+0.17 84.92+0.21 66.184+0.71
SuU 95.18+0.17 79.03£0.30 91.03+0.16 93.08+0.09 77.19+0.07 86.42+0.45 67.72+0.32
675540  Velocity 95.57+£0.11 79.21+037 91.7240.15 93.33+031 79.68+0.16 84.37+0.28 68.19+0.24
Random 94.57+£0.09 78.41+0.29 90.35+0.01 92.88+0.21 78.90+0.06 84.39+0.41 66.36+0.20
2189760 Baseline 95.93+0.14 79.83+0.29 91.80+£0.03 94.02+0.03 80.63+0.10 82.82+0.18  69.24+0.34
Velocity 95.51+0.10 78.77+£0.41 88.784+0.51 90.784+0.24 75.09+0.13 82.82+0.30 63.64+0.35
980715 Random 95.20+£0.20 77.98+0.38 88.33+0.45 89.39+0.47 74.57+0.15 79.494+0.51 60.93+0.54
Velocity 95.36+0.15 79.12+0.12 89.16+0.31 91.02+0.17 75.72+0.23 82.01+£0.60 63.84+0.39
Resnet18 2369480 Random = 95.68+0.10 78.28+0.22 89.21+0.23 89.53+0.17 75.17+0.12 79.40+0.34 61.42+0.32
Velocity 95.58+0.21 78.95+£0.13 89.174+0.33 90.76+0.15 75.83+0.12 81.45+0.63 63.59+0.03
38T Random = 95.80+0.09 78.52+0.18 88.92+0.19 89.66+0.30 75.28+0.12 79.28+0.34 61.45+0.32
11166912 Baseline 96.24+0.13  78.86+0.08 89.784+0.24 90.14+0.26 76.32+0.08 79.76+0.63 60.97+0.52
Velocity =~ 97.10£0.07 82.94+0.35 93.04+0.15 93.65+0.08 81.10+0.05 90.11+0.25 73.73+0.52
2059888 Random 96.80+0.06 81.46+0.11 92.13+0.33 94.04+0.18 80.68+0.18 88.92+0.18 72.79+0.15
Velocity ~ 97.12+0.09 82.79+0.40 93.37+0.14 94.84+0.08 81.62+0.17 89.42+0.25 73.55+0.18
Resnet50 o084 Random 96.97+0.08 82.04+0.11 92.59+0.20 94.23+0.22 81.52+0.11 88.46+0.07 72.4040.60
Velocity ~ 97.07+0.08 82.45+0.18 93.21+0.14 95.03+0.18 81.76+0.06 88.97+0.60 73.54:+0.42
7233830 Random 97.01+0.01 82.274+0.29 92.59+0.21 94.54+0.15 81.88+£0.29 88.18+0.63 72.40+0.35
23454912 Baseline 97.30+£0.04 82.63+0.25 92.914+0.22 94.87+0.20 82.49+0.15 87.29+0.34 72.93+0.41

final results given an identical starting point. We observe
that in the large majority of the cases, the update based on
Velocity is competitive with SU and outperforms the ran-
dom update baseline. This confirms that a proper selection
of neurons to update guides the model to better generalizing
solutions.

In Fig. 4, we display the test accuracy evolution for the
different neuron selections. From this, we clearly observe
that Velocity approaches faster than other approaches with
high generalization. As intuitive, SU plateaus at interme-
diate epochs - seemingly, the updated parameters land at a

local minimum. The Random update scheme is in general
the worst, but progressively is able to catch up with the other
approaches.

4.2. Velocity VS Random

In the attempt to assess a comparison between Veloc-
ity and Random neuron selection methods, we ran multiple
experiments on the various models and datasets selected.
Here the budgets we test are deduced from the percentage
of total parameters updated in the SU schemes (on Mo-
bilenetV?2) and applied to the Resnets architectures. For the
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Figure 5. Percentage of FLOPS saved with SU, Velocity and Random neuron selection for each network during Cifar100 fine-tuning. We

update 30.2% of the network’s parameters.

first epoch, since we do not dispose of the neurons’ veloc-
ities, we initialize the neurons randomly. The results ob-
tained are displayed in Table 2. Comparing the experiments
on Velocity with the SU initialization proposed in Table 1,
we observe little to no impact on final accuracy for either
of the two initialization methods. This suggests that we
can dispense from finding the SU schemes and instead rely
on dynamic neuron selection throughout the whole train-
ing. More broadly, we observe that MobileNetV2 clearly
favors the Velocity selection (except in the case of the Pets
dataset), whereas in Resnet networks the Random selec-
tion can result in marginally better performance, in some
rare cases. It is important to note that as the budgets are
computed as identical percentages of the network, they are
tighter in the absolute value of parameters updated for the
MobileNetV2 than for the Resnets.

Gap with the baseline models. Besides the comparisons
between the Random and the Velocity approaches, in Ta-
ble 2 we also report the baseline performance, when up-
dating the full network. This gives us a reference accu-
racy (virtually achievable). We do not observe a big gap
in performance between the low-budget approaches and the
full model’s update, and in some cases, the reported perfor-
mance is even higher than the baseline, like in Pets for Mo-
bileNetV2 and ResNet50, where we observe an improve-
ment of approximately 3 to 4%. We can explain this effect
by the reduced size of the datasets, and the limited budget
of parameters employed to fine-tune: we implicitly avoid
overfitting.

FLOPs saved at training time. To qualitatively evalu-
ate the impact on the training complexity for either of the
two approaches, we introduce here as an efficiency met-
ric the percentage of FLOPS saved (in comparison with
the full model training). We observe that Random is a
more economical strategy (more FLOPS are saved) for Mo-
bileNetV2, whereas it is the opposite for Resnets, as dis-

played in Fig. 5). While controlling FLOPs savings for
Random is relatively straightforward, it becomes less man-
ageable for a dynamic strategy like Velocity. This poses a
critical consideration when implementing a learning strat-
egy on the edge. This highlights the need for the develop-
ment of new selection methods that also account for energy
consumption, which remains a topic for future exploration.

5. Conclusions and Future works

In this work, two resource-saving neural update philoso-
phies were presented: a static strategy, proposed in [21],
where a sub-network in a pre-trained model is identified
prior to training on the device (and statically determined
for any downstream tasks), and a dynamic strategy. The re-
sults obtained suggest that the dynamic selection of neurons
can be better than the static pre-selection of a sub-network
to train. Specifically, the proposed dynamic strategy, which
is an evolution of a resources-unconstrained training strat-
egy [3], proved effective in almost all the scenarios.

Other aspects to be considered for progress in this field
are the inclusion of activation cost and (expected) training
cost for the selected neurons, and considering strategies po-
tentially saving computation at forward-propagation time
too, such as dropout [31].
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