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Abstract

Despite the widespread adoption of face recognition
technology around the world, and its remarkable perfor-
mance on current benchmarks, there are still several chal-
lenges that must be covered in more detail. This paper offers
an overview of the Face Recognition Challenge in the Era
of Synthetic Data (FRCSyn) organized at WACV 2024. This
is the first international challenge aiming to explore the use
of synthetic data in face recognition to address existing lim-
itations in the technology. Specifically, the FRCSyn Chal-
lenge targets concerns related to data privacy issues, de-
mographic biases, generalization to unseen scenarios, and
performance limitations in challenging scenarios, including
significant age disparities between enrollment and testing,
pose variations, and occlusions. The results achieved in the
FRCSyn Challenge, together with the proposed benchmark,
contribute significantly to the application of synthetic data
to improve face recognition technology.

1. Introduction

Facial images represent the most popular data for bio-
metric recognition nowadays, finding extensive applica-
tions in surveillance, government offices, and smartphone
authentication [29], among others. Numerous studies in
the literature have contributed to the development of state-
of-the-art (SOTA) Face Recognition (FR) technologies,
demonstrating exceptional performance on standard bench-
marks [14, 25]. The success of these technologies is at-
tributed to the advent of Deep Learning (DL) and the for-
mulation of highly effective loss functions based on mar-
gin loss, capable of generating highly discriminative fea-
tures [43]. As a result, FR systems have significantly ad-
vanced, achieving astonishing results on well-recognized
databases, such as LFW [21].

However, FR still encounters numerous challenges due
to factors such as variations in facial images concerning
pose, aging, expressions, and occlusions, giving rise to sig-
nificant issues in the field [1, 29, 45]. The application of
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(a) DCFace [26]. (b) GANDiffFace [27].

Figure 1. Examples of synthetic identities (one for each row) and intra-class variations for different demographic groups.

DL introduces additional concerns, including limited train-
ing data, noisy labeling, imbalanced data related to differ-
ent identities and demographic groups, and low resolution,
among other issues [16]. Deploying FR systems that re-
main resilient to these challenges and generalize well to
unseen conditions is a difficult task. For instance, train-
ing data often exhibit significant imbalances across demo-
graphic groups [43] and may fail to represent the full spec-
trum of possible occlusions in real-world scenarios [47].
Various limitations associated with established databases
and benchmarks are discussed in [2].

In recent years, several approaches have been presented
in the literature for the generation of face synthetic content
[3, 15, 49] for different applications such as FR [8, 26, 28]
and digital face manipulations, a.k.a. DeepFakes [33, 35,
38]. These synthetic data offer several advantages over
real-world databases. Firstly, synthetic databases provide
a promising solution to address privacy concerns associated
with real data, often collected from individuals without their
knowledge or consent through various online sources [32].
Secondly, synthetic face generators have the potential to
produce large amounts of data, especially valuable follow-
ing the discontinuation of established databases due to pri-
vacy concerns [19] and the enforcement of regulations like
the EU-GDPR, which requires informed consent for collect-
ing and using personal data [39]. Finally, when the syn-
thesis process is controllable, it becomes relatively straight-
forward to create databases with the desired characteristics
(e.g., demographic groups, age, pose, etc.) and their cor-
responding labels, without additional human efforts. This
contrasts with real-world databases, which may not ade-
quately represent diverse demographic groups [30], among
many other aspects.

These advantages have motivated an initial exploration
of the application of face synthetic data to current FR sys-
tems. Innovative generative frameworks have been intro-
duced to synthesize databases suitable for training FR sys-
tems, including Generative Adversarial Networks (GANs)
[6, 34] and 3D models [3]. While these synthetic databases

advance in the field, some have limitations that impact FR
systems performance compared to those trained with real
data. Specifically, databases synthesized with GANs pro-
vide limited representations of intra-class variations [34],
and those synthesized with 3D models lack realism. Re-
cently, Diffusion models have been employed to generate
synthetic databases with enhanced intra-class variations, ef-
fectively mitigating some limitations observed in prior syn-
thetic databases [26,27]. This is supported by various recent
works involving Diffusion models [5, 22, 49].

To evaluate the effectiveness of novel synthetic databases
generated using Diffusion models for training FR systems,
this paper analyzes the results achieved in the “Face Recog-
nition Challenge in the Era of Synthetic Data (FRCSyn)”
organized at WACV 20241. This challenge is designed to
comprehensively analyze the following research questions:

1. Can synthetic data effectively replace real data for
training FR systems, and what are the limits of FR
technology exclusively trained with synthetic data?

2. Can the utilization of synthetic data be beneficial in ad-
dressing and mitigating the existing limitations within
FR technology?

In the proposed FRCSyn Challenge, we have designed spe-
cific tasks and sub-tasks to address these questions. In addi-
tion, we have released to the participants two novel syn-
thetic databases created using two state-of-the-art Diffu-
sion methods: DCFace [26] and GANDiffFace [27]. These
databases have been generated with a particular focus on
tackling common challenges in FR, including imbalanced
demographic distributions, pose variation, expression diver-
sity, and the presence of occlusion (see Figure 1).

The proposed FRCSyn Challenge provides valuable in-
sights for the future of FR and the utilization of synthetic
data, with a specific emphasis on quantifying the perfor-
mance gap between training FR systems with real and syn-
thetic data. In addition, the FRCSyn Challenge proposes

1https://frcsyn.github.io/
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Database Framework Use # Id # Img/Id
DCFace [26] DCFace Train 10K 50
GANDiffFace [27] GANDiffFace Train 10K 50
CASIA-WebFace [46] Real-world Train 10.5K 47
FFHQ [24] Real-world Train 70K 1
BUPT-BalancedFace [42] Real-world Eval 24K 45
AgeDB [31] Real-world Eval 570 29
CFP-FP [36] Real-world Eval 500 14
ROF [17] Real-world Eval 180 31

Table 1. Details of the databases considered in the FRCSyn Chal-
lenge. Id = Identities, Img = Images.

standard benchmarks that are easily reproducible for the re-
search community. The reminder of the paper is organized
as follows. Section 2 provides details about the databases
considered in the FRCSyn Challenge. In Section 3, we out-
line the proposed tasks and sub-tasks, the experimental pro-
tocol, and metrics used in the challenge. In Section 4, we
provide a description of the top-5 FR systems proposed in
the FRCSyn Challenge for each sub-task. Section 5 presents
the results achieved in the different tasks and sub-tasks of
the challenge. Finally, in Section 6, we draw the conclu-
sions from the FRCSyn Challenge and highlight potential
future research directions in the field.

2. FRCSyn Challenge: Databases
Table 1 provides details of the public databases consid-

ered in the FRCSyn Challenge. Participants were instructed
to download all necessary databases for the FRCSyn Chal-
lenge upon registration. Permission for redistributing these
databases was obtained from the owners.

Synthetic Databases: For the training of the proposed FR
systems, we provide access to two synthetic databases gen-
erated using recent frameworks based on Diffusion models:

• DCFace [26]. This framework comprises: i) a sam-
pling stage for generating synthetic identities XID,
and ii) a mixing stage for generating images XID,sty

with the same identities XID from the sampling stage
and styles selected from a “style bank” of images Xsty .

• GANDiffFace [27]. This framework combines GANs
and Diffusion models to generate fully-synthetic FR
databases with desired properties such as human face
realism, controllable demographic distributions, and
realistic intra-class variations.

Figure 1 provides examples of the synthetic face im-
ages created using DCFace and GANDiffFace approaches.
These synthetic databases represent a diverse range of de-
mographic groups, including variations in ethnicity, gender,
and age. The synthesis process considers typical variations
in FR, including pose, facial expression, illumination, and

occlusions. In the FRCSyn Challenge, synthetic data are ex-
clusively utilized in the training stage, replicating realistic
operational scenarios.

Real Databases: For the training of FR systems (de-
pending on the sub-task, please see Section 3), partici-
pants are allowed to use two real databases: i) CASIA-
WebFace [46], a database containing 494, 414 face images
of 10, 575 real identities collected from the web, and ii)
FFHQ [24], a database designed for face applications, con-
taining 70, 000 high-quality face images with considerable
variation in terms of age, ethnicity and image background.
These real databases are chosen as they are used to train
the generative frameworks of DCFace and GANDiffFace,
respectively. This strategy enables a direct comparison be-
tween the traditional approach of training FR systems using
only real data and the novel approach explored in this chal-
lenge, using synthetic data. Despite not being specifically
designed for face recognition, the FFHQ database can be
considered in the proposed challenge for various purposes,
such as training a model for feature extraction and applying
domain adaptation, among other possibilities.

For the final evaluation of the proposed FR systems,
we consider four real databases: i) BUPT-BalancedFace
[42], ii) AgeDB [31], iii) CFP-FP [36], and iv) ROF [17].
BUPT-BalancedFace [42] is designed to address perfor-
mance disparities across different ethnic groups. We rela-
bel it according to the FairFace classifier [23], which pro-
vides labels for ethnicity and gender. We then consider the
eight demographic groups obtained from all possible com-
binations of four ethnic groups (Asian, Black, Indian, and
White) and two genders (Female and Male). We recog-
nize that these groups do not comprehensively represent the
entire spectrum of real world ethnic diversity. The selec-
tion of these categories, while imperfect, is primarily driven
by the need to align with the demographic categorizations
used in BUPT-BalancedFace [42] for facilitating easier and
more consistent evaluation. The other three databases, i.e.,
AgeDB [31], CFP-FP [36], and ROF [17], are real-world
databases widely employed to benchmark FR systems in
terms of age variations, pose variations, and presence of
occlusions. It is important to highlight that, as different
real databases are considered for training and evaluation,
we also intend to analyse the generalization ability of the
proposed FR systems.

3. FRCSyn Challenge: Setup
3.1. Tasks

The FRCSyn Challenge has been hosted on Codalab2,
an open-source framework for running scientific competi-

2https://codalab.lisn.upsaclay.fr/competitions/
15485

https://codalab.lisn.upsaclay.fr/competitions/15485
https://codalab.lisn.upsaclay.fr/competitions/15485


Task 1: synthetic data for demographic bias mitigation
Baseline: training only with CASIA-WebFace [46] and FFHQ [24];
Metrics: accuracy (for each demographic group);
Ranking: average vs SD of accuracy, see Section 3.3 for more details.

Sub-Task 1.1: training exclusively with synthetic databases
Train: DCFace [26] and GANDiffFace [27];
Eval: BUPT-BalancedFace [42].

Sub-Task 1.2: training with real and synthetic databases
Train: CASIA-WebFace, FFHQ, DCFace, and GANDiffFace;
Eval: BUPT-BalancedFace.

Task 2: synthetic data for overall performance improvement
Baseline: training only with CASIA-WebFace and FFHQ;
Metrics: accuracy (for each evaluation database);
Ranking: average accuracy.

Sub-Task 2.1: training exclusively with synthetic databases
Train: DCFace and GANDiffFace;
Eval: BUPT-BalancedFace, AgeDB [31], CFP-FP [36], and ROF [17].

Sub-Task 2.2: training with real and synthetic databases
Train: CASIA-WebFace, FFHQ, DCFace, and GANDiffFace;
Eval: BUPT-BalancedFace, AgeDB, CFP-FP, and ROF.

Table 2. Tasks and sub-tasks proposed in FRCSyn Challenge with
their respective metrics and databases. SD = Standard Deviation.

tions and benchmarks. It aims to explore the application
of synthetic data into the training of FR systems, with a
specific focus on addressing two critical aspects in current
FR technology: i) mitigating demographic bias, and ii) en-
hancing overall performance under challenging conditions
that include variations in age and pose, the presence of oc-
clusions, and diverse demographic groups. To investigate
these two areas, the FRCSyn Challenge considers two dis-
tinct tasks, each comprising two sub-tasks. Sub-tasks have
been designed to consider different approaches for training
FR systems: i) utilizing solely synthetic data, and ii) involv-
ing a combination of real and synthetic data. Consequently,
the FRCSyn Challenge comprises a total of four sub-tasks.
A summary is provided in Table 2. For each sub-task, we
specify the databases allowed for training FR systems. Nev-
ertheless, participants have the flexibility to decide whether
and how to utilize each database in the training process.

Task 1: The first proposed task explores the use of syn-
thetic data to address demographic biases in FR systems.
To evaluate the proposed systems, we create lists of mated
and non-mated comparisons derived from individuals in the
BUPT-BalancedFace database [42]. We consider the eight
demographic groups described in Section 2, obtained from
the combination of four ethnic groups with two genders.
For non-mated comparisons, we exclusively focus on pairs
of individuals belonging to the same demographic group,
as these are more relevant than non-mated comparisons be-
tween individuals of different demographic groups.

Task 2: The second proposed task explores the applica-
tion of synthetic data to enhance overall performance in FR
under challenging conditions. To assess the proposed sys-

tems, we use lists of mated and non-mated comparisons
derived from individuals included in the four databases
indicated in Section 2, namely BUPT-BalancedFace [42],
AgeDB [31], CFP-FP [36], and ROF [17]. Each database
allows the evaluation of specific challenging conditions for
FR, including diverse demographic groups, aging, pose
variations, and presence of occlusions.

3.2. Experimental protocol

Training: The four sub-tasks proposed in the FRCSyn
Challenge are mutually independent. This means that par-
ticipants have the freedom to participate in any number of
sub-tasks of their choice. For each selected sub-task, par-
ticipants are expected to propose a FR system and train it
twice: i) using authorized real databases only, i.e., CASIA-
WebFace [46] and FFHQ [24], and ii) in accordance with
the specific requirements of the chosen sub-task, as sum-
marized in Table 2. According to this protocol, participants
provide both the baseline system and the proposed system
for the specific sub-task. The baseline system plays a criti-
cal role in evaluating the impact of synthetic data on train-
ing and serves as a reference point for comparing against the
conventional practice of training solely with real databases.
To maintain consistency, the baseline FR system, trained
exclusively with real data, and the proposed FR system,
trained according to the specifications of the selected sub-
task, must have the same architecture.

Evaluation: In each sub-task, participants are provided
with comparison files containing both mated and non-mated
comparisons, which are used to evaluate the performance of
their proposed FR system. In Task 1 there is a single com-
parison file containing balanced comparisons of different
demographic groups, while in Task 2 there are four com-
parison files, one for each real database considered. The
evaluation process occurs twice for each sub-task to as-
sess: i) the baseline system trained exclusively with real
databases, and ii) the proposed system trained in accor-
dance with the sub-task specifications. For the evaluation
of each sub-task, participants must submit through Codalab
platform two files per database (one for the baseline and one
for the proposed system), including the score and the binary
decision (mated/non-mated) for each comparison listed in
the comparison files. The organizers retain the right to dis-
qualify participants to uphold the integrity of the evaluation
process if anomalous results are detected or if participants
fail to adhere to the challenge’s rules.

Restrictions: Participants have the freedom to choose the
FR system for each task, provided that the system’s number
of Floating Point Operations Per Second (FLOPs) does not
exceed 25 GFLOPs. This threshold has been established
to facilitate the exploration of innovative architectures and



encourage the use of diverse models while preventing the
dominance of excessively large models. Participants are
also free to utilize their preferred training modality, with
the requirement that only the specified databases are used
for training. This means that no additional databases can
be employed during the training phase, such as to estab-
lish verification thresholds. Generative models cannot be
utilized to generate supplementary data. Participants are al-
lowed to use non-face databases for pre-training purposes
and employ traditional data augmentation techniques using
the authorized training databases.

3.3. Metrics

We evaluate FR systems using a protocol based on lists
of mated and non-mated comparisons for each sub-task and
database. From the binary decisions provided by partici-
pants, we calculate verification accuracy. This approach is
straightforward and allows participants to choose the pre-
ferred threshold for their systems. Additionally, we cal-
culate the gap to real (GAP) [26] as follows: GAP =
(REAL − SYN) /SYN, with REAL representing the veri-
fication accuracy of the baseline system and SYN the veri-
fication accuracy of the proposed system, trained with syn-
thetic (or real + synthetic) data. Other metrics such as False
Non-Match Rate (FNMR) at different operational points,
which are very popular for the analysis of FR systems in
real-world applications, can be computed from the scores
provided by participants. Comprehensive evaluations of the
proposed systems will be conducted in subsequent studies,
including FNMRs and metrics for each demographic group
and database used for evaluation. Next, we explain how
participants are ranked in the different tasks.

Task 1: To rank participants and determine the winners of
Sub-Tasks 1.1 and 1.2, we closely examine the trade-off be-
tween the average (AVG) and standard deviation (SD) of the
verification accuracy across the eight demographic groups
defined in Section 2. We define the trade-off metric (TO)
as follows: TO = AVG − SD. This metric corresponds
to plotting the average accuracy on the x-axis and the stan-
dard deviation on the y-axis in 2D space. We draw multi-
ple 45-degree parallel lines to find the winning team whose
performance falls to the far right side of these lines. With
this proposed metric, we reward FR systems that achieve
good levels of performance and fairness simultaneously, un-
like common benchmarks based only on recognition per-
formance. The standard deviation of verification accuracy
across demographic groups is a common metric for assess-
ing bias and should be reported by any work addressing de-
mographic bias mitigation.

Task 2: To rank participants and determine the winners
of Sub-Tasks 2.1 and 2.2, we consider the average verifica-

Team Affiliations Country Sub-Tasks
CBSR 4-8 China 1.2 - 2.2
LENS 9 USA all
BOVIFOCR-UFPR 10-12 Brazil all
Idiap 13-15 Switzerland all
MeVer 16,17 Greece all
BioLab 18 Italy 2.1
Aphi 19 Spain 1.1 - 2.1
UNICA-FRAUN-
HOFER IGD 20-22

Italy,
Germany 1.2 - 2.2

Table 3. Description of the top-5 best teams ordered by the affil-
iation number. The numbers reported in the column ‘affiliations’
refer to the ones provided in the title page.

tion accuracy across the four databases used for evaluation,
described in Section 2. This approach allows us to evaluate
four challenging aspects of FR simultaneously: i) pose vari-
ations, ii) aging, iii) presence of occlusions, and iv) diverse
demographic groups, providing a comprehensive evaluation
of FR systems in real operational scenarios.

4. FRCSyn Challenge: Description of Systems
The FRCSyn Challenge received significant interest,

with 67 international teams correctly registered, comprising
research groups from both industry and academia. These
teams work in various domains, including FR, generative
AI, and other aspects of computer vision, such as demo-
graphic fairness and domain adaptation. Finally, we re-
ceived submissions from 15 teams, receiving all sub-tasks
high attention. The submitting teams are geographically
distributed, with six teams from Europe, five teams from
Asia, and four teams from America. Table 3 provides a
general overview of the top-5 best teams, including the sub-
tasks they participated. Next, we describe briefly the FR
systems proposed for each team.

CBSR (Sub-Tasks 1.2 and 2.2): They first trained a
recognition model using CASIA-WebFace [46]. They ex-
tracted features for images in FFHQ [24] and clustered
them using the DBSCAN [18] for pseudo labels. Then,
they removed the samples in FFHQ that are similar to
CASIA-WebFace with a cosine similarity threshold of 0.6
and merged the two to train a new model F . They uti-
lized F to de-overlap DCFace [26] and GANDiffFace [27]
from CASIA-WebFace and FFHQ. Subsequently, they con-
ducted the intra-class clustering for all databases using DB-
SCAN (similarity threshold of 0.3) and removed the sam-
ples that were separate from the class center. They merged
the cleansed databases and trained IResNet-100 with mask
and sunglasses augmentation and AdaFace loss [25]. They
trained two recognition models using occlusion augmenta-
tion with 10% and 30% probability, respectively. They fi-
nally submitted the average similarity prediction of the two



models. The threshold was determined by the 10-fold opti-
mal threshold in the validation set.

They constructed different validation sets for different
evaluation tasks. For AgeDB [31], they randomly sampled
pairs from the training databases. For CFP-FP [36], they
added randomly positioned vertical bar masks to the images
to simulate the self-occlusion due to pose. For ROF [17],
they detected face landmarks [41] and added mask and sun-
glasses to images. For BUPT-BalancedFace [42], they ran-
domly sampled pairs from DCFace with GANDiffFace be-
cause they have balanced demographic groups. All valida-
tion sets consisted of 12, 000 image pairs containing 6, 000
positive pairs and 6, 000 negative pairs. Code available3.

LENS (All sub-tasks): For sub-tasks using only synthetic
data (i.e., 1.1 and 2.1), they observed that since the evalu-
ation data are real databases, they needed an approach that
makes the architecture robust to domain shifts between syn-
thetic training data and real test data. For the same, they
utilized the augmentations and AdaFace loss introduced in
[25]. The augmentations like Crop, Photometric jittering,
and Low-res scaling from [25] helped to create more ro-
bust images similar to the real domain, effectively improv-
ing performance. They further enhanced the features by
using an ensemble of two models, with different styles of
augmenting databases like randomly selecting four from set
of Identity, Spatial transformations, Brightness, Color, Con-
trast, Sharpness, Posterize, Solarize, AutoContrast, Equal-
ize, Grayscale, ResizedCrop augmentations in each itera-
tion, inspired from [5]. The features of the two models were
then combined to create a feature set of length 1024. The
same method was repeated for Sub-Tasks 1.2 and 2.2.

After cropping and alignment, they divided their total
data in the ratio 80 : 20 for training and validation, re-
spectively. For training the baseline model and Sub-Tasks
1.2 and 2.2, they utilized CASIA-WebFace [46] for the real
database and skipped FFHQ [24]. They adopted the ar-
chitecture of ResNet-50 [20] (R50) backbone for all the
sub-tasks for its lesser number of parameters and suitabil-
ity when the size of the databases is not huge. They used
AdaFace loss from [25].

BOVIFOCR-UFPR (All sub-tasks): Inspired by Zhang
et al. [48], they reduced bias in Sub-Task 1.1 by creating a
multi-task collaborative model composed of two backbones
B(x) and R(e), which produced the embeddings e ∈ R512

and g ∈ R256, respectively. This schema forced B(x)
to learn less biased features across different ethnic groups.
ResNet100 and ResNet18 [20] architectures were used as
B(x) and R(e). Each training sample xi contained two la-
bels yi (to compute the subject loss LS [14]), and wi, (to

3https://github.com/zws98/wacv_frcsyn

compute the ethnic group loss LE [14]). Their total loss was
LT = λSLS + λELE . In Sub-Task 2.1 they employed Ar-
cFace [14] as their loss function and Resnet100 [20] as the
backbone, which is one of the top-performing models for
deep FR [11]. They trained the network using the Insight-
Face library for 26 epochs. The images used for training
were augmented using Random Flip with a probability of
0.5. They used DCFace [26] as the training database in this
sub-task, which provided the most accurate feature vectors
on the validation set.

Idiap (All sub-tasks): The primary strategy for all tasks
and sub-tasks was the fusion of features from two models,
chosen for its potential to enhance accuracy and reduce bias.
These models compute a mean feature vector via a feature
fusion approach and undergo independent training to max-
imize the differences between them, to improve fusion re-
sults. For preprocessing, RetinaFace [13] was used to detect
facial landmarks across all evaluation sets, and a similarity
transform aligned five key facial points to a standard tem-
plate before cropping and resizing images to 112×112 pix-
els, with pixel values normalized between [−1, 1].

The models were based on iResNet-50 and iResNet-101
architectures. Training utilized specific databases for each
track, with the iResNet-101 leveraging CosFace loss [40]
and the iResNet-50 using AdaFace loss [25]. Training ran
for approximately 60, 000 batches of size 256, with learn-
ing rate adjustments at set intervals. Training data under-
went further preprocessing, including random cropping and
augmentations in resolution, brightness, contrast, and satu-
ration. The final model checkpoint was taken after the last
training step. A subset of the training data was used to de-
termine the optimal threshold for maximizing verification
accuracy, using a 10-fold cross-validation approach based
on a random selection of identities and comparison pairs.

MeVer (All sub-tasks): Their proposed system utilized
the sub-center ArcFace loss [12] to mitigate noise, which
occurs in synthetic training data [9]. Comprising three
CNNs, the proposed system adapted various margins within
the ArcFace loss [14], aligning with relevant literature, indi-
cating different demographic groups require different mar-
gin considerations [44]. Final embeddings were obtained
by combining the outputs of three ResNet-50 [20] models
each trained with 4, 5, and 5 subcenters and margins of
0.45, 0.47, and 0.50. Prediction involved computing the Eu-
clidean distance between feature vectors, utilizing thresh-
olds of 1.5 and 1.35 for tasks involving synthetic-only and
mixed synthetic-real training data, respectively. The train-
ing procedure involved a batch size of 256, an initial learn-
ing rate of 0.1 that decayed by a factor of 10 at steps 75k,
127.5k, and 165k over 180k total training steps. Optimizing
with stochastic gradient descent (SGD), momentum was set

https://github.com/zws98/wacv_frcsyn


at 0.9, and weight decay at 0.0005. Data preprocessing in-
volved an MTCNN [50], resizing all data to 112× 112, and
employing color jittering and random horizontal flip aug-
mentations. Task-wise, both synthetic databases were uti-
lized, while the CASIA-WebFace database was specific to
Sub-Tasks 1.2 and 2.2. Validation included 800 synthetic
identities and 1, 000 identities from CASIA-WebFace for
the tasks involving synthetic-only and mixed synthetic-real
databases, respectively. Code available4.

BioLab (Sub-Task 2.1): The model selected for the Sub-
Task 2.1 is a customized ResNet-101 [14, 20], which had
been trained using the margin-based AdaFace loss [25],
whose advantage is its resilience when training data contain
low-quality images with unrecognizable faces. According
to their assumption, this ensured that the model’s perfor-
mance remained unaffected when exposed to GAN-related
visual glitches and artifacts. Their baseline model was
trained employing the CASIA-WebFace database [46]. Dif-
ferently, the proposed model employed both DCFace [26]
and GANDiffFace [27]. In both cases they built the valida-
tion set by generating couples from the first classes of the
training sets, which were excluded from training. They ap-
plied data augmentation on the training set. Following [25],
the pipeline consisted of random horizontal flips, random
crop-and-resize, and random color jittering on saturation
and value channels. Each transformation had a probability
of 20% of being applied. Finally, the model was optimized
with cross entropy loss and SGD with an initial learning
rate of 0.05. Learning rate scheduling was employed to im-
prove training stability. For face verification, the dissimilar-
ity between embeddings was measured employing the co-
sine distance. Its threshold was computed to maximize the
accuracy on the validation set (i.e., using a non-overlapping
partition of the training databases), following the same idea
described in the LFW protocol [21]. Code available5.

Aphi (Sub-Tasks 1.1 and 2.1): In their approach, they
used an EfficientNetV2-S [37] architecture to produce a
512-D deep embedding trained with ArcFace [14] loss func-
tion. They modified the backbone network by reducing the
first layer’s stride from 2 to 1 to enhance the preservation
of spatial features. The output of the backbone network
was projected with a 1 × 1 convolutional layer and nor-
malized with batch normalization. These features were flat-
tened and fed into a fully connected layer which produces
the deep embedding. The weights of the model were opti-
mized through the SGD algorithm with a momentum of 0.9
and a weight decay of 1e−4 during 20 epochs and a learn-
ing rate starting at 0.1 and decayed through a polynomial

4https : / / github . com / gsarridis / fair - face -
verification-with-synthetic-data

5https://github.com/ndido98/frcsyn

scheduler. The model was trained with the images aligned
using a proprietary algorithm, resized to 112×112, and nor-
malized in the range of −1 to 1. To prevent overfitting, they
applied data augmentation techniques during training, in-
cluding Gaussian Blur, Random Scale, Hue-Saturation ad-
justments, and Horizontal Flip transformations as well as
dropout with a rate of 0.2 before the deep embedding pro-
jection. To train the baseline model, they made use of
CASIA-WebFace [46] and for their proposed model, they
employed the synthetic database DCFace [26].

UNICA-FRAUNHOFER IGD (Sub-Tasks 1.2 and 2.2):
The presented solution utilized ResNet100 [20] as network
architecture as it is one of the most widely used architec-
tures in state-of-the-art FR approaches [4]. Training and
validation images were aligned and cropped to 112 × 112
using five-points landmarks extracted with MTCNN. The
network’s outputs were 512-D feature representations. The
presented solution, submitted to Sub-Tasks 1.2 and 2.2, re-
lies on training the ResNet100 network with CosFace as
a loss function with a margin penalty value of 0.35 and a
scale parameter of 64 [40]. The model was trained for 40
epochs with a batch size of 512 and an initial learning rate
of 0.1. The learning rate was divided by 10 after 10, 22,
30, and 40 epochs. During the training phase the training
databases, CASIA-WebFace [46] and DCFace [26], pro-
vided by the competition organizers, were merged into one
database with a total number of 20.572 identities. During
the training phase, an extensive set of data augmentation
operations based on RandAugment [7,10] was applied only
to the synthetic samples. The real samples were only aug-
mented with horizontal flipping. Code available6.

5. FRCSyn Challenge: Results
Table 4 presents the rankings for the different sub-tasks

considered in the FRCSyn Challenge. In general, the rank-
ings for Sub-Tasks 1.1 and 1.2 (bias mitigation), corre-
sponding to the descending order of TO, closely align with
the ascending order of SD (i.e., from less to more biased FR
systems). Notably, in Sub-Task 1.1, the top two classified
teams, LENS (92.25% TO) and Idiap (91.88% TO), exhibit
negative GAP values (-0.74% and -3.80%, respectively), in-
dicating higher accuracy when training the FR system with
synthetic data compared to real data. These results high-
light the potential of DCFace [26] and GANDiffFace [27]
synthetic data to reduce bias in current FR technology. The
inclusion of real data in the training process (i.e., Sub-Task
1.2) results in general in a simultaneous increase in AVG
and reduction in SD, being the CBSR team the winner with
a 95.25% TO (i.e., 3% TO general improvement between
Sub-Tasks 1.1 and 1.2). In addition, and as it happens

6https://github.com/atzoriandrea/FRCSyn

https://github.com/gsarridis/fair-face-verification-with-synthetic-data
https://github.com/gsarridis/fair-face-verification-with-synthetic-data
https://github.com/ndido98/frcsyn
https://github.com/atzoriandrea/FRCSyn


Sub-Task 1.1 (Bias Mitigation): Synthetic Data
Pos. Team TO [%] AVG [%] SD [%] GAP [%]

1 LENS 92.25 93.54 1.28 -0.74
2 Idiap 91.88 93.41 1.53 -3.80
3 BOVIFOCR 90.51 92.35 1.84 4.23
4 MeVer 87.51 89.62 2.11 5.68
5 Aphi 82.24 86.01 3.77 0.84

Sub-Task 1.2 (Bias Mitigation): Synthetic + Real Data
Pos. Team TO [%] AVG [%] SD [%] GAP [%]

1 CBSR 95.25 96.45 1.20 -2.10
2 LENS 95.24 96.35 1.11 -5.67
3 MeVer 93.87 95.44 1.56 -0.78
4 BOVIFOCR 93.15 95.04 1.89 1.28
5 UNICA 91.03 94.06 3.03 -10.62

Sub-Task 2.1 (Overall Improvement): Synthetic Data
Pos. Team AVG [%] GAP [%]

1 BOVIFOCR 90.50 2.66
2 LENS 88.18 3.75
3 Idiap 86.39 6.39
4 BioLab 83.93 6.88
5 MeVer 83.45 3.20

Sub-Task 2.2 (Overall Improvement): Synthetic + Real Data
Pos. Team AVG [%] GAP [%]

1 CBSR 94.95 -3.69
2 LENS 92.40 -1.63
3 Idiap 91.74 0.00
4 BOVIFOCR 91.34 1.77
5 MeVer 87.60 -1.57

Table 4. Ranking for the four sub-tasks, according to the metrics
described in Section 3.3. TO = Trade-Off, AVG = Average accu-
racy, SD = Standard Deviation of accuracy, GAP = Gap to Real.

in Sub-Task 1.1, we can observe in Sub-Task 1.2 negative
GAP values for the top teams (e.g., -2.10% and -5.67% for
the CBSR and LENS teams, respectively), evidencing that
the combination of synthetic and real data (proposed sys-
tem) outperforms FR systems trained only with real data
(baseline system).

For Task 2, it is evident that the average accuracy across
databases in Sub-Tasks 2.1 and 2.2 is lower than the ac-
curacy achieved for BUPT-BalancedFace [42] in Sub-Tasks
1.1 and 1.2, emphasizing the additional challenges intro-
duced by the other real databases considered for evaluation.
Also, although good results are achieved in Sub-Task 2.1
when training only with synthetic data (90.50% AVG for
BOVIFOCR-UFPR), the positive GAP values provided by
the top-5 teams indicate that synthetic data alone currently
struggles to completely replace real data for training FR sys-
tems in challenging conditions. Nevertheless, the negative
GAP values provided by the top-2 teams in Sub-Task 2.2
also suggest that synthetic data combining with real data
can mitigate existing limitations within FR technology.

Finally, analyzing the contributions of all the eight top
teams, a notable trend emerges, showing the prevalence
of well-established methodologies. ResNet backbones [20]

were chosen by seven teams, except for Aphi, which opted
for EfficientNet [37]. The AdaFace [25] and ArcFace [14]
loss functions were widely used, featuring in the approaches
of CBSR, LENS, Idiap, and BioLab for the former, and
BOVIFOCR-UFPR, MeVer, and Aphi for the latter. Idiap
and UNICA-FRAUNHOFER IGD also considered the Cos-
Face loss function [40]. Most of the teams integrated multi-
ple networks into their proposed architectures for different
objectives, e.g., CBSR and LENS trained different networks
with distinct augmentation techniques, while BOVIFOCR-
UFPR and Idiap combined different loss functions. Some
teams also addressed the challenges of domain shift be-
tween synthetic and real data, e.g., LENS proposed solu-
tions robust to domain shifts with consistent data augmen-
tation, while CBSR implemented a range of strategies, in-
cluding advanced data augmentation, identity clustering,
and distinct thresholds for different databases. Notably,
CBSR utilized all available databases for training, including
FFHQ [24], unlike other teams. Excluding BOVIFOCR-
UFPR, Aphi, and UNICA-FRAUNHOFER IGD, which ex-
clusively used DCFace [26], the majority of teams em-
ployed both DCFace [26] and GANDiffFace [27], demon-
strating the suitability of both generative frameworks.

6. Conclusion

The Face Recognition Challenge in the Era of Synthetic
Data (FRCSyn) has provided a comprehensive analysis for
the application of synthetic data to FR, addressing current
limitations in the field. Within this challenge numerous
approaches from different research groups have been pro-
posed. These approaches can be compared across a variety
of sub-tasks, with many being reproducible thanks to the
materials made available by the participating teams. Fu-
ture works will be oriented to a more detailed analysed of
the results, including additional metrics and graphical rep-
resentations. Furthermore, we are considering transforming
the CodaLab platform into an ongoing competition, where
new tasks and sub-tasks might be introduced.
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