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Abstract

The future of autonomous vehicles lies in the conver-
gence of human-centric design and advanced AI capabili-
ties. Autonomous vehicles of the future will not only trans-
port passengers but also interact and adapt to their desires,
making the journey comfortable, efficient, and pleasant. In
this paper, we present a novel framework that leverages
Large Language Models (LLMs) to enhance autonomous
vehicles’ decision-making processes. By integrating LLMs’
natural language capabilities and contextual understand-
ing, specialized tools usage, synergizing reasoning, and
acting with various modules on autonomous vehicles, this
framework aims to seamlessly integrate the advanced lan-
guage and reasoning capabilities of LLMs into autonomous
vehicles. The proposed framework holds the potential to
revolutionize the way autonomous vehicles operate, offering
personalized assistance, continuous learning, and transpar-
ent decision-making, ultimately contributing to safer and
more efficient autonomous driving technologies.

1. Introduction

Recently, Large Language Models (LLMs) have at-
tracted significant attention. The key to their success lies
in their remarkable ability to process a wide range of word-
based inputs, including prompts, questions, dialogues, and
vocabulary spanning diverse domains, resulting in signifi-
cant and coherent textual outputs. LLMs serve as vast store-
houses of abundant information and knowledge acquired
from numerous texts, much like the human brain. Consider-
ing the LLM’s ability to emulate the human brain functions,
it prompts us to ask: could we leverage the impressive capa-
bilities of LLMs to revolutionize the future of autonomous
driving?

Imagine a situation where you’re sitting in an au-
tonomous vehicle and you desire to safely overtake another

vehicle. All you have to do is utter the command: “Over-
take the vehicle in front of me.” At that point, the LLMs
would swiftly assess the existing conditions and safety lis-
ten, and ask questions before reasoning, providing you with
informed guidance on the feasibility and recommended ac-
tions for executing the maneuver. Furthermore, in the con-
text of fully autonomous vehicles, the LLMs’ capabilities
could even extend to taking charge of the vehicle and exe-
cuting the instructed commands.

While LLMs have the potential to greatly enhance con-
venience and improve the driving experience for drivers, a
significant challenge arises: LLMs lack understanding of
information about the driving environment. Unlike humans,
LLMs lack the inherent ability to perceive the physical en-
vironment. In other words, these models do not possess the
capability to visually perceive and interact with the world
around them [2]. It renders LLMs challenged in making
sound decisions for the current situation, potentially leading
to suboptimal outcomes or even hazardous consequences.

To address the challenge above, we present a perspec-
tive where LLMs can serve as the decision-making “brain”
within autonomous vehicles. Complementing this, various
tools within the autonomous vehicle ecosystem, including
the perception module, localization module, and in-cabin
monitor, function as the vehicle’s sensory “eyes.” This con-
figuration enables LLMs to overcome the inherent limita-
tion of not directly accessing real-time environmental infor-
mation. By receiving processed data from the perception
module, LLMs can facilitate informed decision-making, re-
sulting in significant enhancements to the performance of
the autonomous vehicle. Additionally, the vehicle’s actions
and controller function as its “hands,” executing instructions
derived from the LLM’s decision-making process.

When comparing autonomous vehicles with and without
integrated LLMs, it becomes evident that the latter offers a
diverse array of compelling advantages. These advantages
extend across various aspects of functionality and perfor-
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mance:

• Language Interaction: LLMs enable intuitive com-
munication between drivers and vehicles, transforming
interactions from rigid commands to natural conversa-
tions.

• Contextual Understanding and Reasoning: LLMs
in vehicles offer enhanced contextual understanding
from diverse sources like traffic laws and accident re-
ports, ensuring decisions prioritize safety and regula-
tion adherence.

• Zero-Shot Planning: LLMs in vehicles can under-
stand and reason about unfamiliar situations with-
out prior exposure, allowing vehicles to navigate un-
charted scenarios confidently.

• Continuous Learning and Personalization: LLMs
learn and adapt continuously, tailoring their assistance
to individual driver preferences and improving the
driving experience over time.

• Transparency and Trust: LLMs can articulate their
decisions in simple language, fostering a crucial bond
of trust and understanding between the technology and
its users.

2. Perspective: the Role of LLMs in Advancing
Autonomous Vehicles

As previously established in the earlier section, we’ve
established that the LLMs serve as the “brain” in the au-
tonomous driving system, facilitating driver interaction and
decision-making, while the useful sensory tools and actu-
ation function as the vehicle’s “eyes” and “hands” respec-
tively. To be more specific, When a driver requests a par-
ticular operation, the LLM prompts the related modules to
provide data that has been processed to extract relevant in-
formation from the environment. By integrating the lin-
guistic analysis of LLMs with the processed sensory in-
puts from the selected modules, the LLM can then make
well-informed decisions. If the command is deemed both
feasible and safe based on the prior analysis, the LLMs
will transmit the corresponding instructions to the vehicle’s
controller. This includes components such as the steering
wheel, throttle pedal, braking, and other control elements,
enabling them to execute the necessary operations. Alterna-
tively, if the operation is deemed inappropriate, the LLMs
will provide drivers with a detailed explanation as to why
the requested action is not suitable for execution.

Revisiting the example at the beginning of this paper,
when drivers issue the command to overtake the vehicle
ahead, the LLMs come into play by querying the perception
module for pertinent processed information. This includes

details such as the distance and speed of the target vehicle,
the velocity of the ego vehicle, road conditions of potential
lanes, the presence of other vehicles and their distances on
those lanes, and other useful navigation information from
the map system. Through an analysis of the provided data
and the given command, the LLMs make a decision regard-
ing whether to execute the driver’s request. If the decision is
affirmative, the LLMs subsequently communicate instruc-
tions to the controller, guiding the next course of action.

Having explored this intricate interaction between LLMs
and the autonomous vehicle’s decision-making process, we
shift our focus to a broader context and propose the con-
cept of a human-centric LLMs integrated framework for au-
tonomous vehicles based on our prior work of the mobility
digital twin [27]. As shown in Fig. 1, the physical world
comprises human drivers, vehicles, and traffic objects. In
the physical world, human drivers are the central agents in
the physical world, sending commands and instructions to
LLMs as they navigate roadways. The traffic environment
contains various elements including vehicles, pedestrians,
traffic lights, road conditions, and traffic cones, all of which
contribute to the complexity of movement and interactions
on the road. The vehicle, directed by the LLMs, operates
within this ecosystem, executing the commands it receives
from either drivers or LLMs through controllers and actua-
tors.

The virtual world includes LLMs, memory, and essen-
tial tools which include the perception module, localiza-
tion module, and in-cabin monitor. The perception module
acquires raw input from sensors, including external cam-
eras, LIDARs, and radars, and processes this data into a
format suitable for the LLMs. The localization module em-
ploys GNSS data to determine the vehicle’s precise loca-
tion. Within the vehicle, the in-cabin monitor employs inter-
nal cameras, thermometers, and other sensors to vigilantly
observe the in-cabin environment, preempting distractions,
extreme temperatures, or uncomfortable conditions. At the
core of the entire framework lies the LLMs, serving as its
central intelligence. They receive commands from drivers,
subsequently initiating queries to pertinent modules for re-
lated information. Furthermore, the memory section acts as
a repository, storing historical operations and drivers’ pref-
erences, enabling continuous learning and enhancement for
the LLMs. This repository of experiences equips the LLMs
to make analogous decisions when confronted with similar
situations, bolstering the system’s adaptability and perfor-
mance over time. the memory also houses maps and local
law information, empowering the LLMs to make even wiser
decisions adaptable to a variety of scenarios.

3. Review: Can LLMs Really Do This?
Through a comprehensive review of both theoretical un-

derpinnings and real-world implementations, we seek to



Figure 1. The human-centric LLM-integrated framework for autonomous vehicles.

address the fundamental question: Can LLMs really con-
tribute to the improvement of autonomous driving by ac-
tively participating in the decision-making framework? By
examining the current state of research and analyzing use
cases, this section aims to provide a thorough assessment
of the extent to which LLMs can bring to the landscape of
human-centric autonomous driving.

3.1. Adaptive Techniques and Human-Centric Re-
finements for LLMs

Parameter-efficient fine tuning (PEFT) is a crucial tech-
nique used to adapt pre-trained language models (LLMs)
to specialized downstream applications [6, 7, 9, 11, 15]. Hu
et al. [11] proposed utilizing low-rank decomposition ma-
trices to reduce the number of trainable parameters needed
for fine-tuning language models. Lester et al. [15] explore
prompt tuning, a method for conditioning language models
with learned soft prompts, which achieves competitive per-
formance compared to full fine-tuning and enables model
reuse for many tasks. These PEFT techniques offer valu-
able tools for adapting LLMs to autonomous driving tasks.

Reinforcement Learning from Human Feedback (RLHF)
[1, 18, 20, 21, 23] has emerged as a key strategy for fine-
tuning LLM systems to align more closely with human pref-
erences. Ouyang et al. [18] introduce a human-in-the-loop
process to create a model that better follows instructions.
Bai et al. [1] propose a method for training a harmless

AI assistant without human labels, providing better con-
trol over AI behavior with minimal human input. These
approaches hold significant promise for developing LLMs
for autonomous driving applications, as they can contribute
in two dimensions. Firstly, they can ensure that LLMs
avoid making decisions that may be illegal or unethical.
Secondly, these methodologies enable LLMs to continu-
ally adapt and align their decision-making processes with
user preferences, enhancing personalization and trust in au-
tonomous vehicles.

LLM-based autonomous driving applications can also
benefit from advanced prompting techniques [3, 13, 26, 28,
29]. Chain-of-thought prompting [28] improves LLMs’
ability to perform complex reasoning. Gao et al. [10] pro-
pose an approach that uses LLMs to read natural language
problems and generate programs as intermediate reasoning
steps. Yao et al. [29] present a new prompting technique
that allows LLMs to make decisions about how to interact
with external APIs. These methods provide a solid foun-
dation for the development of LLMs for autonomous driv-
ing applications with two significant benefits. Firstly, they
greatly enhance LLMs’ reasoning capabilities, particularly
in complex, multi-step scenarios. Secondly, these tech-
niques improve the adaptability and versatility of LLMs,
key attributes for autonomous driving systems interfacing
with various tools and data sources.



3.2. Advancements in LLMs: Implications for Au-
tonomous Driving Decision-Making

Recent Research has shown that LLMs can perform well
in most commonsense tasks [4], which means it has the po-
tential to make wise and feasible decisions in autonomous
driving scenarios. The utilization of LLMs in the context of
autonomous driving presents a captivating and potentially
transformative direction for research. Recent investigations
have brought light on the diverse ways in which LLMs can
profoundly impact the landscape of autonomous vehicles.
For instance, the study conducted by [16] highlights the
promise of AI-infused with legal knowledge, offering the
potential to avert legal transgressions in autonomous driv-
ing scenarios, thereby contributing to the establishment of
a safer AI-driven environment. Additionally, [30] demon-
strates that LLMs possess the capability to learn from lo-
cal laws and accident reports, and effectively contribute to
reducing accident rates, thus enhancing the safety of au-
tonomous driving.

The application of LLMs to decision-making in au-
tonomous driving is notably explored by [5]. Their research
introduces the PaLM model, demonstrating that LLMs ex-
hibit a capacity to effectively tackle intricate reasoning tasks
and, intriguingly, surpass the performance of an average hu-
man. Such a finding carries significant implications, hinting
at LLMs’ remarkable ability to navigate complex scenarios,
make astute judgments, and potentially lay the groundwork
for optimal decision-making in autonomous vehicles.

The work highlighted in [19] demonstrates the utilization
of large language models to effectively store experiences
in natural language, forming a foundational approach for
integrating historical data into our architecture.

The adaptive capabilities of LLMs are showcased in var-
ious ways. [14] underscores LLMs’ proficiency in zero-shot
reasoning, enabling them to deal with novel and unfamiliar
situations, a vital feature for autonomous vehicles operating
in dynamic environments. The study by [6] exemplifies that
LLMs can be fine-tuned to exhibit enhanced performance,
particularly in tasks with limited training data.

Additionally, LLMs have shown great potential in both
transportation and robotics areas, as highlighted by [31],
and [24] respectively. They reveal LLMs’ prowess in tasks
such as zero-shot planning and interactive conversations,
even facilitating interaction with perception-action-based
API libraries, an attribute that aligns with the demands of
autonomous vehicles.

Furthermore, the work [25] demonstrates LLMs’ poten-
tial for continuous learning, which is of paramount impor-
tance for adapting to evolving road conditions and enhanc-
ing performance over time.

The investigation from [8] introduces embodied lan-
guage models capable of assimilating real-world sensor
data, thus bridging the gap between perception and lan-

Figure 2. General Q&A with ChatGPT-4 regarding autonomous
vehicles.

guage. This development lays the foundation for potential
advancements in autonomous vehicles, where LLMs could
process sensory inputs, comprehend their surroundings, and
consequently make more informed decisions. Building on
these insights, additional studies [4], [32], [29], [22], and
[12] have further enriched our understanding of LLMs’ ca-
pabilities, underscoring their potential in decision-making,
reasoning, and synergizing reasoning and acting.

4. Experiment: Decision-Making and Motion
Planning with ChatGPT-4

To gain a deeper understanding of the practical capabili-
ties of LLMs in the context of autonomous driving tasks, we
embark on an insightful exploration involving real-world
decision-making scenarios. This comprehensive case study
serves as a compelling demonstration of how LLMs can ef-
fectively enhance autonomous vehicles by harnessing the
potential of ChatGPT-4 [17] to replicate decision-making
processes. Our investigation is structured in two distinct
phases. Initially, we pose autonomous dirving concept-
related queries to GPT-4, which unveils its grasp of how lan-
guage models can be seamlessly integrated into autonomous
driving. Subsequently, we design and present genuine real-
world situations to assess the decision-making proficiency
of LLMs. This section covers an in-depth understanding of
this case study, including a detailed conversation with GPT-
4 that highlights our findings. This analysis serves to un-
derscore the practical implications of leveraging LLMs for
enhanced autonomous driving.



Figure 3. Experiment illustrating LLM-assisted decision-making and motion planning in a complex driving scenario. The Ego vehicle and
its trajectory are marked orange; The vehicle ahead in the current lane and its trajectory are blue; The vehicles in adjacent lanes and their
trajectories are green.

In our exploration with ChatGPT, we first asked some
general conceptional questions regarding the LLMs in au-

tonomous vehicles and aimed to find the true potential of
LLMs in advancing the future of autonomous driving in



Figure 2. The responses indicated a profound ability of the
LLMs to bridge the interaction between the vehicle and its
passengers. From the responses, it’s evident that LLMs can
explain complex driving scenarios, decisions made by the
vehicle, and even the technical of various autonomous mod-
ules. An especially significant observation was the LLMs’
strength in processing vast volumes of data, and then con-
verting these into real-time, understandable feedback. Such
feedback isn’t just about driving status but relates to the core
autonomous functionalities, including the perception mod-
ule’s utilization and the motion planning’s choices. Fur-
thermore, the model demonstrated an enhanced capacity
for vehicle-to-vehicle communications and, critically, trou-
bleshooting. This capability not only fosters trust but can
also develop the user experience by explaining the complex
decisions of autonomous operations.

As we can see in Figure 3, we simulated a real-world
driving scenario where the autonomous vehicle is equipped
with Large Language Models (LLMs) to assist in decision-
making and motion planning. The vehicle was on a two-
lane Indiana highway, traveling east to west at 96 km/h. It
was behind another vehicle moving at the same speed but
only 8 meters away, a distance less than optimal for safety.
On the adjacent left lane, two other vehicles were noted:
one 30 meters ahead moving at 112 km/h, and another 40
meters behind at 104 km/h. The driver was highly attentive,
and one passenger was wearing a seatbelt.

The LLMs were tasked with processing this multilayered
data sourced from the perception module (vehicle speeds
and distances), the localization module (road and envi-
ronmental conditions), and the in-cabin monitoring sys-
tem (driver’s attention level and safety measures like seat-
belts). The LLMs formulated a comprehensive 9-step mo-
tion plan that prioritized safety while efficiently executing
the driver’s command to overtake the front vehicle.

In the experimental scenario, the Large Language Mod-
els (LLMs) showcased their advanced reasoning ability by
not just collecting and analyzing data but also applying lay-
ers of context-sensitive reasoning. The LLMs evaluated the
speeds and distances of surrounding vehicles, the driver’s
state of attention, and even the traffic conditions to deter-
mine the safest and most efficient trajectory for overtaking.
This capability to reason in real-time, considering multiple
factors dynamically, significantly contributes to road safety
and operational efficacy. The LLMs didn’t merely follow
pre-defined rules but adapted their decision-making to the
unique circumstances, highlighting their potential for en-
hancing the future of autonomous driving.

Additionally, the language interaction capabilities of the
LLMs proved crucial for trust-building. When the driver
commanded to “overtake the vehicle in front,” the LLMs
assessed various factors and communicated their reasoning
to the driver. This transparent interaction not only enhanced

safety but also instilled greater confidence in the vehicle’s
autonomous capabilities.

LLMs also can access previous data and user preferences
from the memory module, which allows for a more person-
alized driving experience. In the context of the experiment,
for instance, the system could recall the driver’s typical
comfort levels with overtaking speeds, following distances,
and lane preferences. This information could then influence
how the LLMs interpret and execute a command like “over-
take the front vehicle,” ensuring that the action aligns with
the driver’s past behavior and comfort zones. As a result,
the LLMs’ capacity for memory-driven personalization not
only improves user satisfaction but also can contribute to
safer, more predictable autonomous driving scenarios.

Another crucial advantage is enhanced transparency and
trust. When the vehicle makes a complex decision, such as
overtaking another vehicle on a high-speed, two-lane high-
way, passengers and drivers might naturally have questions
or concerns. In these instances, the LLMs don’t just execute
the task but also articulate the reasoning behind each step of
the decision-making process. By providing real-time, de-
tailed explanations in understandable language, the LLMs
demystify the vehicle’s actions and underlying logic. This
not only satisfies the innate human curiosity about how au-
tonomous systems work but also builds a higher level of
trust between the vehicle and its occupants.

Moreover, the advantage of “zero-shotting” was par-
ticularly evident during the complex overtaking maneu-
ver on a high-speed Indiana highway. Despite the LLMs
not having encountered this specific set of circumstances
before—varying speeds, distances, and even driver alert-
ness—it was able to use its generalized training to safely
and efficiently generate a trajectory for the overtaking ac-
tion. This ensures that even in dynamic or rare scenarios,
the system can make sound judgments while keeping users
informed, hence building trust in autonomous technology.

5. Conclusion
In conclusion, our paper has provided a comprehensive

framework for integrating Large Language Models (LLMs)
into the ecosystem of autonomous vehicles. We highlighted
how LLMs offer advanced reasoning capabilities that can
make autonomous systems more flexible and responsive to
complex, real-world scenarios. Additionally, by leveraging
the capabilities of LLMs, we can enrich the human-vehicle
interaction, providing a more reliable, intuitive, and re-
sponsive interface. Unlike traditional autonomous systems,
which lack the capacity for language understanding, LLMs
can handle complex requests, offer real-time feedback and
comprehensive explanations, and assist in decision-making
during complex or rare driving scenarios. This suggests
a future where LLMs can significantly enhance efficiency,
safety, and user-centric design in autonomous vehicles.
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