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Tržaška cesta 25, 1000 Ljubljana, Slovenia
{marija.ivanovska, vitomir.struc}@fe.uni-lj.si

Abstract

The detection of malicious deepfakes is a constantly
evolving problem that requires continuous monitoring of de-
tectors to ensure they can detect image manipulations gen-
erated by the latest emerging models. In this paper, we in-
vestigate the vulnerability of single–image deepfake detec-
tors to black–box attacks created by the newest generation
of generative methods, namely Denoising Diffusion Models
(DDMs). Our experiments are run on FaceForensics++, a
widely used deepfake benchmark consisting of manipulated
images generated with various techniques for face iden-
tity swapping and face reenactment. Attacks are crafted
through guided reconstruction of existing deepfakes with a
proposed DDM approach for face restoration. Our findings
indicate that employing just a single denoising diffusion
step in the reconstruction process of a deepfake can signif-
icantly reduce the likelihood of detection, all without intro-
ducing any perceptible image modifications. While training
detectors using attack examples demonstrated some effec-
tiveness, it was observed that discriminators trained on fully
diffusion–based deepfakes exhibited limited generalizability
when presented with our attacks.

1. Introduction

With the rapid development of digital technologies, the
generation of fake images and videos has become an almost
effortless process. Although these methods have numerous
benefits in the entertainment industry, they can as well be
used for malicious purposes. Such examples are deepfakes,
where the face of a target person is altered or used as a re-
placement for another person’s face in order to fabricate cer-
tain scenarios [28]. The manipulated data can then be ex-
ploited to spread misinformation, harm the victim or manip-
ulate public opinion. The development of accurate deepfake
detection algorithms is therefore crucial for the prevention
of possible violations.

Figure 1. We investigate the vulnerability of popular single–image
deepfake detection methods to black–box attacks generated by
reconstructing existing deepfakes with Denoising Diffusion Mod-
els (DDMs). Our experimental results show that only one denois-
ing step can generate an attack, that fouls the detectors into mis-
classifying the altered deepfake as real, all while preserving its
visual appearance. Best viewed in color and zoomed in.

Over the years, various machine learning algorithms
have been proposed for the automatic detection of manip-
ulated data [17, 22, 24]. These algorithms typically search
for inconsistencies in lighting and shadows, visual artifacts,
or unique fingerprints left by generative models during the
creation of deepfakes. However, detection models can be
vulnerable to specific attacks designed to intentionally de-
ceive the detector, resulting in the misclassification of fake
images as genuine. Traditional methods often generate such
attacks by adding subtle perturbations to existing deepfake
images [12]. On the other hand, more sophisticated at-
tacking techniques aim to integrate the attacks directly into
the deepfake generation process, creating deepfakes that are
more challenging in terms of their detectibility [4].

The recent emergence Denoising Diffusion Models
(DDMs), a new generation of generative models, has
heightened concerns regarding the spread of fake data.
These models have proven capable of generating fakes that
are even more realistic and convincing than those pro-
duced by their predecessors, Generative Adversarial Net-
works (GANs) [8]. Initially developed for generating new
data, DDMs have since found applications in a variety of
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other domains as well [6]. Recent studies have investigated
the use of DDMs for manipulating facial expressions [35],
performing face reenactment [30], generating morphing at-
tacks [7], and face swapping [15, 34].

Driven by the potential risks associated with this technol-
ogy, we investigate the capability of DDMs to attack deep-
fake detection systems, by simply reconstructing existing
deepfake images with a predetermined number of denois-
ing steps (Figure 1). Generated black–box attacks are then
used to test the accuracy of commonly used supervised and
self–supervised detectors. In our study, we focus on deep-
fakes involving identity swaps and face reenactments. To
the best of our knowledge, we are the first to investigate the
potential exploitation of DDMs in this context.

In this paper, we make the following contributions: i) We
explore the ability of Denoising Diffusion Models (DDMs)
to create black–box attacks targeting deepfake detection
systems. ii) We conduct a comprehensive assessment of the
visual quality of the attacks. iii) We evaluate the vulnera-
bility of popular single–image deepfake detectors, to DDM
intrusions. iv) We analyze the detectability of our attacks
when discriminators are trained on diffusion-based samples.

2. Related work
Deepfake detection. Recent single–image algorithms for
deepfake detection are predominantly based on various
deep learning methods. Naive approaches represent a CNN,
that learns to differentiate between real and fake data. Xcep-
tion [5] and MesoNet [2] are among the most popular in this
category. To ensure the CNN has captured discriminative
features, Nguyen et al. and Wang et al. [24, 31] both uti-
lize explicit modeling of specific deepfake artifacts in the
spatial space. Nguyen et al. also design Capsule [25] to
leverage the hierarchical and spatial relationships between
image components. Recently, Cao et al. have proposed
RECCE [3], an autoencoder that learns compact latent rep-
resentations of real faces, hence classifies deepfakes as out–
of–distribution samples with higher reconstruction error.

Yuyang et al. [26] shift their focus to image analysis in
the frequency space, recognizing that real and fake data typ-
ically have distinct frequency spectrums. They introduce
F3-Net, taking advantage of the frequency-aware image de-
composition and local frequency statistics. Similarly, Liu et
al. [20] note that unlike manipulated images, the phase
spectrum of natural images preserves abundant frequency
components. Their SPSL method combines this informa-
tion with spatial clues, for a more robust deepfake detec-
tion. Another frequency–based approach SRM, proposed
by Luo et al. [22], utilizes the high-frequency image noises
and low–level RGB features, extracted by residual-guided
spatial attention module.

Although very accurate when applied to a closed–set
problem, supervised algorithms fail to generalize well

to out–of–distrubution samples and images generated by
unknown deepfake techniques. To address this problem,
Li et al. present DSP-FWA [18], a self–supervised method
that does not rely on specific deepfake datasets but rather
learns from simulated resolution inconsistencies in affine
face warpings. In Face-X-Ray [17] authors Li et al. take
a similar approach with a focus on the blending artifacts
of the deepfakes. Shiohara et al. [29] further refine earlier
approaches with a comprehensive simulation of common
deepfake artifacts. Unlike previous simulated fake data,
their Self–Blended Images (SBI) are created using a single
face sample, that acts as both, source and target image.

Attacks on deepfake detectors. Many studies have shown
that deepfake detection methods can be prone to certain
types of carefully crafted attacks. These attacks are gen-
erally divided into two main categories, i.e. white–box
and black–box attacks. The former are designed with full
knowledge about the architecture and the parameters of the
targeted deepfake detector, while the latter involve trial and
error to approximate the model under attack.

Hussain et al. [12] and Gandhi et al. [10] both con-
duct white–box attacks on popular naive deepfake detectors,
such as Xception, MesoNet, VGG and ResNet. They opti-
mize perturbations added to the deepfake images, in order
to have this samples later classified as real. In the same con-
text, Saminder et al. [9] explore various perturbation and AI
techniques. Their findings suggest that incorporating adver-
sarial samples during the training phase of a deepfake detec-
tor enhances both, its accuracy and robustness. However, it
is important to note that while white–box attacks tend to
be very efficient in constrained settings, they exhibit poor
transferability, when applied to unknown systems.

Differently from Saminder et al. [9], Neekhara et al. [23]
evaluate various perturbation techniques in black–box set-
tings. In their study, they demonstrate that their generated
adversarial samples have the capability to consistently at-
tack different deepfake detection approaches. Apart from
image space perturbations, Carlini et al. [4] also investigate
the implementation of perturbations in the latent space of
the generative model, so that it yields adversarial images.

A novel type of black–box attacks is introduced by
Lou et al. [21], who aim to mitigate the presence of GAN
fingerprints, which are commonly used as clues in the deep-
fake detection process. To achieve this, they train an autoen-
coder that simultaneously learns to generate high–fidely
images while applying imperceptible pixel perturbations.
Conversely, Liu et al. [19] perform blind post–processing of
pre–generated deepfakes, by removing detectable traces left
by the deepfake generation pipeline. The resulting deep-
fakes are therefore more authentic and challenging to detect.
Similarly, Huang et al. [11] develop FakePolisher, a shallow
dictionary model, trained to accurately reconstruct only real



Figure 2. Visualisation of different noise levels applied to deepfake images, prior to their reconstruction with the proposed DDM. The
variable s refers to the number of applied noising steps. The initial, unmodified deepfake is labeled with s = 0. Best viewed in color.

data, thus efficiently removing typical GAN artifacts.

Our work most closely resembles the last two stud-
ies [11, 19]. In our approach, we leverage the capabilities
of advanced Denoising Diffusion Models (DDMs) to per-
form guided post-processing of previously generated deep-
fakes. These processed images are then strategically uti-
lized to conduct black-box attacks on both, supervised and
self–supervised deepfake detection systems.

3. Diffusion–based deepfake attacks

In our study, we employ a DDM for conditional image
synthesis. The architecture and the conditioning technique
are based on guidelines published in the paper by Dhari-
wal et al. [8]. It’s important to note that the model we use
was not specifically designed nor optimized for attacking
deepfake detection systems. Our main goal is to evaluate
the effectiveness of this readily available diffusion–based
model in generating black–box attacks. The objective of the
generation process is to improve image quality of existing
deepfakes and suppress detectable artifacts.

The process of attack generation encompasses two
stages. In the initial stage, referred to as the forward
process, a selected deepfake image y0 undergoes progres-
sive corruption through the addition of Gaussian noise
N (0, σ2I), following a non-homogeneous Markov chain.
Subsequently, in the reverse process stage, the deepfake im-
age, now corrupted with s noising steps (xs), undergoes
sequential denoising via a parametrized generative model
Dθ(x, σ). In our experiments, Dθ represents a pretrained
approximator, optimized to minimize the Kullback-Leibler
(KL) divergence between the designed distribution p(xs|y0)
and its target distribution q(xs|x0), with x0 symbolizing the
restored version of the initial input image y0. A high–level
illustration of the proposed deepfake attack generation pro-
cess is depicted in Figure 3. Inspired by findings published
in [33], we treat the deepfake y0 as a degraded version of
its reconstruction x0. We therefore model the marginal dis-
tribution of xs by implementing a diffused estimator, which
guides the noising forward process.

Figure 3. High–level overview of the generation of deepfake at-
tacks. An existing deepfake image (y0) is fed into the proposed
diffusion–based model. The model creates a noisy sample xs, by
gradually adding Gaussian noise for s steps. The deepfake attack
(x0) is then created by reversing the noising process.

4. Experiments

Datasets. In our study we experiment with FaceForen-
sics++ (FF++) [28], a benchmark commonly used for the
evaluation of deepfake detection methods. The dataset
consists of 1000 real YouTube videos, each available in
three different qualities. We only use the highest–quality,
namely the raw data. Originally, FF++ deepfakes were
generated using two face-swapping techniques, i.e. Deep-
fakes and FaceSwap, and two face reenactment methods,
i.e. Face2Face and NeuralTextures. As GAN-based deep-
fake quality has improved over time, FaceShifter deepfakes

Figure 4. Our experiments are run on manipulated data sourced
from FaceForensics++ (FF++), where real faces are either reen-
acted, or the identity is swapped using a target image of another
person. Manipulations include six different techniques: Deep-
fakes, FaceSwap, FaceShifter, InsightFace, Face2Face, and Neu-
ralTextures, resulting in deepfakes of various qualities with diverse
artifacts and fingerprints. Best viewed in color and zoomed in.



Fake SSIM
x LPIPS

y CSIM
x

data s=1 s=10 s=25 s=50 s=75 s=100 s=1 s=10 s=25 s=50 s=75 s=100 s=1 s=10 s=25 s=50 s=75 s=100
DF 0.9504 0.9475 0.9330 0.9045 0.8755 0.8457 0.0626 0.0625 0.0714 0.0951 0.1145 0.1286 0.9593 0.9366 0.8577 0.7015 0.5500 0.4008
F2F 0.9528 0.9496 0.9349 0.9066 0.8782 0.8496 0.0551 0.0552 0.0639 0.0850 0.1023 0.1145 0.9699 0.9481 0.8733 0.7210 0.5665 0.4105
FSh 0.9488 0.9451 0.9309 0.9041 0.8772 0.8496 0.0659 0.0660 0.0742 0.0960 0.1138 0.1265 0.9712 0.9482 0.8732 0.7153 0.5490 0.3895
FS 0.9544 0.9507 0.9352 0.9048 0.8744 0.8435 0.0513 0.0519 0.0597 0.0811 0.0994 0.1129 0.9687 0.9479 0.8777 0.7295 0.5709 0.4127
IF 0.9457 0.9432 0.9302 0.9042 0.8775 0.8500 0.0722 0.0716 0.0802 0.1038 0.1229 0.1363 0.9725 0.9534 0.8834 0.7275 0.5629 0.3981
NT 0.9482 0.9455 0.9318 0.9046 0.8772 0.8489 0.0673 0.0670 0.0760 0.0986 0.1167 0.1293 0.9670 0.9462 0.8754 0.7290 0.5771 0.4217

Avg. 0.9505 0.9469 0.9327 0.9048 0.8767 0.8479 0.0624 0.0624 0.0709 0.0933 0.1116 0.1247 0.9681 0.9467 0.8735 0.7206 0.5627 0.4055

Table 1. Quantitative evaluation of generated attacks using three different measures, i.e. Structural Similarity Index Measure (SSIM),
Perceptual Image Patch Similarity (LPIPS) and Cosine Similarity Index Measure (CSIM). Each attack is compared to its correspond-
ing unmodified FF++ deepfake created with one of the 6 available techniques, here denoted by DF (Deepfakes), F2F (Face2Face), FSh
(FaceShifter), FS (FaceSwap), IF (InsightFace) and NT (NeuralTextures). Generation of attacks with up to s = 50 denoising steps does
not significantly impact the image structure, while s = 75 and s = 100 alter the image to a point where the initial identity is degraded.

Figure 5. Qualitative comparison of generated attacks. Low number s of denoising diffusion steps introduces minimal to no visually
perceptible modifications in the image structure. Higher s values are on the other hand associated with notably enhanced image quality. The
highest considered value s = 100 seems to completely remove deepfake inconsistencies, but in some cases might change the appearance
of different face parts. Unmodified FF++ deepfakes (s = 0) are sourced from the FaceShifter subset. Best viewed in color and zoomed in.

have been later included in the dataset. This advanced face-
swapping technique not only yields higher-quality fake data
but also handles occlusions more effectively than compet-
itive methods. In this study, we additionally consider In-
sightFace, a popular and widely used face swapping model
for generation of high–fidelity deepfakes. We use the im-
plementation of this method provided by the open–source
GitHub [1] toolbox. The inference with the model is per-
formed using InsightFace weights pretrained on face crops
of size 128×128 px. Examples of FF++ samples generated
with each of the aforementioned manipulation methods are
presented in Figure 4. As can be seen from the Figure, in-
dividual methods produce different image qualities in terms
of fidelity, and presence of artifacts.

In this paper, we focus on single-image deepfake de-
tectors and therefore opt to extract only every 10th frame
from each real and fake video sequence. The detection and
cropping of facial regions are conducted using a pretrained
MTCNN model [32]. All extracted deepfakes undergo re-
construction using our proposed DDM approach, applied
six times with varying numbers of diffusion steps s: 1, 10,
25, 50, 75, and 100. Noise levels representing individual s
values are visualized in Figure 2. In our experiments, we
adhere to the FF++ train, validation and test split.
Experimental details. Deepfake attacks are created uti-
lizing DDM weights that are pretrained on the FFHQ
dataset [14]. SwinIR 1, a transformer commonly used in

1https://github.com/zsyOAOA/DifFace



image restoration tasks, serves as a backbone of the dif-
fused estimator. These generated attacks are then lever-
aged to assess the vulnerability of 9 widely used deep-
fake detection models. We evaluate Xception [5], MesoIn-
ception [2], Capsule [25] and RECCE [3] as representa-
tives of discriminative approaches based on spatial features.
Among frequency–based detectors we consider F3-Net [26]
and SRM [22]. All these detectors are trained from scratch,
in a supervised manner. In the testing phase, we use the
weights of the model that achieves best AUC score on the
validation image subset. Independent models are trained for
each of the 6 FF++ deepfake methods. The vulnerability of
self–supervised methods, is evaluated using 3 models, i.e.
DSP-FWA [18], Face X-Ray [17], and Self Blended Images
(SBI) [29]. The training of these detectors is performed us-
ing real FF++ data only. To compensate for the missing
class of deepfakes, we use augmented images (simulated
fakes), as suggested in corresponding papers. Experiments
were run on NVIDIA GeForce RTX 3090.
Evaluation metrics. The visual quality of generated at-
tacks is measured by comparing them to corresponding un-
modified deepfakes. Their perceived quality is estimated
with Structural Similarity Index Measure (SSIM). For com-
parison of higher–level image features we use Learned Per-
ceptual Image Patch Similarity (LPIPS), based on a pre-
trained SqueezeNet [13]. Finally, the preservation of the
identity embedded in the unmodified deepfake is calcu-
lated with Cosine Similarity Index Measure (CSIM). Iden-
tity vectors are extracted by AdaFace [16].

Deepfake detectors, once trained, are assessed separately
on standard FF++ deepfakes and on attacks generated by
reconstructing original manipulated data with various noise
levels s. To ensure fair comparison across individual as-
sessment runs and to simulate a real–world scenario, each
detection method is first evaluated on the validation subset
of real and unmodified deepfake images. Calculated thresh-
old at the Equal Error Rate (EER) point on the ROC is then
used for the classification of testing deepfake samples and
as well as attacks. The performance of the detectors is mea-
sured in terms of True Positive Rate (TPR), which denotes
the proportion of accurately identified fake data.

5. Results
In this section, we first assess the quality of generated

diffusion–based attacks. Next, we evaluate the vulnerabil-
ity of deepfake detectors to these attacks. Additionaly, we
investigate whether the accuracy of discriminative detectors
improves, when we train them using the attacks as fake sam-
ples. Finally, we investigate the vulnerability of discrimina-
tive detectors trained with fully diffusion-based face swaps.
Quality assessment of deepfake attacks. The generation
of deepfake attacks with the proposed DDM approach in-
troduces inevitable image changes. The quantitative assess-

Figure 6. Severe examples of image alterations resulting from
the reconstruction of original deepfakes (s = 0) with a high num-
ber of denoising steps (s = 100). Unlike s = 50 examples, sam-
ples generated with s = 100 include significant modifications in
soft biometric attributes like age, hairstyle, race, and ethnicity. We
also observe subtle changes in the shape and color of the eyes,
nose, and lips. Best viewed in color and zoomed in.

ment of their visual quality is given in Table 1. Calculated
SSIM and LPIPS values suggest that reconstructing deep-
fakes with up to s = 50 denoising steps does not signif-
icantly change their structure. A higher value of s on the
other hand visibly modifies the initial image. These modifi-
cations decrease the CSIM value, indicating that the identity
of the face has been degraded to some extent.

These findings are also supported by the qualitative anal-
ysis of attacks. As can be seen in Figure 5, there are no ob-
vious, perceivable structural differences between unmod-
ified deepfakes (s = 0) and attacks denoted by s = 1,
s = 10, s = 25 and s = 50. We observe that higher
levels of noise in general produce more realistic images,
in terms of fidelity. Moreover, when s=100, the DDM is
capable of completely removing typical deepfake inconsis-
tencies. In the 2nd and 3rd row of Figure 5 for instance, the
DDM has successfully removed double eyebrows. In the
2nd row, the irregularities in the teeth shape and position
are also fixed, while unnatural forehead shadows are elimi-
nated. This noise level, however, often modifies the appear-
ance (size, shape, color) of individual facial parts. In the 1st
row of Figure 5 for example, we can see how the DDM has
added hair to the initially bald head. Similar changes can
be seen in the 4th row, where white hair strands have been
inserted. In some cases, subtle changes in the microexpres-
sion of the deepfakes can also be observed. Some severe ex-
amples, where the application of a high number of diffusion
denoising steps (s = 100) has drastically changed the initial
face are shown in Figure 6. Here, we can see evident dif-
ferences in soft biometric attributes such as age, hairstyle,
race and ethnicity. We can also notice subtle changes in the
eyes, nose and lip shape and color.
Vulnerability of deepfake detectors to attacks. We evalu-
ate considered deepfake methods following the protocol de-
scribed in Section 4 (see Evaluation metrics). Figure 7 de-
picts obtained results in terms of True Positive Rate (TPR).
We observe, that attacks generated with only one DDM
step (s = 1) can severely affect the accuracy of detec-



Figure 7. Percentage of detected FF++ deepfakes (s = 0) and attacks (s > 0). The threshold used for the classification of manipulated
images is calculated at the EER point of the ROC evaluated on real and unmodified fake images (s = 0) from the validation subset. Types
of evaluated detectors: (∗) discriminator based on spatial features, (†) discriminator based on frequency features, (∗∗) autoencoder based
on reconstruction error, (‡) self-supervised method. We observe, that self–supervised methods (see SBI) are in general more robust to our
attacks than discriminative models. However, all considered models, irrespective of their type, experience some degree of adverse impact.

tors. Discriminative methods tend to be more prone to
DDM attacks as opposed to self–supervised methods. Cap-
sule is the least vulnerable among discriminative detectors.
However, it experiences a severe drop in accuracy when
s > 25. Naive spatial classifiers Xception and MesoIncep-
tion, along with the frequency–based classifier SRM show
overall worst results in terms of the percentage of detected
attacks. These methods maintain a consistent TPR of above
90% across different unmodified deepfakes, but the TPR

of reconstructed deepfakes is in most cases far below 50%.
RECCE exhibits similar problems, except when analyzing
Face2Face reenacted faces and FaceSwap samples. When
these fake images are processed with s > 1 denoising steps,
the reconstruction error of RECCE is closer to the error of
unmodified fakes. In general, higher number of denoising
steps s generates more challenging attacks, leading to lower
TPR. In some cases, we observe a local peak in discrimina-
tive method’s TPR calculated for s = 10. We hypothesize,



train: real, unmodified deepfakes, attacks
Deepfakes (DF) Face2Face (F2F) FaceShifter (FSh) FaceSwap (FS) InsightFace (IF) NeuralTextures (NT)

test s=1 s=50 s=100 s=1 s=50 s=100 s=1 s=50 s=100 s=1 s=50 s=100 s=1 s=50 s=100 s=1 s=50 s=100
s=0 76.02 78.74 84.16 91.16 90.11 95.33 89.17 94.44 85.27 92.14 91.35 93.04 77.74 77.69 74.31 73.99 86.25 70.18
s=1 99.31 96.06 99.27 99.19 96.80 99.57 96.21 96.29 87.21 96.39 96.95 87.43 99.92 93.66 88.36 94.17 99.30 64.73
s=10 45.64 94.21 87.27 64.37 95.03 80.04 89.38 94.03 76.94 85.11 87.04 52.39 73.21 92.78 69.09 92.38 97.85 5.80
s=25 37.28 92.87 88.42 58.17 94.06 83.80 84.65 94.14 82.96 87.57 91.51 69.96 66.80 93.10 82.77 83.76 98.51 23.10
s=50 36.19 93.64 89.55 63.43 95.46 95.75 71.73 95.11 91.88 93.00 97.28 92.21 67.24 93.21 96.35 61.09 99.40 67.98
s=75 31.68 89.87 96.49 63.43 95.27 98.25 61.33 94.46 95.59 93.73 98.21 97.21 67.54 92.70 98.72 46.64 99.70 86.21
s=100 29.14 86.24 98.78 60.69 92.85 98.95 57.05 93.36 96.45 92.90 98.11 97.51 67.43 92.59 99.16 42.86 99.97 91.28

Avg. 50.75 90.23 93.63 71.49 94.23 93.10 78.50 94.55 88.04 91.55 94.35 84.25 74.26 90.82 86.96 70.70 97.28 58.47

Table 2. TPR results indicating the detectability of black-box attacks, when Xception is discriminatively trained on a dataset that consists
of real samples, unmodified deepfakes, and either s = 1, s = 50, or s = 100 attacks. While training the detector on s = 1 attacks gives
poor overall results, training on s = 100 significantly improves the detection accuracy of all types of attacks. Training the discriminator
on s = 50 yields the most consistent and effective detection results across different attacks, with a TPR between 90% and 97%.

Figure 8. Visualisation of the Discrete Fourier Transform (DFT) spectra of real data, unmodified deepfakes, our DDM attacks (s = 1,
s = 50, s = 100) and diffusion–based face swapping images generated with DiffFace [15]. Our proposed DDM–based approach for the
generation of attacks reintroduces high-frequency elements in the low–density spectral range of deepfakes, mimicking the spectrum of real
images. Entirely diffusion–based methods for creation of deepfake data (such as DiffFace) in general tend to overestimate the frequency
density of real data. These spectral discrepancies can be utilized, to expose the DDM deepfakes. Best viewed in color and zoomed in.

that this particular amount of denoising steps induces image
artifacts similar to those present in unmodified deepfakes.

Unlike discriminative approaches, self–supervised mod-
els are trained on simulated fake data. Their performance is
therefore strongly dependent on the simulation technique.
Based on Figure 7, DSP-FWA, one of the very first self–
supervised models, experiences a huge drop in accuracy (at
least 30% or more), when attacks with s = 1 are presented.
In contrast, Face X-Ray, a model trained on manipulated
data that mimics deepfakes in a more sophisticated way, has
slightly more stable performance on s = 1 and s = 10 at-
tacks. This method is however very sensitive to modified
deepfakes generated with s > 10. Moreover, when Face
X-Ray is presented with s = 100 attacks, it detects less
than 10% of them. In our study, the most robust detector
is SBI. Although its performance starts dropping gradually
when s > 1, the TPR in all tested scenarios stays above
50%. Interestingly, SBI initially detects InsightFace deep-
fakes with a TPR of around 70%, but corresponding attacks
are recognized with a higher TPR of 80% or more. We hy-
pothesize that InsightFace traces are not well approximated
by the SBI augmentation approach, whereas our DDM in-
troduces frequencies that better resemble modeled artifacts.

Detectability of deepfake attacks. To investigate how de-
tectable our black-box attacks are in discriminative settings,

we conduct a study in which deepfakes reconstructed us-
ing our proposed DDM method are incorporated into the
training data. Specifically, we train Xception on 3 separate
datasets, each containing only one type of attacks. The first
set consists of real, unmodified fake data and attacks pro-
cessed with s = 1 diffusion step. In the second and the
third training sets, s = 1 attacks are replaced by s = 50
and s = 100 attacks, respectively. We adhere to the same
evaluation protocol as before, this time incorporating cor-
responding validation attacks, as well. Obtained results are
presented in Table 2. Our empirical study reveals that, on
average, s = 1 attacks are the least challenging to detect,
regardless of the type of attacks included in the training
set. However, when Xception is trained on s = 1 recon-
structions, it performs poorly in the detection of other at-
tacks. On the contrary, training on s = 100 reconstructions
greatly improves the detection accuracy of other attacks, as
well. Even so, attacks with smaller s values are detected
much less accurately, than attacks with s value closer to
100. Training Xception on s = 50 attacks achieves the
best average results, across different FF++ Deepfake meth-
ods. Nonetheless, this discriminator fails to detect between
3% to 10% of deepfakes, depending on the training dataset.
The best performance (TPR of 97.28%) is gained in exper-
iments performed on NeuralTextures data, while the worst



performance (90.82%) is measured on the InsightFace data.

To gain deeper insights into the differences between real,
deepfake images and DDM-generated attacks, we analyze
the data in the frequency domain. The magnitudes of the
Discrete Fourier Transform (DFT) for these images are vi-
sualized in Figure 8. We notice that deepfakes, in contrast to
real images, exhibit a significantly lower spectrum density
moving away from the center of the spectrum, which repre-
sents dominant low-frequency components. Our DDM ap-
proach for the generation of attacks aims to address this de-
ficiency by reintroducing high-frequency elements. Specifi-
cally, by reconstructing an existing deepfake with s = 1 dif-
fusion step, we start compensating for the missing spectral
components. As we increase the number of diffusion steps
s, we intensify the higher spectral range. In order to investi-
gate the differences between our deepfake attacks, and fake
data generated by a DDM from scratch, in Figure 8 we also
visualize the DFT spectrum of DiffFace [15], a diffusion
model for face swapping. We note that, unlike our proposed
DDM approach, DiffFace overestimates the frequency den-
sity, causing spectral discrepancies, that can be utilized to
expose deepfakes. Our findings are consistent with observa-
tions in [27], where similar results were obtained for other
common diffusion models, as well. However, we note that
neither our method nor DiffFace create strong spectral arti-
facts such as regular grids, typical for GAN–based models.

Detecting DDM data and knowledge transfer to attacks.
In our final experiment, we evaluate the ability of a naive
discriminator to identify pure diffusion deepfakes and ex-
plore its capacity for knowledge transfer, by attacking it
with our diffusion–based attacks. For this purpose, we dis-
criminatively train Xception on real, unmodified deepfakes
and DiffFace face swaps. Results, obtained by following
the previously established protocol, are summarized in Ta-
ble 3. We note that DiffFace deepfakes, which have a True
Positive Rate (TPR) of over 99%, present a lesser challenge
for the detector compared to all other non-diffusion Deep-
fake methods from FF++. Nevertheless, the TPR for these
methods still exceeds 93%. InsightFace deepfakes are in
this experiment the most challenging to detect, whereas the
best detection results are achieved on FaceShifter (FSh),
Face2Face (F2F), and Deepfakes (DF). Interestingly, de-
spite the discriminator being trained on DiffFace diffusion
samples, which in part share similar frequency spectrum
with our reconstructed fakes (as illustrated in Figure 8), it
remains highly vulnerable to all three types of attacks con-
sidered in this comparison. Higher number of diffusion
steps s is in general associated with higher TPR. Neverthe-
less, the average TPR of attacks is relatively low. Lowest
TPR (less than 10%) was measured on FaceShifter and Neu-
ralTextures. Moderately low TPR (between 25 and 45%)
was measured on Deepfakes, Face2Face and InsightFace,
while highest TPR was calculated on FaceSwap s = 50 and

train: real, unmodified deepfakes, DiffFace face swaps
test DF F2F FSh FS IF NT

DiffFace [15] 100.00 100.00 99.44 99.76 100.00 100.00
s=0 98.54 98.33 98.98 95.26 93.19 96.69
s=1 26.60 30.33 8.47 34.48 32.63 5.80
s=50 29.28 30.71 3.23 66.51 37.18 6.36
s=100 39.17 26.87 2.23 81.30 44.44 8.39

Avg. 58.72 57.25 42.47 75.46 61.49 43.45

Table 3. TPR results achieved by Xception, when it is discrimi-
natevly trained on real images, different FF++ face manipulations
and DiffFace (DDM) deepfakes. Measured accuracy indicates the
detectibility of DDM data and the generalization capacities of
the discriminator. While purely diffusion–based face swaps Diff-
Face are detected with a TPR of over 99%, the discriminator is
still highly vulnerable to our diffusion–based attacks.

s = 100 attacks (66.51% and 81.30%, respectively). These
isolated peaks in the TPR however, can not be entirely at-
tributed to the training with DiffFace samples, as we ob-
serve the same trend in experiments, where we do not use
any diffusion-based train images (see Figure 7).

6. Conclusion

Recently discovered Denoising Diffusion Models
(DDMs) have shown impressive capabilities for generating
highly realistic and convincing images. In this paper,
we investigate their potential employment as generators
of black–box attacks on deepfake detection systems. We
utilize a guided conditional DDM to reconstruct FaceForen-
sics++ (FF++) deepfakes with a predetermined number of
diffusion steps, which was found to directly relate to the
properties of the generated attack. The proposed DDM
approach not only improves the visual quality of an existing
deepfake, but it also removes typical deepfake artifacts.

We leverage generated black–box attacks in the evalu-
ation of the vulnerability of commonly used deepfake de-
tectors. Our study reveals that reconstructing deepfakes
with just one diffusion step can significantly decrease the
accuracy of the deepfake detectors. A higher number of
steps generally leads to lower detection accuracy. Self–
supervised detectors tend to be more robust than discrim-
inative spatial or frequency–based methods. Training a
naive discriminator using attacks generated with a specific
number of denoising steps effectively identifies manipula-
tions associated with that particular level of diffusion noise.
However, this approach lacks generalizability to attacks
produced with a different number of denoising steps. We
also investigate the vulnerability of the discriminator that
has been trained using purely diffusion-based face manip-
ulation. Although this model is slightly less vulnerable to
our DDM attacks in comparison to models trained on non–
diffusion samples, it still shows limited generalizability.
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