
Robust Machine Learning in Critical Care —
Software Engineering and Medical Perspectives

Miroslaw Staron
Computer Science and Engineering
Chalmers | University of Gothenburg

Gothenburg, Sweden
miroslaw.staron@gu.se

Helena Odenstedt Hergès, Silvana Naredi,
Linda Block, Ali El-Merhi, Richard Vithal

Dep. of Anesthesiology and Intensive Care
Sahlgrenska Academy and
Region Västra Götaland

Sahlgrenska University Hospital
Dep. of Anesthesia and Intensive Care,

Gothenburg, Sweden
(name.surname)@vgregion.se

Mikael Elam
Institute of Neurosc. and Physiology

Dep. of Clinical Neuroscience
Sahlgrenska Academy, and

Dep. of Clinical Neurophysiology
Sahlgrenska Univ. Hospital, and

MedTech West
Sahlgrenska Univ. Hospital

Gothenburg, Sweden
mikael.elam@gu.se

Abstract—Using machine learning in clinical practice poses
hard requirements on explainability, reliability, replicability and
robustness of these systems. Therefore, developing reliable soft-
ware for monitoring critically ill patients requires close collabo-
ration between physicians and software engineers. However, these
two different disciplines need to find own research perspectives
in order to contribute to both the medical and the software
engineering domain. In this paper, we address the problem of
how to establish a collaboration where software engineering and
medicine meets to design robust machine learning systems to
be used in patient care. We describe how we designed software
systems for monitoring patients under carotid endarterectomy, in
particular focusing on the process of knowledge building in the
research team. Our results show what to consider when setting
up such a collaboration, how it develops over time and what kind
of systems can be constructed based on it. We conclude that the
main challenge is to find a good research team, where different
competences are committed to a common goal.

Index Terms—machine learning, critical care, data analysis
pipeline, software design

I. INTRODUCTION

Designing reliable software systems for monitoring critically
ill patients is a complex process, which often requires in-depth
understanding of the clinical practice, data science, software
engineering and involves strict certification processes [1]. The
requirements on software systems include repeatability and ex-
plainability of results, traceability of the recommendations and
robustness to changes in data and scalability of the software
[2]. These requirements need to be addressed already from the
first steps of the design, as the transparency of data collection,
labelling of data points and the mitigation of confounding
factors cannot be added in late software development phases.
Software design processes need to take into consideration both
the state-of-the-art practices in software engineering and the
medical practices that affect the use of the software.

The research behind the clinical event identification, de-
signing data analysis pipelines and the subsequent machine
learning models require close collaborations between the
software engineering and the physicians. Therefore, efficient
research teams in this area are often cross-disciplinary, which

is the best-case scenario, but also the scenario that is the
most difficult to achieve [3]. One of the impediments in the
establishment of such teams is the ability to find common
goals, research questions and publication venues. For the
researchers in the medical domain, the focus is often to
find new methods to improve medical care, or to develop
more efficient and reliable treatments. For the researchers in
software engineering, the focus is instead on finding methods
for improving software engineering practices, such as require-
ments engineering, modelling, testing or quality assurance.

In our study, we set off to find evidence on what makes
the collaboration between software engineers and physicians
effective when designing machine learning systems for use
in critical care. In particular, we studied how to establish
such effective and efficient research teams by addressing
the following research question: What has to be taken into
consideration when establishing an efficient cross-disciplinary
collaboration between software engineers and physicians?

We used chronological analysis of our research journal,
which we kept during the studies. The goal of these studies is
to improve the detection of cerebral ischemia using artificial
intelligence (AI) [4]. The results from that analysis show that
the close, on-site collaboration, frequent presentation of results
and using explainable machine learning algorithms were keys
to success.

The remaining of the paper is structured as follows. Sec-
tion II presents the most important related work. Section III
describes our collaboration, the research project, its goals
and how we collected the data for our retrospective analysis.
Section IV presents the results organized by the phases of
the collaboration. The results are in form of the knowledge
development and the research topic development over time. We
summarize the recommendations for other teams in Section
V. Finally, Section VI summarizes the paper and presents
conclusions.

ar
X

iv
:2

10
3.

08
29

1v
1 

 [
cs

.S
E

] 
 1

5 
M

ar
 2

02
1



II. RELATED WORK

In the field of software engineering, the studies on collab-
orative projects are most often focused on the collaboration
between software engineering researchers and practitioners.
An example of such a study is the work of Sandberg et
al. [5], who studied the collaboration between a group of
researchers and one company, which was later extended to
multiple companies [6]. Similar studies were reported in
specific areas, such as testing [7] or design, modelling and
project management [8]. This line of research is focused on
one domain and the ability to align software development
goals with the software engineering research goals. In some
sense, however, these goals are already close as both parties
want to improve the software engineering practices. Examples
of resulting factors are engagement, co-production of results
and goal alignment. Our work provides a different perspective
on this problem – collaboration between researchers from
different domains where the goals cannot be as easily aligned
as within one domain, or even contradictory at times.

In the same domain, one line of research is focused on the
transfer of research results, i.e., where innovation is created by
researchers and adopted by the practitioners. An example of
such research area is the work of Zahedi et al. [9], Gorschek
et al. [10] and Mikkonen et al. [11]. The main contributions
in this area help to increase the level of utilization of research
results. We contribute to this line of research by providing an
account of how to increase the utilization of machine learning
models in clinical practice.

Another line of research is focused on the collaboration
between academia (university) and industry (companies). In
this line of research the focus is on the alignment of goals
and co-production of research results, and on the involvement
of students and their learning. An example of this kind of
research is the work of Awasthy et al. [12] and Ross and Riley
[13]. Although there is a significant progress in this area, in
particular when discussing scalability of the results, there are
still unanswered questions on how to build common awareness
of the problem or how to transfer technology between domains
(software engineering specialists vs. clinical specialists). Our
work is focused on this kind of technology transfer.

A typical way of collaborating and addressing multi-
disciplinary questions is by using observations, e.g., non-
participatory observations using video recordings. Ivarsson and
Åberg [14] provide a recent example of such a study, where
the information systems researchers studied communication
challenges during surgery. These studies provide valuable ex-
amples of how to increase understanding of clinical practices,
but are often focused on one domain only. Our work aims
at addressing both the engineering and the medical domains
simultaneously, in particular in finding relevant research ques-
tions for both domains.

Finally, the interest for using machine learning in critical
care units has been growing rapidly in the last few years. The
main focus so far is on the utilization of the patient data [15],
ethical aspects [16] and managing of high frequency patient

data [17]. All of these advancements require collaboration
between software engineers/data science specialists and critical
care physicians, as recognized by Maslove et al. [3]. Our work
contributes with practical guidelines and recommendations on
how to set up such collaboration and how to develop common
knowledge for all participating domains.

III. RESEARCH CONTEXT

To understand the challenges in establishing the collaboration,
we decided to collect data from our research project on a
daily basis. We used MS OneNote tool to record important
events and to reflect on them. We used the project plan as a
starting point for the journal, and we used a similar approach
as previous research studies [18].

Everyday, we started by setting up expectations for the day,
which we set during a joint team meeting. Then, during the
day, we focused on the activities planned for that day. At
the commence of the day, we recorded all observations which
we deemed relevant, and shared with the research team. An
example of a journal entry is presented in Figure 1.

Fig. 1. Example of a part of journal entry for one day, screenshot from MS
OneNote. The entire entry is approx. 2 pages long. Expectations and notes
are above the diagram. The diagram is a screenshot of the data collection
program connected to the Moberg monitor.

The format of the journal was very open ended, with the
only required part being the expectations. The free form of
OneNote was perfect to include pictures taken during clinical
visits, screenshots of the analysis tools or illustrations from
the textbooks used in the learning phase.

Table I presents the expectations and the main findings for
selected days throughout the project.

Naturally, the planning of the project was done beforehand,
but the patients’ data collection was not. The studied patients
underwent cartoid endarteractomy, which is a procedure con-
ducted within 24-48 hours of admitting the patient.



Day Expectations Main Findings
1 Learn how to use equipment (Moberg monitor) and learn how

to read EEG (Electroencephalograph) signals.
1) Data analysis pipeline requires some manual intervention (export from the Moberg
monitor), and 2) EEG signals require more expert knowledge that initially expected.

2 Visit the ICU (Intensive Care Unit) and get familiar with the
equipment used.

1) Heart Rate Variability patterns may differ significantly, 2) ECG signals can differ in
the amplitude based on which lead is displayed.

3 Export data from a pilot-patient and check how we can create
a data analysis pipeline.

1) Using the data in Python works best with the HeartPy toolkit, 2) Clinical events need
to be scrutinized and taken into consideration when evaluating data to increase quality.

4 Add clinical events to the data and create the feature vector
for the ECG signal.

1) ECG is the most robust signal and the EEG signal is the one that is most prone
to disturbances (even moving a cloth on patient’s head can cause artefacts), 2) qEEG
(quantitative EEG) is quite straightforward using the standard Python fft function.

5 Visualize the ECG data using HeartPy package and visualize
the features extracted from ECG.

We need to set-up the HeartPy analysis almost individually to avoid confusing R- and
T-peaks in the ECG signal.

6 Learn about the NIRS1 signal and extract features from the
EEG signal.

NIRS seemed to be a signal that is not very reliable due to the limitation of how deep
into the brain tissue the measurement reaches.

7 Collect data from the first study-patient, make the first visu-
alization using t-SNE2

1) Creating the data frame with all features resulted in 48 features. 2) After data cleaning
and labelling, each patient resulted in over 100 data points.

8 Make the first data analysis using machine learning. The accuracy of the first patient was 0.61, when recognizing all events.
9 Compare different machine learning algorithms w.r.t. accu-

racy.
1) After testing CART Decision Trees, AdaBoost, Random Forest and Support Vector
Machines, we found that the accuracy differences are very small (max 0.2), 2) we
decided to use Random Forest as it provided us with the ability to plot the feature
importance chart, 3) The feature importance chart helped the team to validate (explain)
the ML results.

10 Review the entire surgical procedure, including anesthesia,
together with collected data, minute by minute, with the entire
team.

1) Reduced number of clinical events of relevance to five (ten as each event has a start
and end), 2) NIRS was found to be the most clear signal for distinguishing the events
both by physicians and by machine learning.

11 Collect and analyze the data for two new patients. t-SNE visualizations, confusion matrices and ROC curves were found to be very good
charts to communicate the results within the team.

12 Collect and analyze the data from three more patients. Find
a way of adding the labels to the data automatically.

1) The most important signals for these two patients were related to heart rate variability,
and 2) due to problems with EEG electrodes, the results were much lower than
previously (the problems could not be fixed in the data analysis/cleaning phase).

13 Prepare a summary of analyses and present to the entire team
for discussion.

The features used for all patients were consistent with each other (i.e., the most important
features were the same for all patients), which strengthened our results.

14 Add data from the post-operative care for all patients. 1) Adding the post-operative care as an event increased the prediction accuracy to 0.90,
2) we could use the post-operative period as a baseline.

15 Present the summary to the team and analyze the EEG signals
in detail for one patient.

1) The results (e.g., feature importance charts) were consistent with how the physicians
could recognize the events, and 2) in-depth studies of the EEG signals showed that it is
very difficult to use that signal in practice by non-experienced analysis and physicians
(recognizing the patterns requires experience).

16 Identify new research questions based on the analyses and
insights so far.

1) We found the need to study how to identify rare events (e.g., when we only have
2 data points out of 200), and 2) we needed to study how the data collection can be
done in a more emergent setting, for example for patients admitted for acute cerebral
thrombectomy.

17 Create detailed diagrams for all features collected to help to
manually explore the data for each patient.

The detailed diagrams are important for traceability of results, but their quantity (48
diagrams for as many features) make it difficult to examine all of them in detail for
every patient.

18 Analyze one more patient. 1) This surgery included the establishment of a vascular shunt, which made the NIRS
signal less clear, 2) qEEG features were the most important ones for the algorithm, 3)
the accuracy was lower due to more noisy NIRS signal – 0.82.

19 Prepare dissemination plan and read upon the details on the
surgical procedure.

Planning of publications resulted in finding three new research topics of joint interest
– potentially new surgical procedures to study and new data collection methods
(autolabelling of heart rate data using NIRS signals).

20 Prepare the draft of the first presentation. The lowest accuracy was 0.82 and the highest 0.98 for the five patients that were
analyzed. Based on the comparison with the existing literature, these results were better
than existing work.

TABLE I
SUMMARY OF EXPECTATIONS AND MAIN FINDINGS FOR SELECTED DAYS OF THE PROJECT.

The table illustrates the gradual progression of the focus
from understanding the clinical practice to the analysis of
the data and planning of new studies to increase the external
validity of the results. This was done on premises of the ICU,
i.e., where the clinical practice takes place, and it helped the
software engineers to observe the practice.

IV. PHASES OF COLLABORATION

Since our notes are chronological, we decided to structure
our experiences and good practices based on the phases of

the collaboration – starting from finding the right partners to
making the results generalizable to new contexts.

A. Finding the right partners

In our view, the most essential part of the project is to find
the right partners. In general, collaborations between different
fields are based on individual engagement, but in the essence
it is also based on the competences.

In the case of our project, we found the collaborations by
discussing common research areas outside of the clinical con-
texts. The physicians mentioned a research challenge related



to detection of delayed cerebral ischemia after subarachnoid
hemorrhage using heart variability measurements. The soft-
ware engineers were interested in understanding challenges
with data quality from the clinical procedures. So, we had
two perspectives on the same data:

• Software engineering: data quality, data collection, con-
founding factors (or noise) and scalability of the software.

• Medical: automatic support for identification of medical
events, automated monitoring and detection of specific
conditions as well as better use of the large amount of
data generated in ICUs and in operating rooms (OR).

These two perspectives are distinct, but complementary.
Understanding the quality of the data is essential for building
high quality machine learning based systems [2], but it is
often treated from a computational perspective – e.g., finding
noisy data points using statistics [21]. Studying the sources of
noise or bad quality are, henceforth, extremely important for
software engineers [22].

Our recommendations for this phase are, therefore:
1) Identify an existing data which can be used to start the

collaboration with a low entry level for both disciplines.
This helps to move from the conceptual to the practical
phase quickly; the practical work is where most of the
learning happens.

2) When working on the problem, ask questions about the
data, underlying procedures, ways of working and the
analysis as often as possible. This helps to learn about
each domain and understand what is important; this
learning helps to design new studies that provide higher
quality data (“rookie mistakes” can be avoided the next
time).

3) Organize a brainstorming session (or many) listing out
the most important research challenges related to the
problem, which can be solved by the team. This will
help to understand the potential and design a series of
studies; it can be published as study protocols, e.g., [4].

4) Prepare brief (an outline) of a research design for
each study. This helps to understand which elements
each study should contain in order to maximize the
generalizability of results; it is also important to plan
which competence to include in each study.

Following these guidelines increases the efficiency of the
research team and provides a clear view on the goals.

B. Finding relevant research questions

One of the main challenges in finding the right collaboration
is to find a set of research questions that are of interest for
both disciplines. A typical counter-example is when research
questions are relevant for the medical domain, but not for soft-
ware engineering – How to recognize clinical events relevant
for cerebral ischemia?

In order to find the relevant questions and to design studies
that address them, both disciplines need to be active in the
initiation/design of the research project. Being involved from
the beginning allows to understand which research problems

can be relevant and also how to prepare the study so that both
disciplines can benefit from it.

Both disciplines need to be explicit about the types of
research problems. For example, the software engineers need
to describe their context and needs, e.g., posing research
questions like How to automatically identify data quality
issues related to OR procedures?

Table II presents examples of research questions which are
relevant for both domains, stemming from our studies.

RQ Medical SE
RQ1 Can risk of upcoming cererbral

ischemia be detected by a
monitoring system?

Which algorithms are best for
recognizing cerebral ischemia?

RQ2 Is it possible to detect a risk
of cerebral ischemia during
carotid endarterectomy?

How to ensure that the data is
clean of noise?

RQ3 Can anesthesia mask or mimic
cerebral ischemia?

Which medical information
needs to be included for ac-
curate detection of cerebral is-
chemia using ML?

RQ4 Which monitoring components
are needed to create an alarm
system for detection of cere-
bral ischemia?

How to reduce false-positive
alarms?

RQ5 How to create a monitor-
ing system that is sensitive
enough?

Which machine learning per-
formance measures are the
most relevant for assessing the
quality of the software system?

TABLE II
EXAMPLES OF RESEARCH QUESTIONS RELEVANT FOR THE MEDICAL AND

SOFTWARE ENGINEERING DOMAINS.

It is important that these research questions are established
at the beginning of the project, so that the research team has an
awareness of each other’s goals [5]. For a software engineer,
this requires exploring research in the areas that require cus-
tomer or user collaboration. In our case, we focused on explor-
ing the aspects of differences between the machine learning
algorithms in practice (e.g., comparing Random Forest with
Support Vector Machines), data quality (e.g., automated data
cleaning vs. manual data labelling) or scalability (e.g., cross-
patient model evaluation).

We recommend the following when finding the research
questions:

1) Each research team member prepares a set of re-
search questions of interest on her/his own before shar-
ing with others. This helps to focus on each disci-
plines/subdisciplines and individuals goals for the study.

2) Discuss the research questions together and plan for
them in the series of studies identified in the previous
phase; this shows the progression of the research prob-
lems and their solutions.

3) Make a preliminary plan for which research questions
should lead to which publications and group them ac-
cordingly. This grouping leads to more efficient planning
of the dissemination of the results from the project.

Once the research questions are planned, the team should
start with the pilots for the first study in line.



C. Pilot studies: Understanding the environment

The most important aim for the pilot study is to understand
each other’s practice and to design a full set-up of the study
at hand. In our case, we decided to conduct the study on one
patient in the operating room. The physicians in the team were
present during the surgery and recorded the events during the
surgery. These events were important as we used them to label
the data for our study.

In the pilot study, we learned about the limitations of the
technology, in particular the sensors used in the study. That
knowledge was important as the sensor data was needed for the
analysis. The software engineers were introduced to the OR
surgical procedure and the OR environment. Figure 2 presents
a set-up in the OR, with the Moberg monitor in the central
place.

Fig. 2. Clinical set-up for data collection. Moberg monitor is an additional
equipment used to collect data from multiple sensors (NIRS, ECG, EEG),
annotate them and store in a single file.

We found that the most important part of the understanding
was the concept of events during surgery. An event is the same
as the label which we used for machine learning. The events
show what happens during the surgery, which we want the
machine learning to recognize, identify and predict. Examples
of events are:

• induction of anaesthesia,

Fig. 3. An example diagram – Near-Infrared Spectography

• increase/decrease of drugs,
• clamping of carotid artery, or
• post-operative care.

The events were crucial as they provided a common ground
for discussing the procedure and the resulting data. Software
engineers could ask questions like: Why is the induction of
anesthesia important for the data? Why should we monitor
the increase/decrease of the drugs? Does the clamping of the
carotid artery influence the heart rate variability?

Asking these questions led to the understanding of underly-
ing confounding factors in the data. In our case, we found that
the role of anesthesiologists in the OR is to increase the blood
pressure to maintain cerebral perfusion, which could confound
our results as we aimed to recognize differences in heart rate
variability caused by closing the carotid artery.

As a result of these discussions, in our case, we found a
number of periods during the surgical procedure where certain
reference periods could be established: taking six deep breaths
to standardize heart rate variability, unstimulated period after
anesthesia induction, additional events such as stump pressure
measurement etcetera.

From these discussions, the physicians learned what the data
analysts need to see in the data to train the machine learning
classifier. They have also learned about the dependencies
between the signals and how the raw signals (e.g., raw EEG,
Electroencephalograph) are quantified for further processing.

Figure 3 shows an example of the result of data collection
– two signals from one patient.

For this phase we recommend:

1) Record as many events as possible in the OR, as it is
easier to remove them than to find them later on. Having
more events helps the software engineers to understand
what is important.

2) Review the entire data from the OR and select represen-
tative periods for further analysis, instead of labelling the



entire data set. This helps to find the data that is clean
enough for the algorithms.

3) Show the “quick and dirty” analysis at the early stages
to the entire team. This helps to raise awareness of what
is important for analysis, which in turn leads to better
data collection.

4) Provide each other with the important literature on the
research topic in order to introduce each other to the ter-
minology, procedures and important research results in
the field. This helps to learn the terminology, vocabulary
and to find in which direction the data analysis should
go (e.g., selection of algorithms, tuning of parameters).

After this stage, we concluded that the research team have
such a level of understanding that it is virtually impossible to
bring in new members without significant training effort. At
this stage, both domains have gained substantial understanding
of each other.

We believe that this stage helps to build such a com-
mon understanding that it replaces the need for requirement
specifications when designing prototypes. In case when the
requirement specifications are to be used in the future, the
software engineers have sufficient domain knowledge to be
able to create quality requirement specification.

D. Data analysis

When analyzing the data, we found that the most important ac-
tivity is the joint discussion of the results. It helps the software
engineers to understand which empirical (clinical) events the
data represents. It also helps the physicians to understand how
the data is analyzed and therefore add important information.

In the case of our collaboration, we presented the results on
a daily basis, every time a new patient data was analyzed.
This helped us to evolve the procedure – both in the OR
(identifying events, bringing in extra competence for setting
up EEG electrodes), and in the analysis (finding which events
are important to recognize).

These discussions helped us to reduce the number of events
monitored by half, for example: the baseline events were
important, but too short to be used in the analysis (too few
data points), the events of continuous drug administration that
lasted the entire procedure were reduced to only two (as their
effect overlapped other clinical events).

Our analysis included a number of machine learning algo-
rithms – from the simple CART decision trees [23], through
the use of AdaBoost boosting [24], Support Vector Machines
[25] to the use of Random Forest [26]. When discussing
the results, we also found guidelines for reporting studies
involving machine learning in medicine [27], which helped the
software engineers to understand the requirements for machine
learning systems from the clinical practice side.

In the data analysis phase, we recommend the following:
1) Use the reporting guidelines from the beginning. Using

the reporting guidelines from the medical literature
helped us to understand how to process the data to
minimize confounding factors related to data analysis
(conclusion validity).

2) Optimize the data labelling process with machine learn-
ing in mind: make sure that the data can be machine
processed as much as possible. This helps to decrease
the effort required to analyze each patient.

3) Use feature importance charts, which help the physicians
to understand which signals are the most important ones
for the algorithms. This increases the validity of the
trained models (explainability of results).

Figure 4 presents an example chart of feature importance
for one patient. This kind of diagram provided the entire team
with a good starting point for the discussion of the validity of
results.

Fig. 4. Feature importance chart for an example patient. The most important
signals are NIRS (left side of the brain), Inter-beat interval (IBI), and Beats
per Minute (BPM).

After the analysis of the results, and discussing their em-
pirical validity, the team was well equipped to discuss the
confounding factors.

E. Mapping of confounding factors

In multidisciplinary studies, such as ours, identifying and
reducing the confounding factors is a complex task. The
confounding factors can originate from the medical domain
and the software engineering domain respectively. They can
only be identified when the team works together and when



the team understands the entire data collection and analysis
pipeline.

The confounding factors in the medical domain can origi-
nate from the surgical procedures (e.g., using a stump blood
pressure measurement instead of the arterial blood pressure,
which causes disturbances in one of the signals), medication
(e.g., anesthesia decreases the blood pressure) or labelling
(e.g., the ability to identify important events in the OR).

The confounding factors in the software engineering domain
can originate from the data analysis procedures (e.g., machine
learning algorithms used), feature extraction and data cleaning
procedures (e.g., removing important data points when remov-
ing the noise ones), scaling up the software (e.g., introducing
manual tasks) and the deployment (e.g., portability of libraries
used).

Our recommendations for finding the confounding factors
efficiently are:

1) Provide the summary charts that link the medical domain
with the data analysis/software engineering domain. Us-
ing feature importance charts and t-SNE diagrams helps
to get a summary view. This helps to start the discussion
that is relevant for both domains.

2) Provide detailed diagrams to enable deep-dive and
traceability on a patient level. This helps the team to
assess if certain data points are outliers or not (e.g.,
disturbances/artefacts in EEG signals). This increases
the quality of the data and helps to find automated means
for data quality assurance.

3) Go through the data from one patient for the entire
surgical procedure. Such review of the data allows the
team to understand what can go wrong in the procedure
and change it. This helps to improve and optimize the
procedures – both in the OR and when analyzing the
data.

4) When finding confounding factors, discuss whether they
can/should be mitigated by using analytical methods
(e.g., data cleaning) or manual procedures (e.g., addi-
tional steps in the OR).

When identifying the confounding factors, the team can
also identify potential new studies that can address these
confounding factors. For example, in our case we identified the
need to check how robust procedures are when used in more
dynamic or emergent situation for example during an acute
thrombectomy, where the patients need to be treated as soon
as possible. Furthermore, we also found the need to design
new studies with a group of patients not at risk for cerebral
ischemia to establish the baseline for identifying events (to
avoid the Hawthorne’s effect).

F. Results from out studies on five patients

In order to illustrate the outcomes of such a collaboration,
we present the final results of analysis of five patients. Each
analysis was done using Random Forest and the goal was to
recognize clinical events for each of these patients. Table III
presents the accuracy metrics for five patients included in our
study.

Patient Accuracy Precision/ Specificity Recall/ Sensitivity
Patient 1 0.98 0.98 0.98
Patient 2 0.87 0.87 0.87
Patient 3 0.89 0.92 0.92
Patient 4 0.90 0.86 0.90
Patient 5 0.82 0.94 0.94

TABLE III
ACCURACY METRICS FOR FIVE EVALUATION PATIENTS.

The results vary from 0.82 to 0.98 in terms of accuracy.
The ability to work together in this project led to defining
an efficient data analysis pipeline. The data analysis pipeline
take ca. 8-9 hours from the beginning of the surgery to
the presentation of the results. The OR and post-op time is
included (ca. 6-7 hours).

V. RECOMMENDATIONS

We found that effective and efficient collaboration between
physicians and software engineers is essential for designing
robust software systems. Involving software engineers as ob-
servers of the relevant clinical practice is crucial, just as
involving physicians as observers of data analysis and software
development.

Therefore, we strongly recommend to involve both disci-
plines at the initiation of the study. This will lead to research
questions that are relevant to both disciplines. In turn, that will
lead to making contributions to both disciplines.

We recommend to invest in learning about each other’s dis-
ciplines in order to identify confounding factors, opportunities
and to find best practices. By sharing recommendations about
disseminating results, we can help to develop both disciplines
in terms of scientific rigour and robustness of results.

We also recommend to keep a journal of the project.
Taking notes provides the team with the ability to reflect
and retrospect on the progress of the project, which leads to
recording new directions, ideas and analyses.

VI. CONCLUSIONS

In this paper, we addressed the problem of how to establish
an efficient collaboration between software engineers and
physicians with the goal to design robust machine learning-
based software systems for use in critical care.

Our study resulted in finding 18 recommendations grouped
into five phases – starting from the initiation of the collabo-
ration until the delivery of research results. One of the major
findings was that investing in the design of the study, as well as
joint execution of the pilot studies, are very important for the
success of the design of software systems. We could also show
that thanks to the collaboration, we were able to increase the
accuracy of the machine learning models from 0.61 to 0.82,
simply by identifying confounding factors, data cleaning based
on clinical knowledge and statistics.

Our further work include further development of our
recommendations, including other contexts and other disci-
plines/domains.



ACKNOWLEDGMENT

We would like to thank the patients for participating in
our study. The study has been partially financed by CHAIR
– Chalmers AI Research Center and Wilhelm and Martina
Lundgren science fund 2019-3078 as well as by the agreement
between the Swedish Government and the county councils
the ALF agreement ALFGBG-722182 and ALFGBG-936447.
The study was performed in accordance with the most recent
version of the Helsinki Declaration, and ethical consent for
the study was obtained from the Swedish Ethical Review
Authority, Dnr 2020-00169.

REFERENCES

[1] J. Forsström, “Why certification of medical software would be useful?”
International journal of medical informatics, vol. 47, no. 3, pp. 143–151,
1997.

[2] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, “Software
engineering challenges of deep learning,” in 2018 44th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2018, pp. 50–59.

[3] M. D. Maslove, P. W. Elbers, and G. Clermont, “Artificial intelligence
in telemetry: What clinicians should know,” Intensive Care Medicine.

[4] L. Block, A. E. Merhi, J. Liljencrantz, S. Naredi, M. Staron, and
H. O. Hergès, “Cerebral ischemia detection using artificial intelligence
(CIDAI) – a study protocol,” Acta Anaesthesiologica Scandinavica,
2020.

[5] A. Sandberg, L. Pareto, and T. Arts, “Agile collaborative research:
Action principles for industry-academia collaboration,” IEEE software,
vol. 28, no. 4, pp. 74–83, 2011.

[6] A. B. Sandberg and I. Crnkovic, “Meeting industry-academia research
collaboration challenges with agile methodologies,” in 2017 IEEE/ACM
39th International Conference on Software Engineering: Software En-
gineering in Practice Track (ICSE-SEIP). IEEE, 2017, pp. 73–82.

[7] V. Garousi, M. M. Eskandar, and K. Herkiloğlu, “Industry-academia
collaborations in software testing: Experience and success stories from
canada and turkey,” Software Quality Journal, vol. 25, no. 4, pp. 1091–
1143, 2017.

[8] V. Garousi, D. Pfahl, J. M. Fernandes, M. Felderer, M. V. Mäntylä,
D. Shepherd, A. Arcuri, A. Coşkunçay, and B. Tekinerdogan, “Char-
acterizing industry-academia collaborations in software engineering:
Evidence from 101 projects,” Empirical Software Engineering, vol. 24,
no. 4, pp. 2540–2602, 2019.

[9] M. Zahedi, M. A. Babar, and B. Cooper, “An empirical investigation
of transferring research to software technology innovation: A case of
data-driven national security software,” in Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, 2018, pp. 1–10.

[10] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for
technology transfer in practice,” IEEE software, vol. 23, no. 6, pp. 88–
95, 2006.

[11] T. Mikkonen, C. Lassenius, T. Männistö, M. Oivo, and J. Järvinen,
“Continuous and collaborative technology transfer: Software engineering
research with real-time industry impact,” Information and Software
Technology, vol. 95, pp. 34–45, 2018.

[12] R. Awasthy, S. Flint, R. Sankarnarayana, and R. L. Jones, “A frame-
work to improve university-industry collaboration,” Journal of Industry-
University Collaboration, 2020.

[13] A. Ross and M. Riley, “Degree apprenticeships: Disruption or business
as usual,” in Proceedings of the Annual Conference of the Associated
Schools of Construction, 2018.

[14] J. Ivarsson and M. Åberg, “Role of requests and communication break-
downs in the coordination of teamwork: A video-based observational
study of hybrid operating rooms,” BMJ open, vol. 10, no. 5, p. e035194,
2020.

[15] A.-S. Poncette, L. Mosch, C. Spies, M. Schmieding, F. Schiefenhövel,
H. Krampe, and F. Balzer, “Improvements in patient monitoring in the
intensive care unit: Survey study,” Journal of Medical Internet Research,
vol. 22, no. 6, p. e19091, 2020.

[16] M. Beil, I. Proft, D. van Heerden, S. Sviri, and P. V. van Heerden,
“Ethical considerations about artificial intelligence for prognostication
in intensive care,” Intensive Care Medicine Experimental, vol. 7, no. 1,
p. 70, 2019.

[17] A. J. Goodwin, D. Eytan, R. W. Greer, M. Mazwi, A. Thommandram,
S. D. Goodfellow, A. Assadi, A. Jegatheeswaran, and P. C. Laussen,
“A practical approach to storage and retrieval of high-frequency physio-
logical signals,” Physiological Measurement, vol. 41, no. 3, p. 035008,
2020.

[18] L. Mathiassen and A. Sandberg, “How a professionally qualified doctoral
student bridged the practice-research gap: A confessional account of col-
laborative practice research,” European Journal of Information Systems,
vol. 22, no. 4, pp. 475–492, 2013.

[19] A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near
infrared spectroscopy (nirs): A new tool to study hemodynamic changes
during activation of brain function in human adults,” Neuroscience
letters, vol. 154, no. 1-2, pp. 101–104, 1993.

[20] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[21] X. Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative study,”
Artificial intelligence review, vol. 22, no. 3, pp. 177–210, 2004.

[22] V. Gudivada, A. Apon, and J. Ding, “Data quality considerations for big
data and machine learning: Going beyond data cleaning and transfor-
mations,” International Journal on Advances in Software, vol. 10, no. 1,
pp. 1–20, 2017.

[23] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[24] C. Ying, M. Qi-Guang, L. Jia-Chen, and G. Lin, “Advance and prospects
of adaboost algorithm,” Acta Automatica Sinica, vol. 39, no. 6, pp. 745–
758, 2013.

[25] N. Cristianini, J. Shawe-Taylor et al., An introduction to support
vector machines and other kernel-based learning methods. Cambridge
university press, 2000.

[26] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[27] W. Luo, D. Phung, T. Tran, S. Gupta, S. Rana, C. Karmakar, A. Shilton,
J. Yearwood, N. Dimitrova, T. B. Ho et al., “Guidelines for developing
and reporting machine learning predictive models in biomedical re-
search: A multidisciplinary view,” Journal of medical Internet research,
vol. 18, no. 12, p. e323, 2016.


	I Introduction
	II Related work
	III Research context
	IV Phases of collaboration
	IV-A Finding the right partners
	IV-B Finding relevant research questions
	IV-C Pilot studies: Understanding the environment
	IV-D Data analysis
	IV-E Mapping of confounding factors
	IV-F Results from out studies on five patients

	V Recommendations
	VI Conclusions
	References

