
ar
X

iv
:2

10
3.

10
54

8v
1 

 [
cs

.S
E

] 
 1

8 
M

ar
 2

02
1

Towards Productizing AI/ML Models:

An Industry Perspective from Data Scientists

Filippo Lanubile, Fabio Calefato, Luigi Quaranta,

University of Bari

Bari, Italy

firstname.lastname@uniba.it

Maddalena Amoruso, Fabio Fumarola, Michele Filannino

Prometeia

Milano, Italy

firstname.lastname@prometeia.com

Abstract—The transition from AI/ML models to production-
ready AI-based systems is a challenge for both data scientists
and software engineers. In this paper, we report the results of a
workshop conducted in a consulting company to understand how
this transition is perceived by practitioners. Starting from the
need for making AI experiments reproducible, the main themes
that emerged are related to the use of the Jupyter Notebook
as the primary prototyping tool, and the lack of support for
software engineering best practices as well as data science specific
functionalities.

Index Terms—AI/ML models, data science, Jupyter notebooks,
data products

I. INTRODUCTION

Today, product features based on Machine Learning (ML)

are being massively integrated into software systems [1].

Often, the decision of building AI-based systems comes after

data scientists within organizations achieve promising explo-

rative data analysis followed by successful implementation of

prototypical models. Once encouraging results are achieved in

the lab, the best performing model has to be ‘productized’

— i.e., turned into an actual ‘data product,’ ready to be

used in live services. This transition from AI/ML models to

production-ready systems is a complex endeavor, which brings

some challenges that still lack consolidated solutions. Many of

the obstacles arise from the fact that the main concern of data

scientists is the timely delivery of the best performing model

[2]; they rarely consider building robust and scalable services

a priority, and hardly ever deal with the related problems since

the earliest stages of a project.

Consequently, an organization that needs to build an AI-

based system can take one of two approaches: (1) have the

data science team hand-off the model to a software engineering

team, which take over the task of integrating it into production;

(2) let the data science team handle the whole model lifecycle,

including its integration. While the former approach entails

unavoidable inefficiencies, due to the necessary porting and

reworks, as well as the typical shortcomings in the communi-

cation between data scientists and software engineers [3], [4],

the latter is easily limited by the tools and practices of data

scientists, which typically lack support for production-level

development. One example is the computational notebook –

and in particular, Jupyter Notebook [5], [6]: this is the tool of

choice for many data scientists to perform data exploration and

model building, as its interactivity is particularly convenient

for such tasks, but it offers poor native support even for basic

collaborative software development practices such as code

versioning, modularization, and testing.

One of the main challenges that data scientists face when

they translate their prototypes into products is the reproducibil-

ity of the analysis and model training process [7]. Nonetheless,

ensuring the reproducibility of AI/ML code is nontrivial: on

the one hand, some algorithms have an intrinsically non-

deterministic nature; on the other hand, the complex pipelines

set up by data scientists to build models often depend on

untracked environmental dependencies, intricate and scarcely-

portable system configurations, and rely on tools that can

hardly handle reproducibility by themselves, as in the case of

computational notebooks [8]. Reproducibility should receive

special attention because it is crucial not only for the reliability

of AI-based systems but also for their maintainability [3].

To gain a better understanding of this challenge and figure

out how it is perceived by practitioners, we organized a

workshop at an Italian consulting company, involving data

scientists with different experience levels and educational

backgrounds. In this paper, we report the main themes that

emerged from the discussion: the benefits and pitfalls of

computational notebooks, the desire for notebook features and

tools supporting the reproducibility of AI/ML experiments,

and the need for shared best practices.

The remainder of this paper is organized as follows: in Sec-

tion II, we describe the workshop organization; in Section III,

we report and comment on the main themes that emerged from

the workshop; in Section IV, we conclude the paper with a

hint to future work.

II. WORKSHOP DESIGN AND EXECUTION

A. Business and Social Context

Prometeia is an Italian provider of consulting services,

software solutions, and economic research focused on risk,

wealth, and asset management. The company has more than

300 clients in over 20 countries around the world, mainly

banks, insurance companies, and institutional investors.

We organized the workshop in the Milan branch, which is

where the data science team is mainly based. Eighteen data

scientists attended the event (3 women and 15 men); four

participants attended remotely, from the headquarter of the

http://arxiv.org/abs/2103.10548v1


company in Bologna. Workshop attendees have a varied edu-

cational background: some of them have a M.Sc. in Computer

Science, while others have studied Physics, Mathematics, and

Statistics.

B. Workshop Set Up

We held the workshop in the Fall 2019. The company

reserved a comfortable room for the event, where we arranged

chairs around a large table, leaving room for the projector

screen on one side. Before the beginning of the meeting, we

checked that the connection with the remote attenders worked.

We set up a camera to let them see the room alongside the

presentation slides.

One industry author was in charge of facilitating the dis-

cussion, while one academic author was in charge of the

presentation and another took part as the note taker. Together

with textual notes, we collected audio and video recording of

the entire event.

C. Workshop Execution

The workshop lasted 2 hours and a half. During the first

hour, after welcoming the audience and giving a brief synopsis

of the session, the presenter outlined his review of the currently

available software solutions for AI experiments, focusing on

the most relevant examples.

During the presentation, the speaker involved the audience

multiple times, collecting information about their acquaintance

with the presented tools through interactive polls. As tools

were illustrated, the audience showed considerable involve-

ment by asking questions on specific aspects of their usage,

mainly expressing concerns about data management issues

(privacy, data lock-in, etc.). They explained that they worked

in a mission critical context in which data confidentiality is

almost always a priority.

The presenter concluded his talk with the following three

questions, aimed at triggering the discussion in the subsequent

brainstorming session:

• “Which are your favorite tools and why?”

• “Are there any gaps between tool features and your state

of practice/needs?”

• “Should we use notebooks only for reporting early results

and prototyping?”

In the first part of the brainstorming session, the moderator

encouraged the participants to freely take part in the discus-

sion, either by answering one or more questions regarding

the presentation or by sharing their views on the topic. After

hearing most of the attendees, to ensure that we listened

to all the voices in the audience, the moderator proposed

that everyone in the group introduced themselves – providing

information on their educational background and role – and

freely expressed some thoughts on the topic.

Overall, as detailed in the following section, not only we

were able to collect a number of interesting comments on the

theme of reproducibility in AI experiments, but also we gath-

ered precious insights about (1) the role of Jupyter Notebook

in the typical workflow of the involved practitioners, (2) the

desired product features and tools that would solve some of

the most pressing challenges currently faced by the company

and (3) the need for validated and shared best practices to be

adopted by the data science team.

III. ANALYSIS AND DISCUSSION

A. Method

Shortly after the workshop, the moderator and the note-taker

conducted a quick debriefing session, to ensure that all relevant

aspects of the discussion had been noted down and add any

further comments or impressions. Later on, the note-taker went

through the recorded material, integrating field notes where

necessary and transcribing the most informative quotes from

the brainstorming.

Eventually, we reviewed all the notes and performed a

thematic analysis to extract and group the most relevant topics

from the discussion.

B. Themes emerged from the workshop

1) The Role of Computational Notebooks: The question on

the role of Jupyter notebooks was the one that immediately

catalyzed the attention of the participants, thus showing us that

the use of notebooks was already a hot topic in the team. One

of the attendees started by saying that a large part of the work

they currently do at Prometeia has an intrinsically exploratory

nature. Most of the time, prototyping plays a major role and

Jupyter Notebook ends up being a particularly convenient tool

to use.

It is out of the question to stop using computational

notebooks. Another participant firmly argued that none of

the tools from the presentation could ever be adopted by the

company if that meant to dismiss computational notebooks.

Indeed, once a data scientist develops a good method for

writing notebooks, they compose them in such a way that

helps their future self and colleagues to fully reconstruct the

history of a successful experiment:

“This ‘storytelling’ capability of notebooks is even

more appealing and useful than the certainty that ex-

periments will be reproducible. Not to mention that

the interactivity of Jupyter Notebook is simply too

much valuable for rapid and effective prototyping...

nobody would give it up!”

An effective development environment should combine

computational notebooks and structured codebases. Four

data scientists agreed that computational notebooks alone

cannot replace traditional, structured codebases; instead, they

should coexist and be used as complementary tools. If note-

books are a good entry-point for learning data science and

an optimal prototyping tool, they simply do not scale to

production. One of the participants affirmed:

“A solution might be to use the best of both worlds:

the interactivity of computational notebooks and

the solidity of structured codebases. For example,

after experimentations have been carried out using

a notebook and the desired outcome for a particular



phase has been achieved, a developer should transfer

the code from the notebook itself to a structured

repository. This way, the portions of code that are ac-

tually useful to productize the work gradually settle

down in a well structured and testable environment,

ready to evolve over time.”

This idea that ‘a developer should transfer the code from the

notebook to a structured codebase’ was taken up by another

colleague, who added:

“This kind of work might be effectively performed

by a pair of data scientists (or a data scientist

and a software engineer): the first should be con-

cerned with data exploration using computational

notebooks, while the second should do the job of

layering validated code in a production codebase.”

Notebooks should be dropped at a certain point in the

workflow. Some of the participants were more categorical in

saying that notebooks should be dropped at a certain point in

the workflow, as some of their intrinsic characteristics (e.g.,

non-linear execution of code) can easily become a trap while

the code keeps growing. One even affirmed that the goal

should be to reduce the use of notebooks as much as possible

and to dismiss them since the earliest phases of a project:

“Serious production code cannot but be developed

in its own classical environment, which is the result

of almost 40 years of experience in software devel-

opment and engineering.”

As can be noted, the range of opinions on the role of

computational notebooks is quite varied; nonetheless, no one

puts their importance into question. In contrast, disagreement

among the practitioners lies in the identification of the right

step in the workflow where notebooks should give way to

standard code – i.e., where code quality and reproducibility

should be assigned a higher priority than exploration ease and

fast prototyping.

2) Dream Notebook Features and Tools: During the brain-

storming session, many of the workshop participants expressed

the desire for specific notebook features and further tools

supporting their AI/ML workflow.

Testing support during data exploration. Some data

scientists underlined the lack of support for code testing in

the early explorative phase of a project. To enable analysis

reproducibility, one should be at least able to test their code for

correctness. Notebooks themselves do not offer native support

for unit testing and assertions, and yet they should:

“Notebooks ought to evolve and become more like

IDEs in this sense, or at least to represent a better

springboard for IDEs.”

As a result, at the beginning of data science projects, testing

is almost regularly skipped and becomes an actual concern

only later, when software engineers consolidate code into

standard Python packages.

One of the participants pointed out that notebooks should

be automatically checked before being pushed to a shared

repository, e.g. by using a CI automation server like Travis CI

and Jenkins. To be uploaded, they must be at least runnable

without errors.

Experiment versioning support. Being inspired by Donald

Knuth’s literate programming paradigm, notebooks support

‘computational narratives’, that is, the narrative description

of analytical processes. They provide a lightweight form

of documentation that leaves a trail on decision rationale,

interpretation of results, etc. However, most of the time, one

single successful computation results from a long series of

explorations and failures. A couple of attendees observed

that notebooks should push the support for computational

narratives even further by storing an explicit history of the

whole trial-and-error process leading to the desired solution.

Each exploration/modeling attempt should be saved separately,

with comments describing it. Branching should be supported

and each saved step in the explorative process should be

retrievable through a visual interface. Obviously, this could

be achieved by employing traditional code versioning tools;

however, such tools are not natively supported in notebooks.

Jupyter has its own checkpoint system to provide lightweight

versioning of notebooks. However, neither branching nor ver-

sion commenting are supported. On the other hand, versioning

a notebook via git is possible, but diffs are difficult to read,

as notebooks are specified in the .json format. One has to

resort to external tools, like Project Jupyter’s nbdime1, to

visualize the differences with more ease. Nevertheless, none

in the audience mentioned the need for a notebook-specific

diffing tool.

Another couple of participants pointed out the importance

of data versioning. At the time of the workshop, they used

carefully crafted folder structures and naming conventions to

handle different versions of the same data. Not only it was

time-consuming but also error-prone; additionally, they had no

way to easily spot the differences between two versions of the

same large dataset. Data versioning tools should allow straight-

forward visualization of data diffs, at least in a summarized

form (e.g., ‘2 lines added; 30 lines removed’), and they should

offer typical git-like features, as the possibility to comment

commits and to push single data versions to remote storage

services. Here we notice that, even if not integrated with

Jupyter Notebook, DVC2 (a git-inspired tool reviewed during

the presentation) fully covers the desired set of functionalities,

although it might have a steep learning curve, especially for

data scientists that have had no previous experience with git.

Reproducibility aids in notebooks. One of the main

threats to reproducibility in computational notebooks is the

arbitrary execution order of code cells. It might be difficult to

reconstruct the right execution order, especially if some of the

cells have been run repeatedly. Messy executions often lead to

hidden states, i.e., states of the Python interpreter that cannot

be inferred and restored from the evidence left in the notebook

code. One of the participants suggested that notebooks should

record execution sequences and cell activations to provide

1https://github.com/jupyter/nbdime
2https://dvc.org



automatic (or semi-automatic) inference of the right execution

order.

Another typical area of notebook reproducibility failure

is dependency management [8]. One of the attendees wit-

nessed that, although Python and R are portable programming

languages, porting code from one machine to another is

not always straightforward, the main reason being project

dependencies: for instance, different operating systems might

support different versions of the same Python library. To

complicate matters further, it is not rare that the client defines

the specific library versions to be used in a project. To

ensure compliance with the requirements and reproducibility,

dependencies should be always explicitly declared in dedicated

requirements files.

It appears evident that, at least for this company, improving

the transition from prototypes to products and the reproducibil-

ity of AI pipelines is closely related to the use and capabilities

of the primary prototyping tool, i.e., the computational note-

book. Jupyter Notebook is supposed to evolve by mitigating its

peculiar threats to reproducibility (e.g., untracked non-linear

executions and the consequent formation of hidden states);

moreover, native support is highly desired for traditional

software engineering best practices (like code testing and

versioning), and data science specific functionalities (e.g., data

versioning).

3) The Need for Shared Best Practices: One of the partici-

pants, a data scientist with a background in computer science,

introduced a further theme in the discussion:

“How much of the reproducibility issues are due to

the inadequacy of tools, and how much of them are

to be imputed to developers’ bad practices?”

A senior data scientist replied that the definition of a

validated set of best practices should be a priority for the team.

Indeed, an informed choice of specific tools to improve the

workflow can be done only after the identification of optimal

shared behaviors; it should naturally happen as a consequence

of it.

One of the remote attendees added:

People must learn to carefully follow best practices. I

strongly believe in the role of education and personal

sensitivity to such kind of issues. Often, the required

awareness of these topics is low in people coming

from non-CS backgrounds.

These words made explicit another common problem: the

challenging collaboration between data scientists and soft-

ware engineers. Often, these roles have different educational

backgrounds and diverse levels of awareness of software

engineering issues. A possible approach to face this challenge

is suggested by the other remote attendee, who concluded:

“Knowledge and expertise sharing between the ac-

tual data scientists – purely devoted to modeling –

and machine learning engineers – concerned with

models in production – is essential. A single tool

to be shared by both these figures, encouraging best

practices, would be ideal.”

We advise the importance of shared training sessions aimed

at closing the gaps that currently limit the collaboration

between these two complementary roles. Furthermore, a set

of shared best practices should be carefully developed at

a company level and refined over time; the strategy might

involve field studies to validate the most promising habits and

regular team retrospectives to collectively assess the results.

IV. CONCLUSION

In this paper, we reported the insights gathered from a

workshop on productizing AI/ML models, held at a consulting

company. We conducted the workshop at a point in time

where the Data Science team was in its infancy. Today’s

team has almost doubled the number of its members for

several roles such as data scientists, big data engineers and

business translators. The workshop has contributed to trigger

an evolution in terms of tools and best practices that has

led to the creation and adoption of a system for ingesting,

analyzing and reporting on data: the Prometeia Modeling

Platform. As future work, we envisage the need for a field

study to determine the optimal lifecycle for a computational

notebook and develop a cohesive view of the role and objective

limitations of this tool in the context of a cross-functional team

including both data scientists and software engineers.

ACKNOWLEDGMENT

We would like to thank all data scientists that participated

in the workshop and provided insightful comments.

REFERENCES

[1] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagap-
pan, B. Nushi, and T. Zimmermann, “Software Engineering for Machine
Learning: a Case Study,” in Proceedings of the 41st International Confer-

ence on Software Engineering: Software Engineering in Practice. IEEE
Press, 2019, pp. 291–300.

[2] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The Emerging Role
of Data Scientists on Software Development Teams,” in Proceedings of

the 38th International Conference on Software Engineering. ACM, 2016,
pp. 96–107, tex.ids: kimEmergingRoleData2016a.

[3] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in machine learning systems,” in Advances in neural

information processing systems, 2015, pp. 2503–2511.
[4] I. Marin, “Data Science and Development Team Remote Communication:

the use of the Machine Learning Canvas,” in 2019 ACM/IEEE

14th International Conference on Global Software Engineering

(ICGSE). Montreal, QC, Canada: IEEE, May 2019, pp. 18–
21, tex.ids: marinDataScienceDevelopment2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8807620/

[5] J. M. Perkel, “Why Jupyter is data scientists’ computational notebook of
choice,” Nature, vol. 563, no. 7732, pp. 145–147, 2018.

[6] F. Pérez and B. E. Granger, “Project Jupyter: Computational
Narratives as the Engine of Collaborative Data Science,” UC
Berkeley and Cal Poly, Tech. Rep., 2015. [Online]. Available:
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf

[7] L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson, and I. Crnkovic, “A
Taxonomy of Software Engineering Challenges for Machine Learning
Systems: An Empirical Investigation,” in Agile Processes in Software

Engineering and Extreme Programming, P. Kruchten, S. Fraser, and
F. Coallier, Eds. Springer International Publishing, 2019, pp. 227–243.

[8] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A
Large-Scale Study About Quality and Reproducibility of Jupyter
Notebooks,” in Proc. of the 16th International Conference on

Mining Software Repositories, 2019, pp. 507–517. [Online]. Available:
https://doi.org/10.1109/MSR.2019.00077

https://ieeexplore.ieee.org/document/8807620/
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
https://doi.org/10.1109/MSR.2019.00077

	I Introduction
	II Workshop Design and Execution
	II-A Business and Social Context
	II-B Workshop Set Up
	II-C Workshop Execution

	III Analysis and Discussion
	III-A Method
	III-B Themes emerged from the workshop
	III-B1 The Role of Computational Notebooks
	III-B2 Dream Notebook Features and Tools
	III-B3 The Need for Shared Best Practices


	IV Conclusion
	References

