
An Open Source Platform for the Integration of Distributed Services

Félix Cuadrado*, Juan C. Dueñas*, José L. Ruiz*, Jesús Bermejo**, Miguel García***

*UPM, **Telvent, ***Telefonica I+D
{fcuadrado,jcduenas,jlruiz}@dit.upm.es, jesus.bermejo@telvent.abengoa.com, mgl@tid.es

Abstract
Service-orientation is not only a means for systems

integration, but also an architecture paradigm for
building systems. Flexibility, adaptability and
interoperability are some of the benefits derived from
the adoption of SOA. These principles are often
applied to build distributed systems. But whether SOA
is applied or not, building a distributed system is still
complex, what increases the demand on high-quality
middleware to achieve success. This paper presents a
runtime service integration architecture that enables
distributed service interactions regardless the
capabilities of the devices involved, i.e. to deal with
services distribution over a heterogeneous network.
The solution presented is built upon the OSGi service
platform which has been leveraged with OSS
middleware components to provide remote
communications (with connectors and adaptors),
service discovery, service binding and service
publication. The development of this architecture is
carried out within the ITEA OSIRIS Consortium and is
being applied to industrial case studies; including a
tax administration applications, service provisioning to
residential environments and a mobile CRM.

1. Introduction

Current generation networks enable the provision of
ubiquitous services, delivered by a mesh of smart
devices surrounding end users. However, the technical
challenges are numerous, because of the heterogeneity
of the interconnected devices and protocols. The
European project ITEA OSIRIS1 [1] aims at delivering
a complete infrastructure for the dynamic integration of
services over distributed environments. This line of
work advances the results obtained in a previous
project, ITEA OSMOSE [2], which developed
middleware components for service provisioning in the
home domain [3].

1 The work described here has been performed in
the context of the European project ITEA-OSIRIS
(ip.04040),under grant by Spanish Ministerio de
Industria,Turismo y Comercio in the PROFIT program.

OSIRIS aims at providing a generic architecture,
suitable for several heterogeneous domains (Public
administration services, End to end service provisio-
ning, financial services, and mobile CRM – Customer
Relationship Management – services). These industrial
demonstrators are used to validate that the solution
enables dynamic service interaction among a wide
range of devices (from low-capacity smart-phones to
high-end backbone servers). Some examples of these
scenarios are: submitting e-administration forms, either
through a personal computer’s browser, a mobile
phone or an interactive TV. Another example would be
the integration of Internet multimedia services such as
Flickr or Youtube with the infrastructure available at a
smart home, abstracting end users from any
configuration and enabling at the same time the remote
management of the domains by the service providers.

2. State of the Art on SOA

The SOA (Service-Oriented-Architecture) paradigm
[4] is the foundation for the OSIRIS architecture.
Service-Oriented Architectures are the natural
evolution of the distributed computing paradigm. A
service is a stateless software component, which
performs a specific task, defined through a
communication interface.
The SOA interaction protocol is executed by three
different actors; the service provider, the service
consumer and the service broker (or registry). This
third element is the main deviation from traditional
client-server communications. The registry reduces the
coupling between the other two entities, reduces
vendor-dependency and enables service discovery
The SOA principles have been adopted in different
contexts (from business-level organization to design
level pattern). We will see in the following paragraphs
an overview of these different approaches to the same
idea.

2.1. Web Services
The popularity of Web Services (WS) [5] has fostered
the massive adoption of the SOA paradigm. However,
despite its huge success, it is important to clarify that
WS are only one implementation (and not the first one)

22nd International Conference on Advanced Information Networking and Applications - Workshops

978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.126

1422

22nd International Conference on Advanced Information Networking and Applications - Workshops

978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.126

1422

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

of the base principles behind it. Interoperability is the
main success factor, thanks to an impartial
specification, supported by large companies (IBM and
Microsoft) and standardized by neutral organisms. The
WS stack is composed of several platform-independent
protocols, such as HTTP (as a transport protocol),
XML (message encoding), WSDL [6], Web Services
Description Language, (service interface description),
SOAP [7], Simple Object Access Protocol, (service
invocation protocol) or UDDI [8], Universal
Description, Discovery, and Integration (service
registry).

Web Services have transformed enterprise
communications, both inside and outside their domain,
through the form of the ESB (Enterprise Service Bus),
WS have become one of the most relevant standards
for Internet communications. Because of that, the WS
stack has been completed with additional specifications
for improving non-functional aspects of service
invocation, such as security, service choreography or
transactionality.

2.2 Device-level SOA
Web Services focus on coarse-grained, high-level
business interactions. However, in the recent years the
interest of adopting SOA for smaller scale activities
and devices has boosted. That flavor of SOA has been

called device-centric [10] SOA or device-level services
[11]. Restricting the interactions to a more controlled
environment reduces computing complexity and
enables dynamic service discovery and binding on a
local environment. Jini was the first attempt on that
model, although recently it has fallen out in favor of
device-centric technologies such as UPnP (Universal
Plug and Play) [9] and DPWS [11] (Device Profile for
Web Services)

2.3. OSGi
The OSGi service platform [12] brings service-oriented
computing principles to single nodes. OSGi has
evolved from its initial conception as a residential
gateway to becoming the ‘Java Operating System’.
OSGi leverages the Java Virtual Machine with a
dynamic component model based on services, suitable
for a wide range of device profiles (from mobile
phones to high-end servers).
Deployable OSGi components are called bundles. A
bundle is composed by a jar archive with additional
metadata for clearly defining the requirements for the
component to work and the additional resources
offered to the platform (expressed as Java packages),
which are automatically processed by the framework.
At runtime, each bundle has an independent lifecycle,
allowing hot-deploy and update operations in a

D
om

ai
n

C
on

ne
ct

or

In
te

rn
et

C
on

ec
to

r

Pr
of

ile
E

xt
en

si
on

s

D
om

ai
n

C
on

ne
ct

or

P
ro

fil
e

E
xt

en
si

on
s

Figure 1 The OSIRIS Platform

14231423

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

platform without the need of rebooting the whole
system.
Dynamic bundle interactions are performed through
services. The OSGi platform defines a local service
registry where bundles can register services (runtime
objects registered with a contract specified by a Java
interface and a set of properties) and query for
implementations. This way, the SOA paradigm can be
adopted also inside the applications. The basic OSGi
specification is further enriched by a wide range of
services defined by the standard. They provide
capabilities such as platform management
(FrameworkAdmin, StartLevel, ConfigurationAdmin,
EventAdmin) or remote communications (JiniService,
UPnPService, HttpService).

3. The OSIRIS Service Platform

The OSIRIS architecture aims at supporting dynamic
service-oriented distributed applications. Different
application domains (E2E services, CRM, financial
services, public administration) have contributed their
specific requirements in order to define a generic
architecture. Because of that, devices with a wide
range of computing power can be part of a system as
long as they are connected.
Figure 1 depicts a high-level view of an OSIRIS
system. An OSIRIS system is distributed over one or
more domains, interconnected through Internet.
Services are the foundation of the architecture. As we
have seen in the state of the art analysis, there are
different approaches to the SOA paradigm, depending
on the abstraction level (from business to network
devices to design patterns). OSIRIS aims at unifying
those three views into a common model, as shown in
Figure 2. The OSIRIS middleware mediates between
those levels and opens up service-based
communications among heterogeneous devices,
regardless of the protocol details and the physical
location.

Domain Connector

Internet Connector

Figure 2 OSIRIS Service view

3.1. OSIRIS Nodes

OSIRIS nodes are hardware devices leveraged with
additional middleware. Some examples of candidate
nodes are PDAs, personal computers or blade servers.
More limited devices can also be part of OSIRIS
systems as ‘light-weight nodes’. Focusing on the
software elements, the OSGi service platform has been
selected as the cornerstone of the OSIRIS middleware.
OSGi provides an efficient service programming
model for each node and a robust component
specification enabling a high-level of modularity for
both middleware and applications.
OSIRIS extends the base OSGi specification with
seamless remote service communications support. As
mentioned before, nodes aggregate into domains, and
communicate through service invocation, both at
domain level and over Internet. As mentioned before,
the intent of OSIRIS is closing the bridge among the
existing three levels of SOA enabling communications
between heterogeneous devices. The Domain
Connector and the Internet Connector modules support
these scenarios. Regarding communications, nodes can
play two different roles inside a domain: dependent
nodes and proxy nodes.
Proxy node. Every domain connected to the Internet
needs one node to act as the proxy node for the
domain. The mission of the proxy is to transparently
mediate between services invocation from the domain
and Internet. Remote service operations from any node
inside the domain are directed and translated to the
appropriate protocol by the proxy.
Dependent node. Remaining nodes play the dependant
role. They are only domain-aware although they can
export / import services through the use of the proxy.

Figure 3 OSIRIS Node Basic profile

Figure 3 shows the OSIRIS node basic profile. It
defines the OSIRIS component model and provides the
remoting functionality. The intent is to reduce the
mandatory components to the minimum, in order to

14241424

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

support a wide range of devices. However, the basic
profile can be enriched by the installation of extension
profiles. An extension profile is a set of components
providing a specific functionality or capability to the
platform. Inside the project several extensions have
been developed such as remote management,
distributed deployment, security or context adaptation.

3.2. Domain Connector

The Domain Connector (DC) is the mandatory
component for each OSIRIS node, as it manages
domain-wide services communications. Its purpose is
twofold; discovery and service invocation. Discovery
is made automatic through the use of a multicast
protocol for announcing a node and its associated
services to the rest of the network. With that
information, DCs build a distributed service registry.

Bundle A DC 1 DC 2 Bundle B
getService

domainInvoke (args, sRef)

invoke

response

marshalledResponse

response

invoke(args)

(serviceProxy)

lookupService

NODE 2

Bu
nd

le
B

OSGi Framework

NODE 1

Bu
nd

le
A

Service
implementation

Service
reference

Service
client

DC 2DC 1

Sy
nc
hr
on
iz
at
io
n

m
es
sa
ge
s

Bu
nd

le
C

OSGi Framework

Figure 4 Domain Connector Sequence Diagram

The second function of the DC is allowing service
invocation inside the domain transparently of the
physical location of the service. Figure 4 depicts how
this mechanism works. In this scenario there are two
nodes, each one with several components. Registered
services in either node appear in each other node DC
registry. Whenever a component wants to invoke a
service, it is unaware of its locality. For services
located outside the consumer node, the DC translates
the call to the domain-wide protocol and transmits it to
the DC of the provider node, which performs the actual
operation with the service. Stepping back the same

steps the response is transported to the consumer node
and delivered to the component.

3.3. Internet Connector

The Internet Connector (IC) extends service
communications beyond the domain, enabling inter-
domain or interoperability with non-OSIRIS systems.
With these requirements in mind, we have selected
Web Services as the service model for Internet
communications.

Bu
nd

le
A

Internet

Figure 5 Internet Connector Sequence Diagram

Unlike the DC, the IC does not provide a solution for
service discovery, and focuses instead on service
invocation. Figure 5 illustrates how this component
enables, in collaboration with the DC, remote service
invocation for limited nodes.
Existing WS are made available to an OSIRIS domain
by registering a delegate service in the DC. Whenever
a node requests one of those services the petition will
reach the IC, which will construct a SOAP message
and perform the invocation on behalf of the local node.
The service response will be delivered to the consumer
component in its local format by the collaboration of
both connectors.
The IC also allows exporting any domain service to the
outside. Services can be tagged for Internet exporting,
triggering the IC to generate and publish a WSDL
descriptor for the service. Incoming requests will be
handled by the IC and redirected to the provider in a
similar way as in the previous case

14251425

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

4. Architecture implementation

In order to deliver a complete solution for distributed
services the OSIRIS architecture has been supported by
additional technical developments aligned with some
of the most important open source communities. The
objective is to provide a complete stack for developing
OSIRIS applications while avoiding at the same time
an overlap with existing work in the communities.
The technical work can be classified into three
different categories: core middleware implementations,
profile extensions and supporting tools. On the first
group, the development effort has been focused on the
remote service connectors, as the OSGi specification
already has three different open source
implementations. The DC is not bound to any specific
protocol. A reference implementation (the Osiris
Domain Connector) has been developed to showcase
the communication mechanisms, based on RMI
(Remote Method Invocation) for the domain-wide
services. There are several device-centric SOA
specifications which could also perform this role, such
as the aforementioned UPnP and DPWS. In particular,
the ITEA SIRENA[15] project has provided a Java-
based lightweight implementation of the DPWS stack,
which is being refined and adopted to the OSGi model
under the project ITEA ANSO [16]. This solution
could be adopted in future versions to unify the service
model among domains and outside communications.
Other alternatives include JMDNS, based on the DNS-
SD (DNS-Service Discovery) protocol, or the R-OSGi
project [13], which uses an efficient SLP (Service
Location Protocol) implementation [14] for discovery
and local service invocation.
Regarding the IC, a specific implementation is
necessary in order to integrate with the DC. With that
objective in mind, two existing Java-based Web
Service implementations have been adapted to this
role: the Morfeo Application Server (delivering both
IIOP and WS Java support) and the Apache Axis WS
engine, under the OS4OS community.
The second category covers the extension profiles
developed at the project. The required profiles have
been identified by the domain-specific input received
from the project demonstrators. Whereas the
architecture definition only covers the basic
communication services, extensions define platform-
level services and non-functional extensions, which
can be independently added. The management profile
defines a remote management architecture with OSGi
instrumentation agents (JMood) and remote
management APIs (OSGi Access). The distributed
deployment defines a complete architecture composed
by a deployment repository and a set of agents for the

deployment domain, provided by the JBones project.
Security profile extensions leverage the Internet
Connector with the federated authentication and
authorization mechanisms of OpenLiberty and
OpenPMI [17], integrated by the PAPI developers
Finally, additional developments have taken place for
proving an adequate tools support for the architecture.
Component-based software and SOA impose an extra
layer of complexity which can hamper the success of
that kind of technologies, and tools can bridge that
dangerous gap. Some partners of the OSIRIS project
are active contributors of the leading service tooling
projects, such as Eclipse PDE (OSGi tooling), Eclipse
WTP (Web-Services tooling) and Apache Lomboz
(SCA tooling), developed in parallel with more more
specific tools. Table 1 summarizes some of these
initiatives carried out by OSIRIS project members.

Table 1 – OSIRIS OSS initiatives

Name Description Community
ODC DC Reference impl OS4OS2
Axis Bundle IC Reference Impl. OS4OS
MAS Internet
Connector

IC Reference Impl. Morfeo3

Apache Felix
JMood

Ext. Profile
 Management agent

Apache4

JBones Ext. Profile
Deployment arch.

OS4OS

PAPI AA
Extension

Ext. Profile
Security extensions

IRIS-
LIBRE5

ISIS Ext. Profile
Data&Interface
services

OS4OS

SOFA 2 Ext. Profile
Services lifecycle

ObjectWeb6

MADAM Ext. Profile
Context adaptation

MADAM7

eLuzien OSGi tool support OS4OS
Trinity Remote services

creation tool support
Morfeo

ObjectWeb
Lomboz

Remote services
creation tool support

ObjectWeb

Eclipse WTP Remote services
creation tool support

Eclipse8

Eclipse PDE OSGi tool support Eclipse

2 OS4OS, http://www.os4os.org/
3 Morfeo Project, http://morfeo-project.org
4 Apache Software Foundation, http://www.apache.org/
5 IRIS-Libre, http://www.rediris.es/gt/iris-libre/
6 Object Web, http://www.objectweb.org/
7 MADAM Project, http://www.ist-madam.org
8 Eclipse Foundation, http://www.eclipse.org/

14261426

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

5. Conclusions

The SOA paradigm provides a solution for distributed
systems made of low-coupled elements. However, the
diversity of service-oriented specifications and the
increased technical complexity hamper a wider
adoption of these techniques. The OSIRIS platform
defines a generic architecture which manages this
complexity by unifying the different flavors of SOA.
The minimum requirements of the architecture have
been kept as low as possible to enable the participation
of embedded devices as first-class nodes. The low
footprint does not limit the middleware functionality,
as the specification defines mechanisms to extend its
capabilities. This way, extension profiles have been
defined for providing management capabilities,
securing services, and so on.
The architecture specification is only a part of the
OSIRIS objective. In collaboration with several
international OSS communities, the concepts behind
the platform have been made available as software
components. In addition to those, development of
supporting tools also enables the adoption of OSIRIS
architecture. This way, both the architecture and the
implementation will receive additional input for further
polish, enabling a better support and broader use
scenarios.

6. References

[1] ITEA-OSIRIS (Open Source Infrastructure for Run-time

Integration of Services) project, website at: http://itea-
osiris.org

[2] ITEA-OSMOSE (Open Source Middleware for Open
Systems in Europe) project, website at: http://itea-
osmose.org

[3] J.C. Dueñas, J.L. Ruiz, M. Santillan “An end-to-end
service provisioning scenario for the residential
environment”Communications Magazine, IEEE, 2005

[4] T. Erl, “Service-Oriented Architecture. Concepts,
technology and design.” Ed. Prentice Hall., 2005

[5] E Newcomer , “Understanding Web Services: XML,
WSDL, SOAP and UDDI”, Ed. Addison-Wesley, 2002

[6] D. Booth, C. K. Liu, ”Web Services Description
Language (WSDL) Version 2.0” , W3C
Recommendation, 2007, available at w3c.org

[7] N. Mitra, Y. Lafon, ”Simple Object Access Protocol
(SOAP) ” Version 1.2 (Second Edition), W3C
Recommendation, 2007, available at w3c.org

[8] OASIS, “Universal Description, Discovery and
Integration (UDDI) specification”, v3.0, disponible en
http://www.oasis-open.org

[9] UPnP Device Architecture v1.0.1, UPnP Forum, 2006.
Available at http://www.upnp.org/specs

[10] D. Barisic, M Krogmann, G. Stromberg, P. Schramm,
“Making Embedded Software Development More
Efficient with SOA”, Proceedings of the 2nd
International IEEE Workshop on Service Oriented

Architectures in Converging Networked Environments.
Canada, May 2007

[11] F. Jammes, A. Mensch, H. Smit, “Service-Oriented
Device Communications using the Devices Profile for
Web Services”, Proceedings of the 2nd International
IEEE Workshop on Service Oriented Architectures in
Converging Networked Environments. Canada, May
2007

[12] Open Services Gateway Initiative. "OSGi Service
Platform," Specification Release 4.0, August (2006).

[13] J. S. Rellermeyer, G. Alonso, “Services Everywhere:
OSGi in Distributed Environments”, EclipseCon 2007,
Santa Clara, USA.

[14] E. Guttman, “Service location protocol: automatic
discovery of IP network services”, IEEE Internet
Computing, Jul/Aug 1999

[15] ITEA SIRENA(Service Infrastructure for Real-time
Embedded Networked Applications), website at
http://sirena-itea.org

[16] ITEA ANSO (Autonomic Networks for SOHO users)
[17] J.López, I. Agudo, J. Montenegro, “On the deployment

of a real scalable delegation service”, Information
Security Technical Report Vol.12, Issue 13, pp: 139-146

14271427

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

