N
N

N

HAL

open science

The Small-World Model for Amino Acid Interaction
Networks

Omar Gaci, Stefan Balev

» To cite this version:

Omar Gaci, Stefan Balev. The Small-World Model for Amino Acid Interaction Networks. The 2009
International Workshop on Bioinformatics and Life Science Modeling and Computing., May 2009,

Bradford, United Kingdom. pp.902-907. hal-00431273

HAL Id: hal-00431273
https://hal.science/hal-00431273
Submitted on 11 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00431273
https://hal.archives-ouvertes.fr

The Small-World Model for Amino Acid
Interaction Networks

Omar Gaci and Stefan Balev
Le Havre University, LITIS EA 4108, BP 540, 76058, Le Havreace
{Omar.Gaci, Stefan.Balé@univ-lehavre.fr

Abstract—In this paper we introduce the notion of protein II. PROTEIN STRUCTURE

interaction network. This is a graph whose vertices are the lik her biological | |
protein's amino acids and whose edges are the interactions Unlike other biological macromolecules (e.g., DNA), pro-

between them. Using a graph theory approach, we identify a t€ins have complex, irregular structures. They are builbyp
number of properties of these networks. We compare them to amino acids linked by peptide bonds to form a polypeptide

the general small-world network model and we analyze their chain. We distinguish four levels of protein structure:

hierarchical structure. . . . . .
« The amino acid sequence of protein’s polypeptide chain

. INTRODUCTION is called its primary or one-dimensional (1D) structure.

It can be considered as a word over the 20-letter amino

acid alphabet.

Different elements of the sequence form local regular

secondary (2D) structures, suchabelices org-strands.

o The tertiary (3D) structure is formed by packing such

structural elements into one or several compact globular

units called domains.

Proteins are biological macromolecules participatinghia t
large majority of processes which govern organisms. Thesrol
played by proteins are varied and complex. Certain proteins *
called enzymes, act as catalysts and increase severatafer
magnitude, with a remarkable specificity, the speed of iplelti
chemical reactions essential to the organism survivakeire
are also used for storage and transport of small molecules ) X ) i i
or ions, control the passage of molecules through the cell® The final Prme'” may contain several polypeptide chains
membranes, etc. Hormones, which transmit information and arranged in a quaternary structure.
allow the regulation of complex cellular processes, are als By formation of such tertiary and quaternary structure,
proteins. amino acids far apart in the sequence are brought close

Genome sequencing projects generate an ever incré@gether to form functional regions (active sites). Thedeza
ing number of protein sequences. For example, the Hum@an find more on protein structure in [1].

Genome Project has identified over 30,000 genes which mayone of the general principles of protein structure is that
encode about 100,000 proteins. One of the first tasks wHayfrophobic residues prefer to be inside the protein couti
annotating a new genome, is to assign functions to the mteing to form a hydrophobic core and a hydrophilic surface.
produced by the genes. To fully understand the biologich maintain a high residue density in the hydrophobic core,
functions of proteins, the knowledge of their structure iBroteins adopt regular secondary structures that allowaeen
essential. valent hydrogen bonds and hold a rigid and stable framework.

In their natural environment, proteins adopt a native confhere are two main classes of secondary structure elements
pact form. This process is called folding and is not full{SSE),a-helices and3-sheets (see Fig 1).
understood. The process is a result of interactions betweerf\n a-helix adopts a right-handed helical conformation with
the protein’s amino acids which form chemical bonds. In thi&6 residues per turn with hydrogen bonds between C'=0O
paper we identify some of the properties of the network @oup of residue: and NH group of residue + 4.
interacting amino acids. We believe that understandingehe A (-sheet is build up from a combination of several regions
networks can help to better understand the folding processof the polypeptide chain where hydrogen bonds can form

The rest of the paper is organized as follows. In section Il wagtween C’'=0 groups of ong strand and another NH group
briefly present the main types of amino acid interactionscivhi parallel to the first strand. There are two kinds @®kheet
determine the protein structure. In section Il we introelocr  formations, anti-parallef3-sheets (in which the two strands
model of amino acid interaction networks. Section IV présenfun in opposite directions) and parallel sheets (in whioh th
two general network models, random graphs and small-woiMio strands run in the same direction).
networks. In section V we compare protein interaction net-
works to the general models and empirically characterigeth
based on all protein structures available in PDB. We show howThe 3D structure of a protein is determined by the coordi-
the properties of these networks are related to the strictiur nates of its atoms. This information is available in Pro2ata
the corresponding proteins. Finally, in section VI we codel Bank (PDB) [2], which regroups all experimentally solved
and give some future research directions. protein structures. Using the coordinates of two atoms came

I1l. PROTEIN INTERACTION NETWORKS
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Fig. 1. Top: ana-helix illustrated as ribbon diagram, there are 3.6 residue
per turn corresponding to 5.A. Bottom: A -sheet composed by three

strands. . . .
Fig. 2. Protein 1DTP (top) and its SSE-IN (bottom)

compute the distance between them. We define the distance .
. X : . —acids belonging to the same SSE on local level and between
between two amino acids as the distance between thgir

atoms. Considering the,, atom as a “center” of the aminodif‘ferent SSEs on global level. Fig. 2 gives an example of a
' “ protein and its SSE-IN.

acid is an approximation, but it works well enough for ou . - .
purposes. Let us denote By the number of amino acids in the In [4], [5], [6], [7] the authors rely on amino aC'd. Inter ;
networks to study some of their properties, in particular

protein. A contact map matrix is & x N 0-1 matrix, whose ing th le plaved b e d .
element(s, j) is one if there is a contact between amino agigsCONcerming he role played by certain nodes or comparing

and; and zero otherwise. It provides useful information aboﬁtﬂe graph to general interaction networkg models. Using thi
the protein. For example, the secondary structure elencants model, many problems related to protein structure can be
be identified using this matrix. Indeed;helices spread along tackled by graph theory tools.
the main diagonal, whilg-sheets appear as bands parallel or
perpendicular to the main diagonal. There are differentsvay
to define the contact between two amino acids [3]. Our notionMany systems, both natural and artificial, can be repredente
is based on spacial proximity, so that the contact map cbp networks, that is, by sites or vertices bound by links.
consider non-covalent interactions. We say that two amifie study of these networks is interdisciplinary becausg th
acids are in contact iff the distance between them is bel@appear in scientific fields like physics, biology, computer
a given threshold. A commonly used threshold i8 @nd this science or information technology. These studies are létdd w
is the value we use. the aim to explain how elements interact with each othedmsi
Consider a graph witlv vertices (each vertex correspond#he network and what are the general laws which govern the
to an amino acid) and the contact map matrix as incidenebserved network properties.
matrix. It is called contact map graph. The contact map graphFrom physics and computer science to biology and social
is an abstract description of the protein structure takirtg i sciences, researchers have found that a broad variety of
account only the interactions between the amino acids. Neystems can be represented as networks, and that there is
let us consider the subgraph induced by the set of aminwch to be learned by studying these networks. Indeed, the
acids participating in SSE. We call this graph SSE inteoacti studies of the Web [8], [9], of social networks [10] or of
network (SSE-IN) and this is the object we study in thenetabolic networks [11] contribute to put in light common
present paper. The reason of ignoring the amino acids mmn-trivial properties of these networks which haeoriori
participating in SSE is simple. Evolution tends to presd¢hee nothing in common. The ambition is to understand how the
structural core of proteins composed from SSE. In the othlarge networks are structured, how they evolve and what are
hand, the loops (regions between SSE) are not so importtre phenomena acting on their constitution and formation.
to the structure and hence, are subject to more mutationsln this section we present two classes of interaction net-
That is why homologous proteins tend to have relativelyorks by describing their specific properties. We introduce
preserved structural cores and variable loop regions. ,Thesme empirical measures which will be used in the next
the structure determining interactions are those betwe®na section in order to study SSE-INs.

IV. GENERAL MODELS OF NETWORKS



A. Random Graphs lengthsd(v) we take into account only the verticaswhich
The random graph models are one of the oldest netwdgik€ in the same connected componentas S
models, introduced in [12] and further studied in [13], [14] Since the mean and th_e m_ed_lan are practically |de_nt|_cal for
These works identify two different classes of random graptay reasonably symmetric distribution, the characteriséith
calledG,, ,, andG,, ,, and defined by the following connectionl€ngth of a random graph is the mean value of the shortest
rules: path lengths between any two vertices. The characteriatit p
o G, regroups all graphs with vertices andn edges. To length of a random graph with mean degrets
generate a graph sampled uniformly at random from the _ logn
setG,.n, One has to putn edges between vertex pairs RG = log 2

chosen randomly from initially unconnected vertices. . . . . .
Y y It increases only logarithmically with the size of the netlwo

» G, is the set of all graphs consisting of vertices, .
where each vertex is connected to others with indg-nd remains therefore small even for large systems.

o Definition 3: The local clustering coefficient [16{,,, of a

lityp. T h I . i . .
Eaer? : Oer?ﬁypg?]zaﬁ;g% b e%ir?m:lz:?r?iati aiyggﬁgonszggde%ertem with k, neighbors measures the density of the links
vertices and join each pair by an edge with probabjlity in the neighborhood of.

In G, the number of edges is fixed whereasdp , the |E(T,)]
number of edges can fluctuate but its average is fixed. When (’;)
n tends to be large the two models are equivalent. ] ) ]
Definition 1: The degree of a vertex, k,, is the number Where|E(I',)| is the number of edges in the neighborhood

Cy =

of edges incident ta. The mean degree, of a graphG is ©f v and (%) is the number of all possible edges in this
defined as follows: neighborhood. The clustering coefficiefitof a graph is the
1 om average of the local clustering coefficients of all vertices
z:—ZkU:—:p(n—l) 1
"oev " C==-) 0,
B. Small-world Networks " oev

This network model was introduced in [15] as a model of The clustering coefficient of a random graph with mean
social networks. It has been since adopted to treat phermmeéggreez is

in physics, computer science or social sciences. The model Crg = i
comes from the observation that many real-world networks n—1
have the following two properties: Watts and Strogatz [15] defined a network to be a small-

1) The small-world effect, meaning that most pairs oforld if it shows both of the following properties:
vertices are connected by a short path through thel) Small world effect:L ~ Lgrg
network. This phenomenon has two explanations. First,2) High clustering:C > Cgg
the concept of “shortcuts” through a network allows to
join two distant vertices by a small number of edges V. EXPERIMENTAL RESULTS

[16]. Second, the concept of “hubs”, vertices whose con-In this section we present an empirical characterization of
nectivity is higher than others provide bridges betwee®SE-IN properties. In order to choose our data sample, we
distant vertices because most vertices are linked to thefiave used the SCOP classification. We have worked with the
2) High “clustering”, meaning that there is a high probasCOP 1.7.3 files. We have computed the measures from the
bility that two vertices are connected one to another ffrevious section for the four mains classes of SCOP (see
they share the same neighbor. Table 1). Each class provides a broad sample guarantying mor
To determine if a network is a small-world, one can usgeneral results and avoiding fluctuations. Moreover, tfiese
the measures described below and compare them to ti@sses contain proteins of very different sizes, varyiognf
corresponding measures of a random graph. several dozens to several thousands amino acids in SSE. The
Definition 2: The characteristic path length [16], denotedesults obtained for the different classes are very simiteat
L, of a graphG is the median of the means of the shortess why in the rest of this section we show only the results for
path lengths connecting each vertexto all other vertices. all « class.
More precisely, letd(v,u) be the length of the shortest path In a previous work [17], we we have studied the two
between two vertices and« and letd(v) be the average of properties of SSE-IN related to the small-world model, nigme
d(v,u) over allu € V. Then the characteristic path length igheir L/Lrc and C/Crg ratios. Our results show (see Fig. 3)
the median of{d(v)}. that nearly 60% of the proteins have SSE-IN consisting of
This definition applies when the graph consists of singleetween 100 and 500 amino acids. The small-world properties
connected component. However, the SSE-IN we considerdre satisfied mainly when the size of the network does not
the next section may have several connected componentsexeeed 500 amino acids and there are about 15.3% small-
this case, when we calculate the mean of the shortest paibrld networks among all SSE-IN. Fig. 4 explains the reason



TABLE |

STRUCTURAL CLASSES STUDIED FOR THESMALL -WORLD PROPERTIES
WE CHOOSE ONLY FAMILIES WITH MORE THAN1OOPROTEINS THE
TOTAL NUMBER OF STUDIED PROTEINS 1S18294.

Class Number of  Number of
families Proteins
All o 12 2968
Al 3 17 6372
a/pB 18 5197
a+pB8 16 3757
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Fig. 3. Size distribution of proteins SSE-IN and small-wlonletworks ratio

Fig. 4. L/Lgg (top) andC/Crg (bottom) ratios as a function of SSE-IN
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Fig. 5. Protein 1DTP SSE-IN. Shortcut edges are plotted éemgr

for this low rate. One can see that although highly clustered
most SSE-IN do not satisfy the first small-world property.

To explain the results presented on Fig. 4, note that the mean
degreez is not very different from one SSE-IN to another
and is generally independent from the size. When the mean
degree is fixed, the characteristic path length of a random
graph grows likelogn and its clustering coefficient has™!
behavior. We can see that there is no clear relationshipdstw
the characteristic path length and the SSE-IN size. There
are proteins with close sizes but very different path lesgth
However, in general it grows faster than logarithmicallythwi
the size. The figure also shows that SSE-IN are very highly
clustered. The®'/Cre has clearly linear behavior, hence the
clustering coefficient (like the mean degree) is indepehden
from the size.

On the other hand, the subnetworks corresponding to single
SSEs are almost all small world networks. The last obsemati
brings us to consider the edges whose extremities belong to
different SSEs (see Fig. 5). These “shortcuts” represeat th
interactions between different SSEs and they determine the
tertiary protein structure. They provide short paths betwe
different network regions and bigger number of shortcuts
implies smaller characteristic path length.

Computing the average connected component size, we
observe that this size does not exceed 100 for the small-
world networks (see Fig. 6). Consequently, we identify a
necessary condition for SSE-INs to be small world, their
average connected component size has to be less than 100.

In [17] we show that the protein SSE-IN components
interact with each other in the same way, no matter if they
are small-world or not, see Fig 6. Then, it is interesting to
study not the quantity of interaction inter-SSE but rathnerirt
quality, that is we want to put in evidence the role of nodes
allowing interaction between different SSEs.

In graph theory, the betweenness of a node is defined as
the total number of shortest paths between pairs of nodés tha
pass through this node. It measures the influence of a node
in a network. The betweenness of a nadelenotedB(t) is
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belonging tos; ands;. SSC-IN is an abstraction of SSE-IN
defined as follows: which puts in evidence the interactions between SSEs. Fig. 8
B(t) = Z Tus(t) shows an example of SSC-IN.. .
= T We computed the characteristic path lengths and the clus-
uFuFt UL tering coefficients for all protein SSC-IN, the results show

whereo,,, is the number of shortest paths between the nodesce again that the small world effect is the discriminant
u andv, andoy,(t) is the number of shortest paths betweeproperty in the SSC-IN. Indeed, for a small-world SSC-IN the
u to v that pass through characteristic path length grows linearly with the size huf t
The average betweenness of nodes interacting with otherderlying SSE-IN and it never exceeds 4. The last observati
secondary structure motifs is shown on Fig 7. We can see tieah be correlated with the necessary condition for a SSEIN t
the average betweenness of the small-world networks idesimisatisfy the small world model. Indeed, the average condecte
to the average betweenness of the other networks. This meeomponent size is bounded by 100 nodes in small world SSE-
that neither the quantity nor the quality of nodes that linkN. This has for consequence that the corresponding SSC-IN
different SSEs guarantees a short characteristic paththleng have bounded average connected component size and tleerefor
To better understand the properties of SSE-IN which agebounded characteristic path length. Then, a protein S5E-I
small-world, we introduce the secondary structure comptmewith size n > 25 is small world if and only if its SSC-IN
interaction network, SSC-IN. This is a network in which eacbharacteristic path length is on the line shown in Fig 9.
SSE is contracted to a single node. There is an edge between
two SSEss; ands if there is at least one interaction between VI. CONCLUSION AND PERSPECTIVES
an amino acid belonging te; and an amino acid belonging In this paper we use the notion of interaction network
to so. A weight is associated to each edge. The weight of tleé amino acids of a protein (SSE-IN) and study some of



the properties of these networks. The main advantage [of] R. Solomonoff and A. Rapoport, “Connectivity of randarets,” Bull.

this model is that it allows to cope with different biologlica

problems related to protein structure using graph thearisto

Ignoring details, such as the type and the exact position [04]
each amino acid, this abstract and compact descriptiom/sallo[15
to focus on the interactions’ structure and organizatiame T

subnetworks corresponding to secondary structure elemens)
satisfy the properties of the small-world network model,

Small-world networks are widely studied and their propmesrti
are well identified. These properties can give insight on the
formation of SSEs. On the other hand, the links between these

subnetworks describe the interactions between differ8fsS
which determine the tertiary protein structure.

We have studied the growth of the characteristic path length
and the clustering coefficient for networks where each node
represents an amino acid, but also for the generalized mnieswo
where each node corresponds to a SSE. We have found an

alternative way to verify if a protein network verifies theaim
world properties.

A short term perspective is to give a finer characterization
of shortcut edges in order to better understand how differen
SSEs are linked to each other. Another direction would be to
see what are the specific biological properties of the pmetei
which satisfy the small world properties. As a long term

perspective, the characterization we propose constitufest

step of a new approach to the protein folding problem. The
properties identified here, but also other properties wa pla
to study, can give us an insight on the folding process. They
can be used to guide a folding simulation in the topological

pathway from unfolded to folded state.
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