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Abstract—In view of the aging society, intelligent devices
pervading everyday life are faced with important challenges,
such as the ease of use and the ease of configuration. The whole
potential of using a body area network with several sensors to
monitor vital functions of a human body can only be tapped, if
the sensors used are highly specialized and tightly integrated to
collaborate in a decentralized way and exhibit true plug-and-play
behavior.

Although the aspect of interconnecting vital sensors close to
the human body bears a variety of technical challenges in itself,
the development of the necessary abstraction layer in software
to hide the heterogeneity of the highly specialized sensor boards
is confronted with even higher challenges as these devices are
often equipped with very limited resources to reduce power
consumption. However, this abstraction layer is a necessary
prerequisite to facilitate the development of software for a body
area network with the previously mentioned characteristics.

This paper presents the results of a study conducted to
evaluate the performance and overhead of using web services
on embedded devices to implement an abstraction layer for
a body area network. In several experiments, two different
implementations of the Devices Profile for Web Services (DPWS)
were evaluated: the Microsoft .NET Micro Framework and the
open-source DPWS-plugin from the Web Services for Devices
initiative. These were used to measure absolute latencies and
the “web service overhead” in the communication between three
different types of resource-constraint devices.

Keywords-Embedded SOA, Devices Profile for Web Services
(DPWS), performance evaluation, body area network.

I. INTRODUCTION

In light of an aging society, new technologies which allow
elderly people to be under continuous medical observation
while being in their home environment will become increas-
ingly important. We assume that a body area network which
incorporates several vital sensors and gateways nodes will play
a key role in this development. Therefore, we conducted a
study to evaluate the feasibility of a body area network dealing
with the following requirements.

• Hardware heterogeneity of sensor nodes should be hidden
to facilitate the development of a smart software layer.

• The body area network should support a dynamic discov-
ery of nodes and a dynamic establishment of a workflow.

With regard to the first requirement, we chose a web service
middleware approach based on the Devices Profile for Web
Services (DPWS) [1]. DPWS is a subset of web service
standards. It aims to simplify the development of lightweight

web services on embedded device. A simple interaction to
dynamically establish a workflow may then take place in the
following way:

1) Discovery of a device with a desired “type” in the
environment

2) Retrieval of metadata information, such as a list of active
services and public interface specifications, from the
device previously discovered

3) Usage of a previously discovered device
This three-step interaction pattern represents the level of

flexibility for dynamic device interactions in a decentralized
environment that can be achieved with DPWS today and is
well suited for our concept of plug-and-play behavior in a
body area network.

Problem Description

Generally speaking, using a middleware on embedded de-
vices is often the result of a trade-off between reduced devel-
opment effort and increased processing effort on the device.
To support a sensible decision whether to use DPWS for body
area network we

• analyzed the performance impact that is to be expected
with this approach and

• analyzed performance bottle-necks with regard to further
optimization potentials.

With this paper, we want to give an estimate on the per-
formance that is achievable with this approach today by using
low power off-the-shelf hardware components and generic web
service toolkits that are freely available.

Related Work

R. Döring’s work on the performance measurements of
XML-RPC communications in a client-server environment [2]
inspired the distinction between lightly and heavily structured
parameters in this paper. H. Bohn et al. [3] announced the
first DPWS-compliant protocol stack and presented results
obtained in several SIRENA-project related demonstrators. E.
Zeeb et al. [4] introduced a derived DPWS-toolkit based on C
and gSOAP and discussed the relevance of web services for
embedded devices with regard to industrial automation. They
also described a potential “shift in the industrial landscape”
of highly heterogeneous devices. S. Prüter et al. [5] used



the same DPWS-toolkit and analyzed its real-time capabilities
on a single device type with regard to varying packet sizes.
We use the same DPWS-framework and extend the previous
work by a more detailed and profound performance analysis in
addition to the comparison with another commercial DPWS-
implementation.

II. TECHNICAL BACKGROUND

To measure latencies in the communication between DPWS-
enabled devices with regard to the pattern previously pre-
sented, we chose two different DPWS toolkits and three
different embedded devices.

DPWS Toolkits

The following implementations of the DPWS protocol stack
were used in our experiments: the Microsoft R© .NET Micro
Framework [6] and the WS4D DPWS-implementation for
gSOAP [7]. The former is an efficient runtime environment
based on the software platform .NET for embedded systems.
It allows the development of applications in C#. The latter
was initially created by the Web Services for Devices initiative
(WS4D) and is published under an open source license. The
DPWS functionality is implemented as a plug-in for gSOAP
and allows the development in C and C++.

Embedded Devices and Network Setup

The performance of DPWS was evaluated on the following
hardware platforms:

• HiCO.ARM9 - a processor board with an AT91RM9200
@ 180 MHz, 64 MB memory and 100Base-T Ethernet

• Tahoe Development Platform - a processor board with
an ARM920T @ 100 MHz, 8 MB memory and 10Base-T
Ethernet

• FOX Board LX832 - a processor board with an
Axis ETRAX 100LX @ 100 MHz, 32 MB memory and
100Base-T Ethernet

In addition to these processor boards, two regular laptops -
which we do not consider to be an embedded system - were
also used to reasonably estimate the potential performance
gain of faster processors or larger memory configurations.

• Laptop-1GHz - a Thinkpad T61 running at 1000 MHz
with 2048 MB memory and 100Base-T Ethernet.

• Laptop-2GHz -a Thinkpad T61 running at 2000 MHz
with 2048 MB memory and 1000Base-T Ethernet.

Due to several bugs in the firmware of the HiCO.ARM9,
the only platform that allowed the analysis of the Microsoft R©
.NET Micro Framework was the Tahoe processor board.
All other devices were tested with the Linux-based DPWS
implementation from the WS4D initiative.

Although the reference scenario demands for a wireless
connectivity, we decided to use a fixed wired connection
to minimize the effects of interferences in the ISM band.
Furthermore, all devices were directly connected to each other
with a cross-over patch cable, so that all network transfers are
single hop. Solely during the DNS tests, where we used the
corporate network to reach a DNS server.

Figure 1. Measuring latencies in the communication between embedded
distributed devices with our stopwatch-framework.

These hardware platforms for evaluation differ quite sub-
stantially in processor architecture (ARM9, ETRAX, x86),
processing speed (100 MHz up to 2000 MHz) and commu-
nication interfaces (10 Mbit/s up to 1000 Mbit/s). Still, these
were the only devices available to us in our experiments which
were supported by at least one DPWS stack.

Test Environment and Latency Measurement

Analysis of the communication latencies required a fine
grained time measurement in the communication of a dis-
tributed system with low overhead. Common approaches, such
as clock synchronization and time-stamping of round-trip
network packets, were neglected in favor of using a single
“stopwatch”.

Therefore, we developed a “stopwatch-framework” running
on a separate computer - the “stopwatch”. Both processor
boards were connected to the stopwatch with a serial link (see
Fig. 1). These serial links were then used to transport a “start”
and a “stop” signal from the board to the stopwatch to trigger
the time measurement.

The stopwatch computer is a regular workstation featuring
an Intel R© PentiumTM 4 processor running at 2 GHz with
Microsoft R© Windows XPTM. The stopwatch-framework uses
a special hardware-based high-resolution timer, so that it is -
theoretically - accurate within 280 ns.

Albeit the accuracy of the internal timer, the time measure-
ments were still noticeably affected by random measurement
errors as a result of various scheduling effects in the operating
system. To estimate the impact of these errors, we tested
the accuracy of the stopwatch empirically with prior-known
latencies.

Therefore two serial cables were connected to a single
processor board which emitted a “start” signal over one cable,
waited a pre-set time by using the usleep(int s) method
and finally emitted a “stop” signal on the other cable. The
expected time measurement (= int s) was compared to the
actual measurement from the stopwatch. This was repeated
100 times for each time length within a range from 5 ms to
120 ms. It allowed an estimation of the maximum error f̂s
according to:
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Figure 2. Assessment of the error in time measurement. The majority of the
measurements longer than 60 ms can be trusted to be accurate within ±1%.

f̂s = max
1≤i≤n

{dsi : dsi = |s− tsi |}

f̂s denotes the maximum error for the expected time length
s. tsi represents the actual measurement from the stopwatch
for the expected time measurement s and the iteration i. n
denotes the total number of iterations - in our case n = 100.

Figure 2 contains the results expressed as a relative maxi-
mum error and a relative standard deviation. Based on these
results, we estimate the accuracy of the stopwatch setup to
be at least ±10% for times longer than 65 ms. With regard
to the relative standard deviation we can assume that the
majority of measurements beyond 65 ms reach an accuracy
of less than ±1%. As a consequence we used repetitions of
test runs to guarantee results longer than 65 ms so that the
accuracy condition is met.

III. EXPERIMENTS AND RESULTS

In this section, we present the results from four different
experiments. The first three experiments contain absolute
latencies and the last experiment deals with the relative per-
formance impact of DPWS.

A. Time to reach operational readiness

We define “operational readiness” as a specific state, which
a device reaches when all necessary pieces of information have
been acquired at runtime so that a remote service could be
invoked. Several steps have to be accomplished to reach this
state after boot-up:

1) “Probe” the network environment for the desired device
(mandatory)

2) “Resolve” this device for a transport address (optional)
3) Do a “DNS query” of the transport address to get the

network address (optional)
4) “Exchange metadata” to obtain the transport address of

the hosted service (mandatory)
Step 2 and 3 are optional as the information may already be

contained in the reply to the initial “probe” message. This is
not standardized and depends on the DPWS implementation.

Table I
TIME REQUIRED TO REACH OPERATIONAL READINESS (IN MS).

Device Probe Resolve DNS Get Min Max

FOX LX832 1047 44 11 52 1099 1154
HiCO.ARM9 1022 15 7 18 1040 1062

Tahoe 1891 1663 125 681 2572 4360

Laptop-1GHz 1002 12 7 2 1004 1023
Laptop-2GHz 1001 6 6 1 1002 1014

We distinguish minimum delays (only mandatory steps) and
maximum delays (all steps) which are required to reach
the state of operational readiness. By using the previously
described test environment we measured the time needed to
accomplish each individual step.

Every measurement has been repeated 100 times. The MTU
setting of the communication interfaces was set to the default
value, which is 1500 bytes on Linux, but unknown for the
.NET Micro Framework. The caching of address information
was manually disabled in the source code of the WS4D toolkit.
For the measurement of the DNS resolve latency, we used an
internal DNS server, so that the measurements for this step
are affected by other users, thus reflecting a real-world usage
scenario.

Table I contains the results, which show the expected
negative correlation between the amount of available resources
and the observed delays.

The minimum and maximum delays on the Linux platform
are largely dominated by the processing of the “probe” mes-
sages. This is particularly interesting, because the “probe”
messages are on the one hand similar to the “resolve” mes-
sages as they are transmitted via IP multicast, but on the other
hand the delay of the “resolve” messages takes about 1000 ms
less. This may be a result of the multicast group membership
implementation in the Linux kernel which implements an
additional delay of 1000 ms (= 1 s) when joining a multicast
group for the first time.

B. Service invocation

After the state of operational readiness has been reached
and analyzed, we focused on the latency between the invo-
cation on the consumer’s device and the resulting indication
on the provider’s device (= “one-way call latency”). It is
mainly influenced by the amount of “data” that is required
to be processed and transmitted between the provider and the
consumer.

In the case of DPWS, “data” mainly encompasses the call-
parameters. On the consumer side, they are serialized in XML
then transferred to the provider where they are deserialized
and finally processed.

Inspired by the approach presented by R. Döring [2], we
distinguish between heavily structured and lightly structured
parameters to denote different ratios between XML metadata
and “real” data in their serialized form. We used a set of
integer parameters as a representative of the heavily structured
parameters and a single string parameter with a variable length
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Figure 3. The size of heavily (left) and lightly structured parameters (right) in a service invocation message. The solid line shows the total size of the
message, while the dashed line indicates the size for XML metadata, such as tags and namespace definitions. This shows that the structure of an XML message
is directly related to its size and processing effort.

as a representative of the lightly structured parameters. The
two parameter types represent “extremes” and their results can
be interpreted as lower and upper bounds for call latencies.

The different ratios between XML metadata and “real” data
can be seen in Fig. 3, which contains a comparison of the
“invocation” messages when using either parameter type. The
dotted line in Fig. 3 represents the overhead resulting from the
XML serialization. For heavily structured parameters the size
of the XML metadata increases with the number of parameters.
With lightly structured parameters the size of the overhead is
almost constant.

The results for a service invocation with heavily and lightly
structured parameters are depicted in Fig. 4 and 5. Both
confirm the expected negative correlation between available
resources of the hardware platform and the latencies encoun-
tered in a service invocation.

The latencies for service calls using both parameter types
cannot be directly related to each other. However, they can
be compared on the basis of the amount of data transported
within the parameters. All devices feature a 32-bit architecture
on which a single integer value requires four bytes. Therefore,
each integer parameter in the service invocation is able to
transport four bytes of “raw” data. Assuming that each char-
acter of a string can be used to transport one byte of “raw”
data, latencies between calls with lightly and heavily structured
parameters can be compared with each other as shown in Fig.
6.

The distances between measurements depicted with the
same color in Fig. 6 show the effect of the processing overhead
of the XML metadata on the resulting latencies. It reflects the
additional effort needed to process the invocation request.

These results show that the design of a web service interface
has a significant implication on the performance achieved with
an embedded SOA approach. They also show that optimizing
a set of web services - especially for embedded devices -
may benefit from a redesign of the interface and the usage
of parameters with less XML metadata overhead to process
and transmit.

C. Effect of a reduced MTU

Messages between devices are transfered over the network
as payload in IP packets. An upper bound on the size of an
IP packet is given by the maximum transfer unit (MTU). If
the size of an IP packet exceeds the MTU setting, its content
is split into several packets (“fragmentation”). Handling frag-
mented IP packets requires more packets to be transmitted and
processed so it adds to the total latency.

Many promising network technologies for body area net-
works, such as Bluetooth low energy (MTU between 675 bytes
and 48 bytes) or 6LoWPan (MTU approx. 150 bytes), feature a
reduced MTU setting. These are optimized for smaller packets
and low energy consumption. This optimization increases the
probability of fragmentation for larger datasets, such as XML
data.

To obtain an estimate on the latency of a service invocation
on low power networks, we measured the call latencies with
different MTU settings. Each service invocation was repeated
100 times for each MTU setting on each board. The Tahoe
board did not offer an API to configure the MTU, so that it
was not included here. The results are depicted in Figure 7.

The impact of the MTU setting becomes significant with
fewer resources available and more data transmitted. MTU
settings larger than approx. 512 bytes appear to have little
effect on the latency, while MTU setting below 200 bytes
noticeably increase the latency in the communication. These
results indicate that the verbosity of XML is not suited for
low power networks with low MTU settings as it significantly
affects the performance. In addition to the MTU-related ef-
fects, differences in bandwidth and medium access protocols
of wireless networks will affect the total latency even further.

D. DPWS’s share of the total latency

In our last experiment, we studied the overhead of the
DPWS layer relative to “pure” network communication. There-
fore we distinguished only between two simplified layers:
the DPWS layer and the network layer below. The former
mainly contains the XML-marshaling capabilities and the
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Figure 4. Absolute latencies of a service invocation with a varying number of heavily structured parameters (one-way call). This represents the time from
the service invocation on the consumer side until this request is indicated on the provider side.
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Figure 5. Absolute latencies of a service invocation (one-way call) with lightly structured parameters represented by a single string parameter with a variable
length.
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Figure 6. Comparing the latencies of a service invocation with heavily (dashed line) and lightly structured parameters (solid line) on the basis of the
transported data. The gap between line of the same color indicates the latency which is induced by the additional processing effort as a result of the inherent
structure of the parameters.

latter comprises of the functions to transfer data between
devices over the network (“sockets”).

In our experiments, we determined the size of each invo-
cation message and measured the time needed to transfer an
equally sized byte array by using only socket communication
(= tnet). With the results from section III-B (= ttotal), we
were calculated the share of DPWS layer of the total latency
according to:

cDPWS = (ttotal − tnet)/ttotal · 100%.

The results are depicted in Figure 8 and show that the
majority of the latency is generated within the DPWS layer.
Even the Tahoe board with a very slow 10 Mbit connection
exhibits a cDPWS of approx. 90%.

Surprisingly, the Fox LX832 with a slow 100 MHz proces-
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Figure 8. The share of DPWS of the total latency when invoking a web
service with heavily (top) and lightly (bottom) structured parameters.

sor spends relatively less time in the DPWS layer compared to
the HiCO.ARM9 board with a 180 MHz processor, although
both comprise a 100 Mbit connection.

IV. CONCLUSION

We have evaluated the applicability of DPWS as a middle-
ware on several embedded devices and have shown that its
support for dynamic discoveries and workflows is beneficial
for a plug-and-play behavior of nodes in a body area network.
Flexibility and hardware abstraction are on the other hand

intrinsically tied to increasing processing costs and prolonged
latencies in the communication - especially on embedded
devices with limited resources.

First, we described our approach to measure latencies in
the communication by using a central “stopwatch”. Then we
presented the results gained from several experiments which
reflect the characteristics of a body area network. We showed
that after reaching a state of operational readiness, which takes
about 1 s, the latency for a service invocation is significantly
influenced by the inherent “structuredness” of the parameters.
Interfaces for web services running on embedded devices
should thus be also designed with regard to the performance
impact.

We also discovered that the majority of the latency is
produced within the DPWS layer, so that a faster processor
promises better results in comparison to a faster network
connection.

The question whether DPWS is a sensible choice in a body
area network depends on the specifics of the use case. DPWS
on embedded devices is well suited to support slowly changing
topologies of heterogeneous nodes with rare transmissions.
Especially the use of freely available toolkits may drastically
simplify the development.

Scenarios with continuous streams of data transmissions
combined with rapidly changing topologies and very short
maximum response times are on the other hand not well
suitable for DPWS. Especially regarding these shortcomings
of DPWS, we plan to evaluate other middleware approaches,
such as UPnP and Jini, in a similar manner in the future.
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