
A Living Smart City: Dynamically Changing Nodes Behavior Through Over the Air
Programming

Jose A. Galache, Pablo Sotres, Juan R. Santana, Veronica Gutierrez, Luis Sanchez, Luis Muñoz
Network Planning and Mobile Communications Laboratory

Universidad de Cantabria
Santander, Spain

{jgalache,psotres,jrsantana,veronica,lsanchez,luis}@tlmat.unican.es

Abstract— The Future Internet Research and Experimentation
(FIRE) initiative aims at achieving experimentation and testing
in large-scale environments, through the creation of a
multidisciplinary research environment for investigating and
experimentally validating highly innovative and revolutionary
ideas for new networking and service paradigms.
SmartSantander FP7 project aims at the creation of an
experimental test facility for the research and experimentation
of architectures, key enabling technologies, services and
applications for the Internet of Things (IoT) in the context of a
city. In this sense, this paper presents the deployed facility,
emphasizing the capacity of experimenting over this large-scale
testbed, through the reprograming of the deployed IoT devices
with different code images. For this purpose, the
implementation and validation of an Over the Air
programming (OTAP) scheme has been carried out, coexisting
with the service provision and experimentation ability
simultaneously offered over the deployed facility.

Keywords- FIRE; IoT; OTAP; Smart City.

I. INTRODUCTION

Nowadays, it is a fact that present and future wireless
technologies will be predominantly impacted by the massive
deployment of IoT devices. Hence, it is mandatory to make
available to the research community, infrastructures
which allow analyzing and assessing the performance of
mechanisms aiming at integrating IoT world in the Future
Internet (FI) infrastructure.

Smart Cities stand as the meeting point to align the
creation of large scale experimentation facility fostered by
FIRE initiative, and the user involvement in ICT-based
innovation targeted by the Living Labs community. In this
sense, Wireless Sensor Networks (WSNs) place as key-
enabling technology to gather information associated to these
smart environments.

The SmartSantander project [1] aims at the creation of an
experimental test facility for the research and
experimentation of architectures, key enabling technologies,
services and applications for the Internet of Things in the
context of a city. The envisioned facility is conceived as an
essential instrument to achieve the European leadership on
key enabling technologies for IoT, and to provide the
European research community with a one-and-only platform

of its characteristics, suitable for large scale experimentation
and evaluation of IoT concepts, under real-life conditions.

In order to cover this twofold approach [2]
(experimentation and service provision), deployed nodes
within SmartSantander project must present, not only the
aforementioned characteristics associated to WSNs, but also
they must be able to be remotely flashed with different code
images in order to run different experiments and services.
This remote programming is known as Over The Air
Programing (OTAP) or multihop OTAP, called (M)OTAP,
for nodes more than one hop away from the source.

This paper describes the implementation and operation of
a (M)OTAP protocol over a real deployment carried out in
the city of Santander, within the SmartSantander project
framework.

The paper is structured as follows: Section II presents the
related work to the existing OTAP implementations. In
section III, it is shown the architecture and deployment on
which the performed implementation is developed. Section
IV describes in a detailed way the implementation carried
out, showing in section V the corresponding measurements
that assess and validate the correct operation of the
implemented protocol. Finally, Section VI indicates the main
conclusions derived from this work.

II. RELATED WORK

In order to make WSNs as dynamic and flexible as
possible, several protocols for remotely programming nodes
over the air have been proposed. XNP [3] was the first
network reprogramming protocol proposed by TinyOS, for
WSNs. It operates only over a single hop and does not
support incremental updating of the program image. In order
to support multihop over-the-air programming, it was
developed MOAP [4], implementing a simple windowed
retransmission tracking scheme. Unlike XNP and MOAP, in
[5] an energy-efficient code distribution scheme to
wirelessly update the code running in a sensor network is
shown. In this sense, only the changes to the currently
running code are distributed.

Manufacturers have also developed their own solutions,
such as BitCloud OTAU [6], which implements the support
of over the air upgrade in ZigBee networks on top of the
Atmel BitCloud, a full-featured ZigBee PRO stack; or

Jennic OAD [7] that allows flashing Jennic nodes, but only
in a unicast fashion and for nodes one-hop away from the
source.

Currently, more complex and efficient protocols are being
implemented; those like MNP [8] presents an energy
efficient protocol, based on reducing the problem of
collision and hidden terminal, trying to guarantee that in a
neighborhood there is at most one source transmitting the
program at a time. SYNAPSE [9], on the one hand, presents
a protocol based on Fountain Codes featuring a hybrid ARQ
(HARQ) solution, where data are encoded prior to
transmission and incremental redundancy is used to recover
from losses, thus considerably reducing the transmission
overhead. On the other hand, Deluge [10] bases on a
density-aware, epidemic maintenance protocols for
propagating large data objects from one or more source
nodes to many other nodes over a multihop wireless sensor
network.
From the operation point of view, different protocols have
been presented, both unicast and multicast approaches, based
on fountain codes and on different transmission schemes, or
solutions associated to different manufacturers such as
Jennic and Atmel. As a commonalty, most of these
protocols, based on measurement testbeds bounded to
determined grids and configurations, composed of a reduced
set of nodes, turning to simulation tools for complex
topologies and large quantity of nodes.

III. SMARTSANTANDER ARCHITECTURE

Within SmartSantander project framework, around 3000
sensor nodes have been deployed in several zones of the city
of Santander [11]. Among these nodes, environmental
sensors measuring temperature, humidity, pressure, light,
noise, CO, as well as parking sensors, have been deployed,
with their corresponding gateways. Taking into account the
large number of sensors installed, they have been grouped in
several clusters in order to manage them in an easy way. In
this sense, gateway will act as head of the cluster gathering
and processing information retrieved from the nodes
hanging from this gateway.

As described in [2], all the deployed gateways (always
powered) and repeaters (fed with rechargeable batteries) are
intended to support both experimentation and service
provision, unlike to parking sensors that due to their battery
constraints are not intended for running experimentation and
being flashed over the air.

The simultaneous service-provision support is carried out
through two independent radio interfaces: one 802.15.4
native interface for transmission/reception of data associated
to the experiments, and another 802.15.4 interface
implementing Digimesh routing protocol, for sending
information derived from service provision (environmental
and car presence) and network management
(transmission/reception of commands and (M)OTAP).

Taking into consideration this independence between
service and experimentation operation, together with the
fact of being able to flash nodes over the air, gives the
network the capacity to offer a twofold flexibility in terms
of:
� Service provision: Different services can be

implemented on the same nodes, just modifying the
code installed in a determined set of them in order to
fulfill different requirements associated to a certain
service.

� Experimentation: Different routing protocols, data
mining techniques, network coding schemes can be
tested on the deployed network, flashing nodes
accordingly.

Apart from the experimentation and the service provision
joint approach, network can be managed by sending
commands to the nodes, as well as changing their behavior
(through (M)OTAP) according to application requirements.

IV. (M)OTAP OPERATION

In order to make deployed platform as dynamic and
reconfigurable as possible, a reliable (M)OTAP protocol has
been implemented for flashing nodes over the air either in
unicast, multicast or broadcast fashions, as many times as
needed. The protocol implemented in this paper has been
developed over nodes provided by the Spanish company
Libelium [12]. Although Libelium offers its own (M)OTAP
protocol, as most of existing solutions, it is mainly
constrained to small deployments within reliable and non-
interferring environments. In this sense, firstly in order to
adapt the protocol operation to the deployment in the city of
Santander, providing a reliable operation in outdoor dense
deployments, as well as to fulfill main project objective
(service-provision duality), a new scheme has been
proposed and implemented, as shown in Fig. 2.

Before explaining the (M)OTAP protocol itself, it is
important to describe the importance of the commServer
module that consists of a port multiplexer/demutiplexer,
offering several virtual communication ports towards a one
physical serial port.

Fig. 1 shows from a bottom up perspective, two available
physical nodes in each gateway for receiving packets
associated to experimentation (ttyUSB0), as well as those
associated to the provided services and the network
management (ttyUSB1). The commServer module offers
several virtual ports, ones for experimentation that take data
from the physical experimentation port (ttyUSB0), others
for different services and, in this case, one associated to
network management (OTAP), taking data also from the
physical service port (ttyUSB1). Through this virtual port,
all data related to flashing procedure is transmitted/received
through the OTAP virtual port.

Figure 1. CommServer Architecture

Regarding to the OTAP protocol, it is implemented at
both server and client sides. OTAP server is implemented in
all the gateways (called as meshliums [12]), whilst OTAP
client is implemented in all repeaters, which are composed
of a waspmote node [12] and two Xbee [13] radio modules.
For (M)OTAP operation, the code images to be flashed, are
stored in the Meshlium and sent (using the OTAP virtual
port), towards the corresponding nodes, through the
following process:

1) (M)OTAP begins sending a start frame, including the
corresponding OTAP key (used for security issues), so as to
inform the node/s to be flashed, the beginning of a
reprogramming process. For multicast communications, in
order not to disrupt, both service provision and
experimentation of nodes not affected by reprogramming
process, it is sent a former message to the target nodes for
changing the OTAP key to be used for flashing them, thus
not reprograming nodes not involved in flashing procedure.
Other parameters included in the start frame are the number
of fixed-size fragments (chunks) in which the server will
divide the image to be flashed, the program name and the
compilation date. Each node will process this start frame
and send back an acknowledgement, entering in a
reprogramming state that will last until the whole program
has been correctly received or an error occurs (erroneous
access to SD card, reply timeout exceeded, etc).

2) Once the server receives the acknowledgement, it
starts sending the image towards the destination node/s.
Taking in consideration the big constraints in terms of
internal memory (8KB), and that the average size of a code
running on the waspmote occupies ranges around 5KB
(depends on the functionalities and libraries used), the code
must be stored in an additional memory. Waspmote includes
the possibility of connecting a 2 GB SD card for extra
storing. This card will be used by nodes to store the received
code.

Figure 2. OTAP procedure

3) Server sends chunks separated by a determined time
interval, whose value will depend on the type of
reprogramming process; either unicast or
multicast/broadcast. If ACK confirmation at MAC layer
(provided by Digimesh protocol) is not received within this
period, then server will wait until the reception of the ACK
within a fixed timeout. If not received or a route discovery
error is thrown, the server will retransmit the fragment again
a determined number of times. Nodes will allocate the
program in a determined position of the SD card. This will
allow them to process out of order packets. This is very
important in multicast/broadcast communications, as a node
can lose a fragment, but the remaining nodes can have

received it correctly, thus receiving it twice if the source
node had to retransmit it, making the protocol less efficient.

4) Nodes will request frames in two situations: the first
one occurs when a node has not received a frame from the
last 10 seconds, thus forcing the server to retransmit
remaining frames from this last frame. Second one occurs
when server has finished the transmission of all packets, and
nodes ask for retransmission of lost chunks (which ID has
been previously recorded in a linked list). Server will send
again the lost packets in a unicast or a multicast/broadcast
way depending on the type of reprograming, unicast or
multicast/broadcast respectively. In order to improve the
protocol performance, for multicast/broadcast transmissions,
if only one node has lost a specific fragment, the server will
retransmit it in a unicast fashion.

5) Once new code image is stored in the SD card,
another command must be sent from the server to start
running the new program in the node.
Considering the whole OTAP process and the different
components involved, main advantages comparing to the
previous work carried out by Libelium can be summarized
as follows:
� Over the air reprogramming, service provision and

experimentation under the same cluster
simultaneously: Commserver component allows server
node to flash a set of nodes at the same time that it
continues receiving, both service and experimentation
data, from the remaining nodes of the cluster.
Furthermore, new virtual serial ports can be easily
introduced to deal with new possible applications
working at the server side. On the contrary, previous
OTAP utility forced to suspend the service provision
while reprogramming nodes.

� Packet loss-aware design: Former OTAP design does
not consider recovery mechanisms from packet losses,
being not efficient under interfering environments. In
order to solve it, approach developed in this paper
allows the retransmission of lost packets at the end of

the OTAP process, which improves performance as lost
packets can be retransmitted in multicast fashion if there
is more than one node requesting them.

� Disordered packets management: Mainly in multicast
flashing procedures, some nodes (especially those more
than one hop away), could receive disordered packets.
Former protocol only deals with a maximum of two
packets out of order, whilst new approach allows
processing any number of disordered packets, discarding
those received twice.

� Concurrent OTAP and service/experimentation
management at node level: As previously commented,
both service provision and network management run
over the Digimesh interface, whilst experimentation data
is transmitted over 802.15.4 interface. This translates
into the fact that node has to attend to both interfaces, in
order to manage the two data types. Considering that the
waspmote uses a mono-threaded processor, watchdog
interruptions from the microcontroller are used, thus
checking periodically if it has been received a command
(start of reprograming process) on Digimesh interface, at
the same time as service and experimentation frames are
sent.

V. MEASUREMENTS

Besides the outdoor scenario, and in order to avoid
uploading erroneous or malicious codes to the outdoor
nodes, an indoor scenario has been also installed within the
University of Cantabria premises.

Fig. 3 shows, on the left side, the outdoor scenario
composed of nodes belonging to cluster managed by
Meshlium 6 (installed in the city centre). This Meshlium
composes of 27 nodes. On the right side, the indoor testbed
groups 15 nodes (connected through USB wires to feed their
rechargeable batteries and for debugging issues), placed in
the ceiling of different rooms and corridors at University
premises.

Figure 3. Outdoor scenario (l) and Indoor Testbed (r)

Regarding to the measurements, they must be taken into
consideration the following issues:
� Fragment size: Maximum size of a fragment sent in a

Digimesh communication is 100 bytes, 27 of them are
Digimesh header, whilst the remaining 73 bytes are used
for storing payload information. In our case, from these
73 bytes, 6 bytes associates to waspmote API, 2 to data
length and 8 to OTAP key, so finally just 57 bytes of
each packet contains information on the code image to
be flashed.

� Data rate: Waspmote nodes work at a maximum data
rate of 38.4 Kbps.

� File size: Files of different sizes ranging from 50 KB to
90 KB (60 KB, 70 KB and 80 KB) have been selected,
as they are the typical code image sizes.

� Route establishment: Digimesh [13] is a proprietary
routing protocol that allows installing/removing a node
in/from a network in a transparent and reliable way. As
a proprietary protocol, it does not offer information
about the obtained routes, but they can be inferred the
number of hops distance from a node to the meshlium.
For this purpose, it is used the broadcast radius
parameter, that limits the number of hops a broadcast
communication can reach. Gradually increasing the
value of this parameter, nodes at different number of
hops are discovered. TABLE I. shows the hops distance
of the nodes in the indoor and outdoor testbeds.

TABLE I. HOPS DISTANCE IN INDOOR/OUTDOOR SCENARIOS

Scenario Hops Nodes

Indoor
(CAMPUS)

1 10000, 10001, 10002, 10003, 10004,
10005, 10007, 10009, 10010, 10011, 10012

2 10006, 10008, 10013, 10015

Outdoor
(M06)

1 221, 222, 223, 225, 226, 228, 229, 230,
434, 2505, 2510

2 208, 209, 214, 215, 216, 217, 218, 227,
231, 430, 431, 2506, 2508, 2509

3 210, 432

It must be taken into consideration that, for sevral nodes,
distance in terms of hops oscillates between 1 and 2
hops or 2 and 3 hops, depending on the network
conditions. It is also important to highlight that, as
number of hops is being calculated through a broadcast
communication, the influence of routes calculated by
Digimesh protocol is avoided.

� Information encryption: In order to preserve the
information transmitted among the nodes,
communications have been encrypted using AES128
protocol.

� Interval between fragments: Considering that no flow
control, neither hardware nor software, is implemented
on the gateway side, it is included a time interval
between the transmission of consecutive frames. In
order to estimate this interval time, they are considered
the following parameters for radio modules:

NN (Network Delay Slots) = 3
NH (Network Hops) = 7

 RR(Mac Retries) = 3

unicastOneHopTime (for RR = 3) = 189 ms
Measurements indicated beforehand consider the worst

conditions in the transmission procedure. After
characterizing the measurement scenarios, there were
selected a time of 150 ms for unicast transmissions (a bit
lower than unicastOneHopTime) and a bigger one of 250 ms
for multicast/broadcast transmissions (possibility of
error/collision is greater). It must be indicated that these are
minimum intervals, so if the ACK (at Digimesh level)
associated to a fragment, is received in a higher time, then
this time will be the interval among fragments; otherwise it
will be used the fixed interval.
� Simultaneous service/experimentation: At the outdoor

scenario all nodes are sending data (around 35 byte
length packets, depending on the type of service)
associated to the environmental monitoring and parking
management services, each 5 minutes. At the indoor
testbed, service packets are being sent each minute
(instead of each 5). During the (M)OTAP process,
server will keep on receiving, both experimentation and
service data, from nodes not involved within the
flashing process.

Over the described scenarios and considering the
aforementioned considerations, there have been carried out
different measurements on different parameters, latency,
throughput and Packet Error Rate (PER) for characterizing
the implemented protocol:

Figure 4. Indoor latency measurements

Figure 5. Outdoor latency measurements

In Fig. 4 and Fig. 5, it is shown the latency and
throughput associated to nodes from both outdoor scenario
(Meshlium 6) and indoor testbed (CAMPUS). These
measurements have been made in a unicast way, sending
files of different size to all nodes within both scenarios,
calculating the average values as the representative ones to
characterize the protocol operation. From these figures, it can
be observed that values in outdoor scenario are slightly lower
than in indoor one, but pretty similar for the different file
sizes and number of hops. Regarding to the throughput
value, the larger the file, the bigger the throughput value
(mainly for several hops where the influence of headers is
more negligible). In this sense, as an average of the
throughput for all different file sizes, values obtained are 3.7
Kbps, 3 Kbps and 2.7 Kbps, for 1, 2 and 3 hops respectively.
To compare these values with those offered by Digimesh
documentation, it is calculated the estimated rate through:

 (1)

TABLE II. DIGIMESH ESTIMATED THROUGHPUT FOR 38.4 KBPS

Hops Theoretical Estimated
1 6.83 5.64
3 3.27 3.45

As derived from TABLE II. ,throughput for 1 hop is
lower than theoretical one, but for 3 hops it is a bit higher.
This can be due to the fact that the two nodes at 3-hop
distance behave in an unstable way oscillating their distance
between 2 and 3 hops.

Regarding to the packet error rate, considering that
network topology is over-meshed in order to assure no
disruption in service provision, the number of erroneous
packets received can be considered negligible in terms of
protocol operation (maximum of 6 packets in some
transmissions at 3 hops), in both outdoor and indoor
environments. In this sense, service running at the same time
as MOTAP process is running does not produce considerable
packet losses. A high demanding service and/or experiment
running on the nodes not involved in flashing procedure
could imply a worse performance of the protocol.
In order to compare unicast measurements with
multicast/broadcast ones, multicast flashing has been made
to three nodes (at 1, 2 and 3 hops),just getting an average
value of 330 s (70 KB size file), which means a gain of 40%
compared with separated flashing procedures. Regarding to
broadcast flashing, 15 nodes of indoor testbed have been
flashed with a 70 KB size file, lasting an average of 350 s
(similar to multicast as no 3 hops distance node is involved),
which translates in around 10 % of the global time for
separated flashing procedures.

VI. CONCLUSIONS

Unstoppable growth of WSNs joined to the adaptation to
the market of new technologies, has led IoT to become an
integral part of the FI. Under the SmartSantander project
umbrella, applications and services for the smart city are to

be deployed and used by real users, as well as a facility for
realistic IoT experimentally-driven research is provided.

In order to make the research testbed and service
provision facility, as flexible and dynamic as possible, this
paper presents a (M)OTAP protocol to remotely flash nodes
as many times and with as many code images as needed, in
unicast, multicast and broadcast fashions. This translates into
the continuous adaptation of provided services according to
users’ feedback, as well as, the capacity of running different
experiments in a set of nodes within a real scenario.
It is important to highlight that, unlike current OTAP
solutions, which are bounded to laboratory-tailored scenarios
with a small number of nodes located according to
determined topologies; the protocol presented in this paper
has been tested in a real deployment (with real traffic
associated to service provision), within a smart city
environment. The implemented protocol has been
characterized through different measurements on latency,
throughput and packet error rate, in both an indoor test
deployment, as well as an outdoor real scenario.

ACKNOWLEDGMENT

This work is partially funded by research project
SmartSantander (http://www.smartsantander.eu), under FP7-
ICT-2009-5 of the FP7 of the European Community.

REFERENCES
[1] SmartSantander project website. www.smartsantander.eu
[2] J. A. Galache, Juan R. Santana, Verónica Gutiérrez, Luis Sánchez,

Pablo Sotres and Luis Muñoz. “Towards Experimentation-Service
duality within a Smart City scenario”, presented at Wireless On-
demand Network Systems and Services (WONS 2012), Courmayeur,
Italy, Jan. 9-11.

[3] J. Jeong, S. Kim, and A. Broad, “Network Reprogramming”,
Berkeley, California, USA, Aug. 2003. [Online]. Available:
http://www.tinyos.net/tinyos-1.x/doc/

[4] T. Stathopoulos, J. Heidemann, and D. Estrin. “A remote code update
mechanism for wireless sensor networks”. Technical report, UCLA,
2003.

[5] Niels Reijers and Koen Langendoen. Efficient Code Distribution in
Wireless Sensor Networks. In Proceedings of the 2nd ACM
international conference on Wireless sensor networks and
applications, pages 60{67. ACM Press, 2003.

[6] BitCloud OTAU User Guide.
http://www.atmel.com/Images/doc8426.pdf

[7] Jennic OAD Application Note.
http://www.jennic.com/files/support_documentation/JN-AN-1057-
Over-Air-Download.pdf.

[8] S. S. Kulkarni and L. Wang, “MNP: Multihop Network
Reprogramming Service for Sensor Networks,” in IEEE ICDCS,
Columbus, Ohio, USA, Jun. 2005.

[9] Rossi, M., Zanca, G., Stabellini, L., Crepaldi, R., Harris, A., Zorzi,
M.: SYNAPSE: A network reprogramming protocol for wireless
sensor networks using fountain codes. In: Proc. of SECON, San
Francisco, CA (2008) 188{196

[10] J. W. Hui and D. Culler, “The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale,” in ACM
SenSys, Baltimore, Maryland, USA, Nov. 2004.

[11] SmartSantander deployed facility in the city of Santander.
http://maps.smartsantander.eu/

[12] Libelium. Wireless Distributed Communications.
http://www.libelium.com/

[13] Digi. Wireless machine-to-machine (M2M) device networking
products. http://www.digi.com/

