

A Comprehensive Analysis on Data Hazard for RISC32 5-Stage Pipeline Processor

Wei Pau Kiat, Kai Ming Mok, Wai Kong Lee, Hock Guan Goh & Ivan Andonovicy*
Faculty of Information and Communication Technology Universiti Tunku Abdul Rahman Kampar, Malaysia
*Department of Electronic and Electrical Engineering University of Strathclyde, Glasgow, G1 1XW, UK
Email: weipau0525@1utar.my, mokkm@utar.edu.my, wklee@utar.edu.my, gohhg@utar.edu.my, *i.andonovic@strath.ac.uk

Abstract—This paper describes the verification plan on data

hazard detection and handling for a 32-bit MIPS ISA

(Microprocessor without Interlocked Pipeline Stages Instruction

Set Architecture) compatible 5-stage pipeline processor,

RISC32. Our work can be used as a reference for RISC32

processor developers to identify and resolve every possible data

hazard that might arise during execution phase within the range

of the basic MIPS core instruction set. All the respective data

hazard has been tested and verified. The techniques used to

resolve data hazard in this paper are data forwarding and

pipeline stages stalling. When data hazard arises, it is first

resolve by using data forwarding. If the problem persists, we use

pipeline stages stalling then only follow by another data

forwarding to resolve the data hazard. This combination will

reduce the impact of data hazard on the processor throughput,

instead of only using the pipeline stages stalling. This paper

delivers a comprehensive analysis and the development of the

data hazard resolving blocks that are able to resolve data

hazard arises from basic MIPS core instruction set in RISC32

processor.

Keywords—Data Hazard, MIPS, Pipeline, Data Forwarding,
Interlock Pipeline Stages

1. Overview
The pipeline hazards can be classified into 3 types,

structural hazard, control hazard and data hazard [1], [3], [6].

Data hazards always exist in a processor designed based on

pipeline approach. It can cause computational error when

multiple instructions are overlapped during its execution

which involve accessing the processor’s system registers,

(e.g. Register File (RF), interrupt controller (CP0) registers

and HILO register). In contrast, single-cycle and multi-cycle

processor are immune to this situation since consecutive

instruction only execute after the current instruction finished

its whole execution. Although data hazard exists in pipeline

processor and it require extra hardware to resolved, the high

performance achieved by pipelined processor still outweighs

its counter parts and remains a popular choice in processor

design.
Data hazard occurs due to data dependency, whereby

an instruction attempts to read or write system register

before the valid data are available for reading. The data

dependency relationship is shown in the Table 1.

TABLE 1. DATA DEPENDENCY RELATIONSHIP

 First Instruction
 Read Write
 Read Read after Read - RAR Write after Read - WAR

Second Instruction (No dependency) (Anti dependency)
(after) Write Read after Write - RAW Write after Write - WAW

 (True dependency) (Output dependency)
From Table 1, there are 3 types of data dependency that

leads to data hazard. Both Write-after-Read (WAR) and

Write-after-Write (WAW) dependencies will never occur

when the pipeline processor only allows system registers to

be updated at a specific stage.

We observed that Read-after-Write (RAW) dependency

causes majority of the data hazards. In RISC32 convention,

Register File (RF) will only be updated at the fifth (Write-

Back (WB)) stage. Since read (ID stage) and write (WB

stage) to RF is occurred in two different stages, an

instruction may attempt to read RF before it is updated with

the latest data. This condition can be resolved in several

ways, generally classified into software and hardware

approach.

The software approach relies on compiler to reorder the

user code or insert a delay slot to resolve the combinations

of instructions that might produce data hazard, which highly

depends on the robustness of the compiler technology.

Resolving data hazard using software approach is less

complex but will affect the processor throughput more

severely than the hardware approach [6]. Consider a case of

an adding of two values in registers, $t1 and $t2, the result

will be store to register $t0. The result of the addition is

produced at the third (EX) stage, but it is only available in

register $t0 at WB stage. What if the consecutive instructions

need to use this result? The software approach will either

insert delay slots or reorder the user code, which in turn

reduces the throughput of the pipeline processor. Also, code

reordering might not be efficient since it depends on the

nature of the program flow. On the other hand, hardware

approach based on forwarding scheme does not affect the

processor throughput (except the load-use case which we

will cover later). The result from an addition instruction can

be forwarded to the next instruction without wasting any

processor cycle. The benefit of data forwarding is clearly

shown in this example, which explains our choice in

investigating the hardware approaches for resolving data
hazards.

There is no existing works that populate all the

combinations of instructions that might cause data hazard.

Hence, we are motivated to perform thorough analysis on

data hazard detection and handling scheme for RISC32

processor which we strongly believe will benefit others with

similar interest in processor development.
This paper is organized as follows: Section 2 describes

the background of our work. Section 3 describes the

processor micro-architecture requirements prior to resolve

data hazards. Section 4 and 5 describe the process of

resolving data hazard using forwarding and interlock scheme

respectively. Lastly, Section 6 concludes the finding of our

paper.

2. Background

The pipeline processor, RISC32, which we have
developed, is based on 5-cycle instruction execution, which
corresponds to 5 hardware stages: Instruction Fetch (IF),
Instruction Decode and Register File Read (ID), Execution or
address calculation (EX), Data Memory Access (MEM) and
Write Back (WB). Figure 1 illustrates the situation where
data hazard occurs in a RISC32 processor.

 to forward the data to the consecutive instructions. Both last

(sw) and second last (add) instructions do not cause any

data hazard since the data is written into the RF at the first

half of the clock cycles and it is ready for reading in the

second half of the clock cycles.
There are also some data hazard conditions that cannot

be resolved by only using data forwarding technique [1], [4],

[5]. Consider the load-use data hazard illustrated in Figure 3.

The first instruction (lw) accesses the data memory at the

fourth (MEM) stage and the data is only ready at the end of

the fourth stage. At the same time, the consecutive

instruction (and) already reaches third (EX) stage with the

operand values that have not been updated yet by the lw

instruction. As a result, the processor needs to stall for 1

clock cycle before data forwarding can correctly take place.

Figure 4 illustrates the load-use data hazard resolved by

pipeline stages stalling followed by data forwarding.

Figure 1. MIPS Pipelined Data Hazard (Taken from [1])

Referring to Figure 1, the first instruction (sub) is

supposed to update the register $2 with the latest result at

the WB stage, but the second (and), third (or) and fourth

(add) instructions attempt to read the register $2 before it is

updated. This implies that all the subsequent computations

will be based on the wrong result.

Figure 2. Illustration of Data Forwarding (Taken from [1])

Figure 2 illustrates the use of data forwarding [1], [2], [3],

[4] to resolve the data hazards. The result of the first

instruction (sub) is generated at the end of the EX stage and

will be registered into the EX/MEM pipeline, so it is possible

Figure 3. Illustration of Load-use Data Hazard (Taken from [1])

Figure 4. Pipeline Stages Stalling and Data Forwarding to Resolve
Load-use Data Hazard (Taken from [1])

The work presented by Patterson et al. [1], Mohit et al.

[3], Gautham et al [4] and Zulkifli et al. [5] generalized the

concept of data hazard based on the RF which we have

further extended it into interrupt controller unit (CP0)

registers and multiplier HILO register. The extended version

provides comprehensive verification coverage for the data

hazard based on the RISC32 processor and is useful for the

micro-architecture development. Our work also includes

miscellaneous scenario: the data hazard related to the

unconditional branch (jal and jalr) with $ra register (return

address register).
Existing work presented by Meng-Chou Chang et al. [7]

compared the data hazard detection table (DHDT) scheme

and proposed the destination register chain (DRC) scheme

to resolve data hazard. The work shows that DRC achieve

better performance and smaller design area than DHDT. The

paper presented good work on resolving and benchmarking

the data hazard for the R-type instructions. However, I-type

and J-type instructions were not included in their resolving
and benchmarking scheme.

In this paper, we will provide comprehensive verification
coverage on data hazard for RISC32 processor and the
resolving scheme using data forwarding and pipeline stages
stalling techniques.

3. Processor

3.1. Micro-architecture

The scope of our work in data hazard analysis includes
not only the Register File, but also extended with the
multiplier and interrupt controller, (CP0) registers. This
requires new instructions and with their corresponding
system registers, to hold the new type of data which
unavoidably introduce new data hazard. The processor
micro-architecture is shown in the Figure 5.

The multiplier unit, based on Booth algorithm requires 2
cycles (EX and MEM stages) to compute a result which will
be available at the end of the MEM stage and will be written
to the HILO register at the first half cycle of the WB stage.

For the CP0, data will be read from CP0 register at ID

stage and write to CP0 register at the EX stage. Writing to

CP0 register occurs in EX stage, which does not follow the

convention used for RF (write at WB stage). The purpose to

write to CP0 register in an earlier stage is to avoid additional
data hazard cause by the mtc0 instruction immediately

followed by mfc0 instruction accessing the same CP0

register. Hence, data forwarding circuitry can be reduced.

Figure 6 illustrates our approach to resolve the data hazard

discussed. Note that the CP0 register is updated at the first

half of the cycle and ready to be access at the second half of

the cycle of EX stage.
The forwarding and interlock blocks were developed to

handle data hazard as shown in Figure 5. The forwarding

block is responsible to forward data among stages while

interlock block is responsible to stall the IF and ID stages

and flush the EX stage for one clock cycle when a load-use

hazard is detected.

Figure 6. Interrupt controller register related Data Hazards
Abstract view

3.2. Control Unit Signals Related to Data Hazard

Before handling data hazard, the processor will need to

identify what instructions have entered into the execution

state. Table 2 describes function of the control unit signal

and Table 3 presents the signal representation for the

respective instructions. All the control unit signals are

TABLE 2. CONTROL UNIT SIGNAL FUNCTIONAL DESCRIPTION

Control Unit Signal Function

ID.mfc0 mfc0 instruction issued
ID.jal jal instruction issued
ID.jalr jalr instruction issued

ID.mult mult instruction issued
ID.hilo Either mflo or mfhi instruction issued
ID.hi2rf mfhi instruction issued
ID.rf wr Set when requires write-back to Register File

ID.load Load memory’s data instruction issued
ID.store Store memory’s data instruction issued

generated at the ID stage and transfer along stages for data
hazard detection.

4. Forwarding Scheme

Data forwarding technique is divided into two stages:

detection and resolve. In the following subsection, we

present the analysis and verification of all the combination of

instructions that causes data hazards.

4.1. Data Hazard Detection Conditions

We have divided the data hazard detection into 5 groups

in relation to the system registers: General Condition of

Register File, $ra register, Load-store, HILO Register and

CP0 Registers Related Data Hazards.

4.1.1. General Condition of Register File Related Data
Hazards.
The work presented by [1], [2], [3], [4] suggested that the
data is forwarded from MEM or WB stages to EX stage.
However, in our design, the data forwarding is performed
one stage earlier, that is from EX or MEM stages to ID stage.
This can reduce the power consumption and pipeline size
due to lesser control unit signals passing through the
pipeline structure. Another small advantage is to balance the
stage propagation delay of ID and EX stage: the propagation
delay of ALU in EX stage is longer than RF in ID stage [8].
The Figure 7 shows the abstract view of the data forwarding
for the condition discussed.

Figure 7. General Condition of Register File Related Data
Hazards Abstract view

Table 4 shows the combination of instructions that

causes data hazard grouped under General Condition of

Register File Related Data Hazards and the detection and

handling will be discussed in Section 4.2.

Figure 5. RISC32 Pipelined Processor Micro-Architecture

TABLE 3. PROCESSOR CONTROL SIGNAL

Addressing

Format Instruction(s) ID.mfc0 ID.jal ID.jalr ID.mult ID.hilo ID.hi2rf ID.rf wr ID.load ID.store

Register add, and, or 0 0 0 0 0 0 1 0 0
Register mult 0 0 0 1 0 0 0 0 0
Register mflo 0 0 0 0 1 0 1 0 0
Register mfhi 0 0 0 0 1 1 1 0 0
Register jalr 0 0 1 0 0 0 1 0 0
Register mfc0 1 0 0 0 0 0 1 0 0

Immediate addi, andi, ori 0 0 0 0 0 0 1 0 0
Base lw, lhu, lh, lb 0 0 0 0 0 0 1 1 0
Base sw, sh, sb 0 0 0 0 0 0 0 0 1

Pseudodirect jal 0 1 0 0 0 0 1 0 0

4.1.2. Register File related Data Hazards - $ra register.

This condition arises when the processor issued an

unconditional branch instruction such as jump and link, (jal)

and jump and link register, (jalr) which updates the $ra

register with the address of the next instruction (PC+4).

However, the consecutive instruction right after jal or jalr will

read the old value of $ra register at ID stage. This situation is

shown in Figure 8.

Figure 8. $ra register related Data Hazards Abstract view

From Figure 8, jal will update the $ra register at WB stage,
but the corresponding address value (PC+4) in $ra register

is needed earlier by the consecutive instructions at ID stage.
Thus, data forwarding should take place to resolve this
problem. Two situations should be taken into account: with
and without branch delay slot. From Figure 8, the first 2
instructions are the data hazard combination without branch
delay slot; data can be forwarded from EX stage to ID stage.
For the one with branch delay slot, assuming the second
instruction in Figure 8 is the branch delay slot; data can be
forwarded from MEM stage to ID stage. The combinations of
instructions shown in Table 5 cover all the data hazard of
both situations grouped under $ra register related data
hazard and the detection and handling will be discussed in
Section 4.2.

TABLE 4. General Condition of Register File Related
Data Hazards

1 add $1, $1, $1

2 addi $1, $1, 0x0000

add $1, $1, $1 add $1, $1, $1

 add $1, $1, $1 addi $1, $1, 0x0000

3 nop 4 nop

 add $1, $1, $1 add $1, $1, $1

5 add $1, $1, $1
6 addi $1, $1, 0x0000

addi $1, $1, 0x0000 addi $1, $1, 0x0000

 add $1, $1, $1 addi $1, $1, 0x0000

7 nop 8 nop

 addi $1, $1, 0x0000 addi $1, $1, 0x0000

9 add $1, $1, $1
10 addi $1, $1, 0x0000

lw $1, 100($1) lw $1, 100($1)

 add $1, $1, $1 addi $1, $1, 0x0000

11 nop 12 nop

 lw $1, 100($1) lw $1, 100($1)

13 add $1, $1, $1
14 addi $1, $1, 0x0000

sw $1, 100($1) sw $1, 100($1)

 add $1, $1, $1 addi $1, $1, 0x0000

15 nop 16 nop

 sw $1, 100($1) sw $1, 100($1)

17 add $1, $1, $1
18 addi $1, $1, 0x0000

beq $1, $1, 100 beq $1, $1, 100

 add $1, $1, $1 addi $1, $1, 0x0000

19 nop 20 nop

 beq $1, $1, 100 beq $1, $1, 100

21 add $ra, $ra, $ra
22 addi $ra, $ra, 0x0000

jr $ra jr $ra

 add $ra, $ra, $ra addi $ra, $ra, 0x0000

23 nop 24 nop

 jr $ra jr $ra

25 add $1, $1, $1
26 addi $1, $1, 0x0000

mult $1, $1 mult $1, $1

 add $1, $1, $1 addi $1, $1, 0x0000

27 nop 28 nop

 mult $1, $1 mult $1, $1

29 add $1, $1, $1
30 addi $1, $1, 0x0000

mtc0 $1, $epc mtc0 $1, $epc

 add $1, $1, $1 addi $1, $1, 0x0000

31 nop 32 nop

 mtc0 $1, $epc mtc0 $1, $epc

33 add $ra, $ra, $ra
34 addi $ra, $ra, 0x0000

jalr $ra jalr $ra

 add $ra, $ra, $ra addi $ra, $ra, 0x0000

35 nop 36 nop

 jalr $ra jalr $ra

 lw $1, 100($1) lw $1, 100($1)

37 nop 38 nop

 lw $1, 100($1) sw $1, 100($1)

 lw $1, 100($1) lw $1, 100($1)

39 nop 40 nop

 mult $1, $1 mult $1, $1

 lw $1, 100($1) lw $1, 100($1)

41 nop 42 nop

 jr $ra jalr $ra

 lw $1, 100($1)

43 nop
mtc0 $1, $epc

4.1.3. Register File related Data Hazards - Load-store.
A load-store hazard has the similar characteristics as load-

use hazard, which the RAW dependency exists between the

combinations of instructions started with a load instruction.

However it can be resolved by using data forwarding. By

referring to the MIPS ISA convention, the registers used for

load and store instruction can be classified into two usages,

one for holding address ($rs) and another for holding data

($rt). Address calculation of the store instruction is

performed at the EX stage: $rs should be ready before going

into the ALU unit for address calculation. Since the data of

the load instruction is only available at the MEM stage

onwards, it requires pipeline stages stalling when the

consecutive instruction relies on the respective data to

perform calculation in the EX stage. In contrast, for the case

where the store instruction not using the data of the load

instruction in the EX stage but requires the data at MEM

stage, it can be resolve using data forwarding and this is

illustrated in Figure 9. The data can be forwarded from the

MEM stage to EX stage of the consecutive instruction. The

detection and handling of this hazard will be discussed in

Section 4.2.

TABLE 5. $RA REGISTER RELATED DATA HAZARDs

1 jal 10000
2 jalr $ra

add $ra, $ra, $ra add $ra, $ra, $ra

 jal 10000 jalr $ra

3 nop 4 nop

 addi $ra, $ra, 0x0000 addi $ra, $ra, 0x0000

5 jal 10000
6 jalr $ra

lw $ra, 100($ra) lw $ra, 100($ra)

7 jal 10000
8 jalr $ra

sw $ra, 100($ra) sw $ra, 100($ra)

9 jal 10000
10 jalr $ra

beq $ra, $ra, 100 beq $ra, $ra, 100

11 jal 10000
12 jalr $ra

jr $ra jr $ra

13 jal 10000
14 jalr $ra

jalr $ra jalr $ra

15 jal 10000
16 jalr $ra

mult $ra, $ra mult $ra, $ra

17 jal 10000
18 jalr $ra

mtc0 $ra, $epc mtc0 $ra, $epc

 jal 10000 jalr $ra

19 nop 20 nop

 add $ra, $ra, $ra add $ra, $ra, $ra

 jal 10000 jalr $ra

21 nop 22 nop

 addi $ra, $ra, 0x0000 addi $ra, $ra, 0x0000

 jal 10000 jalr $ra

23 nop 24 nop

 lw $ra, 100($ra) lw $ra, 100($ra)

 jal 10000 jalr $ra

25 nop 26 nop

 sw $ra, 100($ra) sw $ra, 100($ra)

 jal 10000 jalr $ra

27 nop 28 nop

 beq $ra, $ra, 100 beq $ra, $ra, 100

 jal 10000 jalr $ra

29 nop 30 nop

 jr $ra jr $ra

 jal 10000 jalr $ra

31 nop 32 nop

 jalr $ra jalr $ra

 jal 10000 jalr $ra

33 nop 34 nop

 mult $ra, $ra mult $ra, $ra

 jal 10000 jalr $ra

35 nop 36 nop

 mtc0 $ra, $epc mtc0 $ra, $epc

Figure 9. Load-store Data Hazards Abstract view

4.1.4. HILO Register Related Data Hazards.
New instructions are needed to move the multiplication result

(register HI and LO) to the RF before it can use by other

instructions. The new instructions are: move from LO

register (mflo) and move from HI register (mfhi). The

multiplication related data hazard may arise in two

scenarios.

Scenario 1: when after multiplication, the result is to be read

by either mflo or mfhi, but it is not ready for reading until at

the WB stage. For example, in Figure 10, data hazard

occurs between the first (mult) and second (mflo)

instructions and the multiplication result should be forwarded

from MEM stage to EX stage.

Scenario 2: when the processor copies the HILO register’s

data to the RF, reading the same register in the RF before it

is updated. For example, in Figure 10, data hazards occurs

between second (mflo) (or third (mflo)) and fourth (add)

instructions, and the HILO register’s data should be

forwarded from the EX or MEM stage to ID stage.

The combination of instructions shown in Table 6 cover

both situations grouped under HILO register related data

hazards.

DM

IM Reg HILO
MULT

1
MULT

2

IM RegHILO

mult $1, $1

mflo $2

mflo $3 IM RegHILO

IM DM

A
LUReg Regadd $1, $2, $3

Reg

Reg DM

TABLE 6. HILO REGISTER RELATED DATA HAZARD TABLE 7. CP0 REGISTERS RELATED DATA HAZARD

1 mult $1, $1

2 mult $1, $1
1 mfc0 $1, $epc

2 mfc0 $1, $epc

mflo $1 mfhi $1

add $1, $1, $1 addi $1, $1, 0x0000

3 mflo $1 / mfhi $1

4 mflo $1 / mfhi $1
3 mfc0 $1, $epc

4 mfc0 $1, $epc

add $1, $1, $1 addi $1, $1, 0x0000

lw $1, 100($1) sw $1, 100($1)

5 mflo $1 / mfhi $1

6 mflo $1 / mfhi $1
5 mfc0 $1, $epc

6 mfc0 $1, $epc

lw $1, 100($1) sw $1, 100($1)

beq $1, $1, 100 jr $ra

7 mflo $1 / mfhi $1

8 mflo $1 / mfhi $1
7 mfc0 $1, $epc

8 mfc0 $1, $epc

mult $1, $1 beq $1, $1, 100

mtc0 $1, $epc mult $1, $1

 mflo $1 / mfhi $1 mflo $1 / mfhi $1 mfc0 $1, $epc mfc0 $1, $epc

 9 nop 10 nop 9 jalr $ra 10 nop

 add $1, $1, $1 addi $1, $1, 0x0000 jalr $ra

 mflo $1 / mfhi $1 mflo $1 / mfhi $1 mfc0 $1, $epc mfc0 $1, $epc

 11 nop 12 nop 11 nop 12 nop

 lw $1, 100($1) sw $1, 100($1) add $1, $1, $1 addi $1, $1, 0x0000

 mflo $1 / mfhi $1 mflo $1 / mfhi $1 mfc0 $1, $epc mfc0 $1, $epc

 13 nop 14 nop 13 nop 14 nop

 mult $1, $1 beq $1, $1, 100 lw $1, 100($1) sw $1, 100($1)

 mfc0 $1, $epc mfc0 $1, $epc

 15 nop 16 nop

 beq $1, $1, 100 jr $ra

 mfc0 $1, $epc mfc0 $1, $epc

 17 nop 18 nop

 mtc0 $1, $epc mult $1, $1

.

Figure 10. HILO Register Related Data Hazards Abstract view

4.1.5. CP0 Registers Related Data Hazards.
Two instructions are added in order to access CP0 registers,

which are move from CP0 register, (mfc0) and move to CP0

register, (mtc0). The data hazard of the CP0 register arises

in the same pattern, which always start with mfc0 instruction.

The first instruction in Figure 11 will get the CP0 register’s

data at ID stage and write to RF at WB stage. The data

hazard arises when CP0 register’s data is copied to RF’s

register while at the same time, the respective register in the

RF is occupied for further computation. Referring to Figure

10, the CP0 register’s data is available to be forwarded from

EX or MEM stages to ID stage to avoid for data hazard.

Table 7 cover the combinations of instructions grouped

under CP0 registers related data hazard.

Figure 11. CP0 Register Data Forwarding Abstract view

4.2. Development of the Forwarding Block:

Detection and Handling
By observing all the data hazard detection conditions

discussed, there are four data paths used as the target of

data forwarding. The first two paths are the rs and rt path.

which are used to pass ID, EX and MEM stage data to ID

stage. These two paths are used to resolve the General

Condition of Register File, $ra register, CP0 registers and

HILO register related data hazards. 3-bit control signal is

used to select which source be forwarded. The Most

Significant Bit (MSB) of the signal indicates the condition of

the data, whereby 0 indicate normal flow without data

forwarding and else otherwise. The third path is the hilo

path, which is used to forward MEM stage data to EX stage.

It is meant to resolve the first scenario of the HILO register

related data hazards discussed. The same convention of rs

and rt path applies to hilo path. The 3-bit control signal is

used and the MSB indicates the condition of the data. 001

and 010 of the ex_hilo_ctrl in Table 8 is used to transfer the

HI or LO register’s data when issue mfhi or mflo instruction

respectively. On the other hand, 000 indicates that

instructions other than mfhi and mflo were issued. It is to

avoid duplicated logic and reduce the multiplexer used to

transfer the data from stage to stage. The last path is used

to resolve load-store data hazard. This path forwards the

data from the MEM stage. 1-bit control signal is used to

indicate the condition of the data, whereby 1 represent the

data is forwarding from other stage and else otherwise.

Table 8 shows the information of the data paths used for

data forwarding.
Referring to all combinations of instructions shown in

Table 4 to Table 7 and forwarding path information shown in

Table 8, the optimized algorithms are generated. The

Algorithm 1 and the Algorithm 2 detect and resolve for rs and

rt path data forwarding. The Algorithm 3 and the Algorithm 4

detect and resolve for HILO register related and load-store

data hazards respectively. In other word, the Algorithm 1 and

the Algorithm 2 detect and resolve all the combinations of

instructions shown in Table 4, 5 and 7 and first two test

cases in Table 6. The Algorithm 3 is used to detect and

resolve the remaining combinations of instructions in Table

6. Lastly, The Algorithm 4 is used for load-store forwarding.

 TABLE 8. DATA FORWARDING HANDLING SCHEME

 From To Data Hazards

 Stage Path Stage Target To Resolve

 000 ID Register File

Register File
Related,

 100 EX PC+4 $ra register

id rs ctrl 101 MEM PC+4 ID rs path related, Interrupt

 110 EX Stage output controller related

 111 MEM Stage output

Multiplication

related

 000 ID Register File

Register File
Related,

 100 EX PC+4 $ra register

id rt ctrl 101 MEM PC+4 ID rt path related, Interrupt

 110 EX Stage output controller related

 111 MEM Stage output

Multiplication

related

 000 EX ALU output Memory Multiplication

 001 EX LO register Address / related

ex hilo ctrl 010 EX HI register EX write-back

 101 MEM Multiplier result [31:0] data

 110 MEM Multiplier result [63:32]

ex mem ctrl 0 EX EX.rt path data EX Memory Load-store

1

EX Data Memory’s data input data

5. Interlock scheme

In this paper, the interlock scheme is further extended to

avoid stalling the pipeline stages when resolving data hazard

(with data forwarding scheme) for the load-store condition.

Besides that, based on our finding, the interlock block might

not work well after extended with CP0, which is a load

instruction followed by mfc0 instruction. It may stall the

pipeline even there is no data hazard arises. The following

detection conditions highlight the problem discussed.

5.1. Data Hazard Detection Conditions

For some of the load-use conditions, it may not cause

data hazard while the interlock block is still inserting a delay

slot. It may unnecessarily reduce the processor throughput

since it inserts an unnecessary load delay on the load-use

combination of instructions that doesn’t cause any data

hazard. To resolve this problem, special condition should be

set case by case. Based on our finding, only the combination

of load-use instructions shown in Table 8 will causes data

hazard and require a delay slot to resolve. One cycle after

the delay slot, the data in Data Memory should be available

and ready to be forwarded to the next consecutive

instructions. The forwarding scheme in the previous section

should be able to handle the consecutive data hazard arises.

Figure 12 illustrates the load-use data hazard solved by

combination of pipeline stalling followed by data forwarding

scheme.

5.2. Development of the Interlock Block:
Detection and Handling

The pseudocode in the Algorithm 5 present the
hazard detection logic used to detect and resolve the
load-use hazards referring to the combinations of
instructions in Table 8.

TABLE 9. LOAD-USE DATA HAZARDs

1 lw $1, 100($1)
2 lw $1, 100($1)

add $1, $1, $1 addi $1, $1, 0x0000

3 lw $1, 100($1)
4 lw $1, 100($1)

lw $1, 100($1) mult $1, $1

5 lw $1, 100($1)
6 lw $ra, 100($ra)

beq $1, $1, 100 jr $ra

7 lw $ra, 100($ra)
8 lw $1, 100($1)

jalr $ra mtc0 $1, $epc

9 lw $1, 100($1)

sw $2, 100($1)

Figure 12. Combination of Pipeline Stages Stalling and Data
Forwarding for Resolving Load-use Hazards

6. Conclusion

In this paper, we presented a thorough analysis on data

hazard of 32-bit MIPS ISA compatible 5-stage pipeline

processor and the overall resolving scheme to handle basic

MIPS core instruction set data hazards that might arise. The

analysis shown here can serve as a reference for MIPS ISA

compatible pipeline processor developers to eliminate all the

data hazards. All the data hazards should be resolved prior

to further development as the data correctness is extremely

important. Furthermore, based on our experience, it is

troublesome to capture a data hazard when the processor is

integrated with I/O system and memory system, whereby

data correctness is critical.
We intended to develop a pipeline processor for Internet-

of-Things (IoT) in future, which is mostly going to handle

large amount of data, including data collection from sensors,

data aggregation and data transmission to another device.

Therefore, data correctness is critical to IoT and hence we

provide this paper as the useful information to resolve basic

MIPS core instruction set data hazard that might arises in

processor level.

Acknowledgments

This research work is fully supported by UTAR
Research Fund (UTARRF), Malaysia under grant
IPSR/RMC/UTARRF/2015-C2/G01.

References

[1] Patterson, D. A., Hennessy, J. L., ”Computer Organization and

De-sign: The Hardware/Software Interface”, 5th edition, ISBN:
978-0-12-407726-3, 2014

[2] S. P. Ritpurkar, M. N. Thakare and G. D. Korde, ”Design and

sim-ulation of 32-Bit RISC architecture based on MIPS using
VHDL,” Advanced Computing and Communication Systems,
2015 International Conference on, Coimbatore, 2015, pp. 1-6.

[3] M. N. Topiwala and N. Saraswathi, ”Implementation of a 32-bit MIPS

based RISC processor using Cadence,” Advanced Communication

Control and Computing Technologies (ICACCCT), 2014 International

Conference on, Ramanathapuram, 2014, pp. 979-983.

[4] P. Gautham, R. Parthasarathy and K. Balasubramanian, ”Low-

power pipelined MIPS processor design,” Proceedings of the
2009 12th International Symposium on Integrated Circuits,
Singapore, 2009, pp. 462-465.

[5] M. Zulkifli, Y. P. Yudhanto, N. A. Soetharyo and T.

Adiono, ”Reduced stall MIPS architecture using pre-fetching
accelerator,” 2009 Interna-tional Conference on Electrical
Engineering and Informatics, Selangor, 2009, pp. 611-616.

[6] P. V. S. R. Bharadwaja, K. R. Teja, M. N. Babu and K.

Neelima, ”Advanced low power RISC processor design using MIPS

instruction set,” Electronics and Communication Systems (ICECS),

2015 2nd International Conference on, Coimbatore, 2015, pp. 1252-

1258.

[7] Meng-Chou Chang and Da-Sen Shiau, ”Comparison of two data

hazard handling schemes for asynchronous pipelined processors,”

Computer Science and Information Technology (ICCSIT), 2010 3rd

IEEE Inter-national Conference on, Chengdu, 2010, pp. 36-40.

[8] D. M. Harris and S. L. Harris, “Digital design and computer

architecture”, 2nd ed., Morgan Kaufmann Publishers, ISBN: 978-0-

12-394424-5, 2012.

