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Abstract—This paper describes the verification plan on data 

hazard detection and handling for a 32-bit MIPS ISA 

(Microprocessor without Interlocked Pipeline Stages Instruction 

Set Architecture) compatible 5-stage pipeline processor, 

RISC32. Our work can be used as a reference for RISC32 

processor developers to identify and resolve every possible data 

hazard that might arise during execution phase within the range 

of the basic MIPS core instruction set. All the respective data 

hazard has been tested and verified. The techniques used to 

resolve data hazard in this paper are data forwarding and 

pipeline stages stalling. When data hazard arises, it is first 

resolve by using data forwarding. If the problem persists, we use 

pipeline stages stalling then only follow by another data 

forwarding to resolve the data hazard. This combination will 

reduce the impact of data hazard on the processor throughput, 

instead of only using the pipeline stages stalling. This paper 

delivers a comprehensive analysis and the development of the 

data hazard resolving blocks that are able to resolve data 

hazard arises from basic MIPS core instruction set in RISC32 

processor. 
 
Keywords—Data Hazard, MIPS, Pipeline, Data Forwarding,  
Interlock Pipeline Stages 

 

1. Overview 
The pipeline hazards can be classified into 3 types, 

structural hazard, control hazard and data hazard [1], [3], [6]. 

Data hazards always exist in a processor designed based on 

pipeline approach. It can cause computational error when 

multiple instructions are overlapped during its execution 

which involve accessing the processor’s system registers, 

(e.g. Register File (RF), interrupt controller (CP0) registers 

and HILO register). In contrast, single-cycle and multi-cycle 

processor are immune to this situation since consecutive 

instruction only execute after the current instruction finished 

its whole execution. Although data hazard exists in pipeline 

processor and it require extra hardware to resolved, the high 

performance achieved by pipelined processor still outweighs 

its counter parts and remains a popular choice in processor 

design. 
Data hazard occurs due to data dependency, whereby 

an instruction attempts to read or write system register 

before the valid data are available for reading. The data 

dependency relationship is shown in the Table 1. 

 

 
TABLE 1. DATA DEPENDENCY RELATIONSHIP 

 
  First Instruction 
  Read Write 
 Read Read after Read - RAR Write after Read - WAR 

Second Instruction  (No dependency) (Anti dependency) 
(after) Write Read after Write - RAW Write after Write - WAW 

  (True dependency) (Output dependency) 
From Table 1, there are 3 types of data dependency that 

leads to data hazard. Both Write-after-Read (WAR) and 

Write-after-Write (WAW) dependencies will never occur 

when the pipeline processor only allows system registers to 

be updated at a specific stage.  

We observed that Read-after-Write (RAW) dependency 

causes majority of the data hazards. In RISC32 convention, 

Register File (RF) will only be updated at the fifth (Write-

Back (WB)) stage. Since read (ID stage) and write (WB 

stage) to RF is occurred in two different stages, an 

instruction may attempt to read RF before it is updated with 

the latest data. This condition can be resolved in several 

ways, generally classified into software and hardware 

approach.  

The software approach relies on compiler to reorder the 

user code or insert a delay slot to resolve the combinations 

of instructions that might produce data hazard, which highly 

depends on the robustness of the compiler technology. 

Resolving data hazard using software approach is less 

complex but will affect the processor throughput more 

severely than the hardware approach [6]. Consider a case of 

an adding of two values in registers, $t1 and $t2, the result 

will be store to register $t0. The result of the addition is 

produced at the third (EX) stage, but it is only available in 

register $t0 at WB stage. What if the consecutive instructions 

need to use this result? The software approach will either 

insert delay slots or reorder the user code, which in turn 

reduces the throughput of the pipeline processor. Also, code 

reordering might not be efficient since it depends on the 

nature of the program flow. On the other hand, hardware 

approach based on forwarding scheme does not affect the 

processor throughput (except the load-use case which we 

will cover later). The result from an addition instruction can 

be forwarded to the next instruction without wasting any 

processor cycle. The benefit of data forwarding is clearly 

shown in this example, which explains our choice in 

investigating the hardware approaches for resolving data 
hazards.  



There is no existing works that populate all the 

combinations of instructions that might cause data hazard. 

Hence, we are motivated to perform thorough analysis on 

data hazard detection and handling scheme for RISC32 

processor which we strongly believe will benefit others with 

similar interest in processor development.  
This paper is organized as follows: Section 2 describes 

the background of our work. Section 3 describes the 

processor micro-architecture requirements prior to resolve 

data hazards. Section 4 and 5 describe the process of 

resolving data hazard using forwarding and interlock scheme 

respectively. Lastly, Section 6 concludes the finding of our 

paper. 
 
2. Background 

The pipeline processor, RISC32, which we have 
developed, is based on 5-cycle instruction execution, which 
corresponds to 5 hardware stages: Instruction Fetch (IF), 
Instruction Decode and Register File Read (ID), Execution or 
address calculation (EX), Data Memory Access (MEM) and 
Write Back (WB). Figure 1 illustrates the situation where 
data hazard occurs in a RISC32 processor. 

 to forward the data to the consecutive instructions. Both last 

(sw) and second last (add) instructions do not cause any 

data hazard since the data is written into the RF at the first 

half of the clock cycles and it is ready for reading in the 

second half of the clock cycles.  
There are also some data hazard conditions that cannot 

be resolved by only using data forwarding technique [1], [4], 

[5]. Consider the load-use data hazard illustrated in Figure 3. 

The first instruction (lw) accesses the data memory at the 

fourth (MEM) stage and the data is only ready at the end of 

the fourth stage. At the same time, the consecutive 

instruction (and) already reaches third (EX) stage with the 

operand values that have not been updated yet by the lw 

instruction. As a result, the processor needs to stall for 1 

clock cycle before data forwarding can correctly take place. 

Figure 4 illustrates the load-use data hazard resolved by 

pipeline stages stalling followed by data forwarding. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. MIPS Pipelined Data Hazard (Taken from [1]) 
 

Referring to Figure 1, the first instruction (sub) is 

supposed to update the register $2 with the latest result at 

the WB stage, but the second (and), third (or) and fourth 

(add) instructions attempt to read the register $2 before it is 

updated. This implies that all the subsequent computations 

will be based on the wrong result. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Illustration of Data Forwarding (Taken from [1]) 
 

Figure 2 illustrates the use of data forwarding [1], [2], [3], 

[4] to resolve the data hazards. The result of the first 

instruction (sub) is generated at the end of the EX stage and 

will be registered into the EX/MEM pipeline, so it is possible 

 
 
 

 
 
Figure 3. Illustration of Load-use Data Hazard (Taken from [1]) 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Pipeline Stages Stalling and Data Forwarding to Resolve 
Load-use Data Hazard (Taken from [1]) 

 
The work presented by Patterson et al. [1], Mohit et al. 

[3], Gautham et al [4] and Zulkifli et al. [5] generalized the 

concept of data hazard based on the RF which we have 

further extended it into interrupt controller unit (CP0) 

registers and multiplier HILO register. The extended version 

provides comprehensive verification coverage for the data 

hazard based on the RISC32 processor and is useful for the 

micro-architecture development. Our work also includes 

miscellaneous scenario: the data hazard related to the 

unconditional branch (jal and jalr) with $ra register (return 

address register). 
Existing work presented by Meng-Chou Chang et al. [7] 

compared the data hazard detection table (DHDT) scheme 

and proposed the destination register chain (DRC) scheme 

to resolve data hazard. The work shows that DRC achieve 

better performance and smaller design area than DHDT. The 

paper presented good work on resolving and benchmarking 

the data hazard for the R-type instructions. However, I-type 



and J-type instructions were not included in their resolving 
and benchmarking scheme.  

In this paper, we will provide comprehensive verification 
coverage on data hazard for RISC32 processor and the 
resolving scheme using data forwarding and pipeline stages 
stalling techniques.  
 
 
3. Processor 
 
3.1. Micro-architecture 
 

The scope of our work in data hazard analysis includes 
not only the Register File, but also extended with the 
multiplier and interrupt controller, (CP0) registers. This 
requires new instructions and with their corresponding 
system registers, to hold the new type of data which 
unavoidably introduce new data hazard. The processor 
micro-architecture is shown in the Figure 5.  

The multiplier unit, based on Booth algorithm requires 2 
cycles (EX and MEM stages) to compute a result which will 
be available at the end of the MEM stage and will be written 
to the HILO register at the first half cycle of the WB stage.  

For the CP0, data will be read from CP0 register at ID 

stage and write to CP0 register at the EX stage. Writing to 

CP0 register occurs in EX stage, which does not follow the 

convention used for RF (write at WB stage). The purpose to 

write to CP0 register in an earlier stage is to avoid additional 
data hazard cause by the mtc0 instruction immediately 

followed by mfc0 instruction accessing the same CP0 

register. Hence, data forwarding circuitry can be reduced. 

Figure 6 illustrates our approach to resolve the data hazard 

discussed. Note that the CP0 register is updated at the first 

half of the cycle and ready to be access at the second half of 

the cycle of EX stage.  
The forwarding and interlock blocks were developed to 

handle data hazard as shown in Figure 5. The forwarding 

block is responsible to forward data among stages while 

interlock block is responsible to stall the IF and ID stages 

and flush the EX stage for one clock cycle when a load-use 

hazard is detected. 
 
 
 
 
 

 
Figure 6. Interrupt controller register related Data Hazards 
Abstract view 

 
3.2. Control Unit Signals Related to Data Hazard 
 

Before handling data hazard, the processor will need to 

identify what instructions have entered into the execution 

state. Table 2 describes function of the control unit signal 

and Table 3 presents the signal representation for the 

respective instructions. All the control unit signals are 

 
TABLE 2. CONTROL UNIT SIGNAL FUNCTIONAL DESCRIPTION 

 
Control Unit Signal Function 

ID.mfc0 mfc0 instruction issued 
ID.jal jal instruction issued 
ID.jalr jalr instruction issued 

ID.mult mult instruction issued 
ID.hilo Either mflo or mfhi instruction issued 
ID.hi2rf mfhi instruction issued 
ID.rf wr Set when requires write-back to Register File 

    

ID.load Load memory’s data instruction issued 
ID.store Store memory’s data instruction issued 

 
 
generated at the ID stage and transfer along stages for data 
hazard detection. 
 
4. Forwarding Scheme 
 

Data forwarding technique is divided into two stages: 

detection and resolve. In the following subsection, we 

present the analysis and verification of all the combination of 

instructions that causes data hazards. 
 
4.1. Data Hazard Detection Conditions 
 

We have divided the data hazard detection into 5 groups 

in relation to the system registers: General Condition of 

Register File, $ra register, Load-store, HILO Register and 

CP0 Registers Related Data Hazards. 
 
4.1.1. General Condition of Register File Related Data 
Hazards.  
The work presented by [1], [2], [3], [4] suggested that the 
data is forwarded from MEM or WB stages to EX stage. 
However, in our design, the data forwarding is performed 
one stage earlier, that is from EX or MEM stages to ID stage. 
This can reduce the power consumption and pipeline size 
due to lesser control unit signals passing through the 
pipeline structure. Another small advantage is to balance the 
stage propagation delay of ID and EX stage: the propagation 
delay of ALU in EX stage is longer than RF in ID stage [8]. 
The Figure 7 shows the abstract view of the data forwarding 
for the condition discussed. 
 
 
 
 
 
 
 

 
Figure 7. General Condition of Register File Related Data 
Hazards Abstract view 

 
Table 4 shows the combination of instructions that 

causes data hazard grouped under General Condition of 

Register File Related Data Hazards and the detection and 

handling will be discussed in Section 4.2. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. RISC32 Pipelined Processor Micro-Architecture 

 
TABLE 3. PROCESSOR CONTROL SIGNAL 

 
Addressing             

Format Instruction(s) ID.mfc0 ID.jal ID.jalr ID.mult ID.hilo ID.hi2rf ID.rf wr ID.load ID.store 
             

Register add, and, or 0 0 0 0 0 0 1  0 0 
Register mult 0 0 0 1 0 0 0  0 0 
Register mflo 0 0 0 0 1 0 1  0 0 
Register mfhi 0 0 0 0 1 1 1  0 0 
Register jalr 0 0 1 0 0 0 1  0 0 
Register mfc0 1 0 0 0 0 0 1  0 0 

Immediate addi, andi, ori 0 0 0 0 0 0 1  0 0 
Base lw, lhu, lh, lb 0 0 0 0 0 0 1  1 0 
Base sw, sh, sb 0 0 0 0 0 0 0  0 1 

Pseudodirect jal 0 1 0 0 0 0 1  0 0 
 
 
4.1.2. Register File related Data Hazards - $ra register. 
 
This condition arises when the processor issued an 

unconditional branch instruction such as jump and link, (jal) 

and jump and link register, (jalr) which updates the $ra 

register with the address of the next instruction (PC+4). 

However, the consecutive instruction right after jal or jalr will 

read the old value of $ra register at ID stage. This situation is 

shown in Figure 8. 
 

 

 

 

 
 
 
Figure 8. $ra register related Data Hazards Abstract view 

 
 
From Figure 8, jal will update the $ra register at WB stage, 
but the corresponding address value (PC+4) in $ra register 

is needed earlier by the consecutive instructions at ID stage. 
Thus, data forwarding should take place to resolve this 
problem. Two situations should be taken into account: with 
and without branch delay slot. From Figure 8, the first 2 
instructions are the data hazard combination without branch 
delay slot; data can be forwarded from EX stage to ID stage. 
For the one with branch delay slot, assuming the second 
instruction in Figure 8 is the branch delay slot; data can be 
forwarded from MEM stage to ID stage. The combinations of 
instructions shown in Table 5 cover all the data hazard of 
both situations grouped under $ra register related data 
hazard and the detection and handling will be discussed in 
Section 4.2.



TABLE 4. General Condition of Register File Related 
Data Hazards 

 
1 add $1, $1, $1 

2 addi $1, $1, 0x0000 
 

add $1, $1, $1 add $1, $1, $1  

  
 

 add $1, $1, $1  addi $1, $1, 0x0000 
 

3 nop 4 nop 
 

 add $1, $1, $1  add $1, $1, $1 
 

5 add $1, $1, $1 
6 addi $1, $1, 0x0000 

 

addi $1, $1, 0x0000 addi $1, $1, 0x0000  

   

 add $1, $1, $1  addi $1, $1, 0x0000 
 

7 nop 8 nop 
 

 addi $1, $1, 0x0000  addi $1, $1, 0x0000 
 

9 add $1, $1, $1 
10 addi $1, $1, 0x0000 

 

lw $1, 100($1) lw $1, 100($1)  

  
 

 add $1, $1, $1  addi $1, $1, 0x0000 
 

11 nop 12 nop 
 

 lw $1, 100($1)  lw $1, 100($1) 
 

13 add $1, $1, $1 
14 addi $1, $1, 0x0000 

 

sw $1, 100($1) sw $1, 100($1)  

   

 add $1, $1, $1  addi $1, $1, 0x0000 
 

15 nop 16 nop 
 

 sw $1, 100($1)  sw $1, 100($1) 
 

17 add $1, $1, $1 
18 addi $1, $1, 0x0000 

 

beq $1, $1, 100 beq $1, $1, 100  

  
 

 add $1, $1, $1  addi $1, $1, 0x0000 
 

19 nop 20 nop 
 

 beq $1, $1, 100  beq $1, $1, 100 
 

21 add $ra, $ra, $ra 
22 addi $ra, $ra, 0x0000 

 

jr $ra jr $ra  

   

 add $ra, $ra, $ra  addi $ra, $ra, 0x0000 
 

23 nop 24 nop 
 

 jr $ra  jr $ra 
 

25 add $1, $1, $1 
26 addi $1, $1, 0x0000 

 

mult $1, $1 mult $1, $1  

  
 

 add $1, $1, $1  addi $1, $1, 0x0000 
 

27 nop 28 nop 
 

 mult $1, $1  mult $1, $1 
 

29 add $1, $1, $1 
30 addi $1, $1, 0x0000 

 

mtc0 $1, $epc mtc0 $1, $epc  

   

 add $1, $1, $1  addi $1, $1, 0x0000 
 

31 nop 32 nop 
 

 mtc0 $1, $epc  mtc0 $1, $epc 
 

33 add $ra, $ra, $ra 
34 addi $ra, $ra, 0x0000 

 

jalr $ra jalr $ra  

  
 

 add $ra, $ra, $ra  addi $ra, $ra, 0x0000 
 

35 nop 36 nop 
 

 jalr $ra  jalr $ra 
 

 lw $1, 100($1)  lw $1, 100($1) 
 

37 nop 38 nop 
 

 lw $1, 100($1)  sw $1, 100($1) 
 

 lw $1, 100($1)  lw $1, 100($1) 
 

39 nop 40 nop 
 

 mult $1, $1  mult $1, $1 
 

 lw $1, 100($1)  lw $1, 100($1) 
 

41 nop 42 nop 
 

 jr $ra  jalr $ra 
 

 lw $1, 100($1)   
 

43 nop  
mtc0 $1, $epc  

 
4.1.3. Register File related Data Hazards - Load-store.  
A load-store hazard has the similar characteristics as load-

use hazard, which the RAW dependency exists between the 

combinations of instructions started with a load instruction. 

However it can be resolved by using data forwarding. By 

referring to the MIPS ISA convention, the registers used for 

load and store instruction can be classified into two usages, 

one for holding address ($rs) and another for holding data 

($rt). Address calculation of the store instruction is 

performed at the EX stage: $rs should be ready before going 

into the ALU unit for address calculation. Since the data of 

the load instruction is only available at the MEM stage 

onwards, it requires pipeline stages stalling when the 

consecutive instruction relies on the respective data to 

perform calculation in the EX stage. In contrast, for the case 

where the store instruction not using the data of the load 

instruction in the EX stage but requires the data at MEM 

stage, it can be resolve using data forwarding and this is 

illustrated in Figure 9. The data can be forwarded from the 

MEM stage to EX stage of the consecutive instruction. The 

detection and handling of this hazard will be discussed in 

Section 4.2. 

TABLE 5. $RA REGISTER RELATED DATA HAZARDs 
 

1 jal 10000 
2 jalr $ra 

 

add $ra, $ra, $ra add $ra, $ra, $ra  

   

 jal 10000  jalr $ra 
 

3 nop 4 nop 
 

 addi $ra, $ra, 0x0000  addi $ra, $ra, 0x0000 
 

5 jal 10000 
6 jalr $ra 

 

lw $ra, 100($ra) lw $ra, 100($ra)  

  
 

7 jal 10000 
8 jalr $ra 

 

sw $ra, 100($ra) sw $ra, 100($ra)  

  
 

9 jal 10000 
10 jalr $ra 

 

beq $ra, $ra, 100 beq $ra, $ra, 100  

  
 

11 jal 10000 
12 jalr $ra 

 

jr $ra jr $ra  

  
 

13 jal 10000 
14 jalr $ra 

 

jalr $ra jalr $ra  

  
 

15 jal 10000 
16 jalr $ra 

 

mult $ra, $ra mult $ra, $ra  

  
 

17 jal 10000 
18 jalr $ra 

 

mtc0 $ra, $epc mtc0 $ra, $epc  

  
 

 jal 10000  jalr $ra 
 

19 nop 20 nop 
 

 add $ra, $ra, $ra  add $ra, $ra, $ra 
 

 jal 10000  jalr $ra 
 

21 nop 22 nop 
 

 addi $ra, $ra, 0x0000  addi $ra, $ra, 0x0000 
 

 jal 10000  jalr $ra 
 

23 nop 24 nop 
 

 lw $ra, 100($ra)  lw $ra, 100($ra) 
 

 jal 10000  jalr $ra 
 

25 nop 26 nop 
 

 sw $ra, 100($ra)  sw $ra, 100($ra) 
 

 jal 10000  jalr $ra 
 

27 nop 28 nop 
 

 beq $ra, $ra, 100  beq $ra, $ra, 100 
 

 jal 10000  jalr $ra 
 

29 nop 30 nop 
 

 jr $ra  jr $ra 
 

 jal 10000  jalr $ra 
 

31 nop 32 nop 
 

 jalr $ra  jalr $ra 
 

 jal 10000  jalr $ra 
 

33 nop 34 nop 
 

 mult $ra, $ra  mult $ra, $ra 
 

 jal 10000  jalr $ra 
 

35 nop 36 nop 
 

 mtc0 $ra, $epc  mtc0 $ra, $epc 
 

 
 
 
 
 

 
Figure 9. Load-store Data Hazards Abstract view 

 
4.1.4. HILO Register Related Data Hazards.  
New instructions are needed to move the multiplication result 

(register HI and LO) to the RF before it can use by other 

instructions. The new instructions are: move from LO 

register (mflo) and move from HI register (mfhi). The 

multiplication related data hazard may arise in two 

scenarios. 

Scenario 1:  when after multiplication, the result is to be read 

by either mflo or mfhi, but it is not ready for reading until at 

the WB stage. For example, in Figure 10, data hazard 

occurs between the first (mult) and second (mflo) 

instructions and the multiplication result should be forwarded 

from MEM stage to EX stage. 

Scenario 2: when the processor copies the HILO register’s 

data to the RF, reading the same register in the RF before it 

is updated. For example, in Figure 10, data hazards occurs 

between second (mflo) (or third (mflo)) and fourth (add) 

instructions, and the HILO register’s data should be 

forwarded from the EX or MEM stage to ID stage. 

The combination of instructions shown in Table 6 cover 

both situations grouped under HILO register related data 

hazards. 



DM

IM Reg HILO
MULT

1
MULT

2

IM RegHILO

mult $1, $1

mflo $2

mflo $3 IM RegHILO

IM DM

A
LUReg Regadd $1, $2, $3

Reg

Reg DM

TABLE 6. HILO REGISTER RELATED DATA HAZARD TABLE 7. CP0 REGISTERS RELATED DATA HAZARD 
 

           
  

 
1 mult $1, $1 

2 mult $1, $1   
1 mfc0 $1, $epc 

2 mfc0 $1, $epc  

 

mflo $1 mfhi $1   

add $1, $1, $1 addi $1, $1, 0x0000  
 

        
 

 
3 mflo $1 / mfhi $1 

4 mflo $1 / mfhi $1   
3 mfc0 $1, $epc 

4 mfc0 $1, $epc  
 

 

add $1, $1, $1 addi $1, $1, 0x0000   

lw $1, 100($1) sw $1, 100($1)  
 

        
 

 
5 mflo $1 / mfhi $1 

6 mflo $1 / mfhi $1   
5 mfc0 $1, $epc 

6 mfc0 $1, $epc  
 

 

lw $1, 100($1) sw $1, 100($1)   

beq $1, $1, 100 jr $ra  
 

        
 

 
7 mflo $1 / mfhi $1 

8 mflo $1 / mfhi $1   
7 mfc0 $1, $epc 

8 mfc0 $1, $epc  
 

 

mult $1, $1 beq $1, $1, 100   

mtc0 $1, $epc mult $1, $1  
 

        
 

  mflo $1 / mfhi $1  mflo $1 / mfhi $1    mfc0 $1, $epc  mfc0 $1, $epc  
 

 9 nop 10 nop   9 jalr $ra 10 nop  
 

  add $1, $1, $1  addi $1, $1, 0x0000      jalr $ra  
 

  mflo $1 / mfhi $1  mflo $1 / mfhi $1    mfc0 $1, $epc  mfc0 $1, $epc  
 

 11 nop 12 nop   11 nop 12 nop  
 

  lw $1, 100($1)  sw $1, 100($1)    add $1, $1, $1  addi $1, $1, 0x0000  
 

  mflo $1 / mfhi $1  mflo $1 / mfhi $1    mfc0 $1, $epc  mfc0 $1, $epc  
 

 13 nop 14 nop   13 nop 14 nop  
 

  mult $1, $1  beq $1, $1, 100    lw $1, 100($1)  sw $1, 100($1)  
 

        mfc0 $1, $epc  mfc0 $1, $epc  
 

       15 nop 16 nop  
 

        beq $1, $1, 100  jr $ra  
 

        mfc0 $1, $epc  mfc0 $1, $epc  
 

 
 17 nop 18 nop  

 

  mtc0 $1, $epc  mult $1, $1  
  

. 
 
 
 
 
 
 

 
Figure 10. HILO Register Related Data Hazards Abstract view 

 
 
4.1.5. CP0 Registers Related Data Hazards.  
Two instructions are added in order to access CP0 registers, 

which are move from CP0 register, (mfc0) and move to CP0 

register, (mtc0). The data hazard of the CP0 register arises 

in the same pattern, which always start with mfc0 instruction. 

The first instruction in Figure 11 will get the CP0 register’s 

data at ID stage and write to RF at WB stage. The data 

hazard arises when CP0 register’s data is copied to RF’s 

register while at the same time, the respective register in the 

RF is occupied for further computation. Referring to Figure 

10, the CP0 register’s data is available to be forwarded from 

EX or MEM stages to ID stage to avoid for data hazard. 

Table 7 cover the combinations of instructions grouped 

under CP0 registers related data hazard. 
 
 
 
 
 
 
 
 

Figure 11. CP0 Register Data Forwarding Abstract view 
 
 
4.2. Development of the Forwarding Block: 

Detection and Handling 
By observing all the data hazard detection conditions 

discussed, there are four data paths used as the target of 

data forwarding. The first two paths are the rs and rt path. 

which are used to pass ID, EX and MEM stage data to ID 

stage. These two paths are used to resolve the General 

Condition of Register File, $ra register, CP0 registers and 

HILO register related data hazards. 3-bit control signal is 

used to select which source be forwarded. The Most 

Significant Bit (MSB) of the signal indicates the condition of 

the data, whereby 0 indicate normal flow without data 

forwarding and else otherwise. The third path is the hilo 

path, which is used to forward MEM stage data to EX stage. 

It is meant to resolve the first scenario of the HILO register 

related data hazards discussed. The same convention of rs 

and rt path applies to hilo path. The 3-bit control signal is 

used and the MSB indicates the condition of the data. 001 

and 010 of the ex_hilo_ctrl in Table 8 is used to transfer the 

HI or LO register’s data when issue mfhi or mflo instruction 

respectively. On the other hand, 000 indicates that 

instructions other than mfhi and mflo were issued. It is to 

avoid duplicated logic and reduce the multiplexer used to 

transfer the data from stage to stage. The last path is used 

to resolve load-store data hazard. This path forwards the 

data from the MEM stage. 1-bit control signal is used to 

indicate the condition of the data, whereby 1 represent the 

data is forwarding from other stage and else otherwise. 

Table 8 shows the information of the data paths used for 

data forwarding.  
Referring to all combinations of instructions shown in 

Table 4 to Table 7 and forwarding path information shown in 

Table 8, the optimized algorithms are generated. The 

Algorithm 1 and the Algorithm 2 detect and resolve for rs and 

rt path data forwarding. The Algorithm 3 and the Algorithm 4 

detect and resolve for HILO register related and load-store 

data hazards respectively. In other word, the Algorithm 1 and 

the Algorithm 2 detect and resolve all the combinations of 

instructions shown in Table 4, 5 and 7 and first two test 

cases in Table 6. The Algorithm 3 is used to detect and 

resolve the remaining combinations of instructions in Table 

6. Lastly, The Algorithm 4 is used for load-store forwarding. 



             TABLE 8. DATA FORWARDING HANDLING SCHEME  
 

                   
 

               From  To Data Hazards 
 

              Stage Path Stage Target To Resolve 
 

            000  ID Register File   

Register File 
Related, 

 

            100  EX PC+4   $ra register 
 

id rs   ctrl 101  MEM PC+4 ID rs path related, Interrupt 
 

            110  EX Stage output   controller related 
 

            111  MEM Stage output   

Multiplication 

related 
 

            000  ID Register File   

Register File 
Related, 

 

            100  EX PC+4   $ra register 
 

id  rt ctrl 101  MEM PC+4 ID rt path related, Interrupt 
 

            110  EX Stage output   controller related 
 

            111  MEM Stage output   

Multiplication 

related 
 

            000  EX ALU output  Memory Multiplication 
 

            001  EX LO register  Address / related 
 

ex hilo ctrl 010  EX HI register EX write-back  
 

            101  MEM Multiplier result [31:0]  data  
 

            110  MEM Multiplier result [63:32]    
 

ex mem ctrl 0  EX EX.rt path data EX Memory Load-store 
 

1  

EX Data Memory’s data input data   

               
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

5. Interlock scheme 
 

In this paper, the interlock scheme is further extended to 

avoid stalling the pipeline stages when resolving data hazard 

(with data forwarding scheme) for the load-store condition. 

Besides that, based on our finding, the interlock block might 

not work well after extended with CP0, which is a load 

instruction followed by mfc0 instruction. It may stall the 

pipeline even there is no data hazard arises. The following 

detection conditions highlight the problem discussed. 
 
5.1. Data Hazard Detection Conditions 

For some of the load-use conditions, it may not cause 

data hazard while the interlock block is still inserting a delay 

slot. It may unnecessarily reduce the processor throughput 

since it inserts an unnecessary load delay on the load-use 

combination of instructions that doesn’t cause any data 

hazard. To resolve this problem, special condition should be 

set case by case. Based on our finding, only the combination 

of load-use instructions shown in Table 8 will causes data 

hazard and require a delay slot to resolve. One cycle after 

the delay slot, the data in Data Memory should be available 

and ready to be forwarded to the next consecutive 

instructions. The forwarding scheme in the previous section 

should be able to handle the consecutive data hazard arises. 

Figure 12 illustrates the load-use data hazard solved by 

combination of pipeline stalling followed by data forwarding 

scheme. 
 
5.2. Development of the Interlock Block: 
Detection and Handling 
 

The pseudocode in the Algorithm 5 present the 
hazard detection logic used to detect and resolve the 
load-use hazards referring to the combinations of 
instructions in Table 8. 



 
TABLE 9. LOAD-USE DATA HAZARDs 

 

1 lw $1, 100($1) 
2 lw $1, 100($1) 

 

add $1, $1, $1 addi $1, $1, 0x0000  

  
 

3 lw $1, 100($1) 
4 lw $1, 100($1) 

 

lw $1, 100($1) mult $1, $1  

  
 

5 lw $1, 100($1) 
6 lw $ra, 100($ra) 

 

beq $1, $1, 100 jr $ra  

  
 

7 lw $ra, 100($ra) 
8 lw $1, 100($1) 

 

jalr $ra mtc0 $1, $epc  

  
 

9 lw $1, 100($1)   
 

sw $2, 100($1)   
 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Combination of Pipeline Stages Stalling and Data 
Forwarding for Resolving Load-use Hazards 

 

 
 
 
 
 
 
6. Conclusion 
 

In this paper, we presented a thorough analysis on data 

hazard of 32-bit MIPS ISA compatible 5-stage pipeline 

processor and the overall resolving scheme to handle basic 

MIPS core instruction set data hazards that might arise. The 

analysis shown here can serve as a reference for MIPS ISA 

compatible pipeline processor developers to eliminate all the 

data hazards. All the data hazards should be resolved prior 

to further development as the data correctness is extremely 

important. Furthermore, based on our experience, it is 

troublesome to capture a data hazard when the processor is 

integrated with I/O system and memory system, whereby 

data correctness is critical.  
We intended to develop a pipeline processor for Internet-

of-Things (IoT) in future, which is mostly going to handle 

large amount of data, including data collection from sensors, 

data aggregation and data transmission to another device. 

Therefore, data correctness is critical to IoT and hence we 

provide this paper as the useful information to resolve basic 

MIPS core instruction set data hazard that might arises in 

processor level. 
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