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Abstract—BioDynaMo is a biological processes simulator
developed by an international community of researchers and
software engineers working closely with neuroscientists. The
authors have been working on gene expression, i.e. the process
by which the heritable information in a gene - the sequence
of DNA base pairs - is made into a functional gene product,
such as protein or RNA. Typically, gene regulatory models
employ either statistical or analytical approaches, being the
former already well understood and broadly used. In this paper,
we utilize analytical approaches representing the regulatory
networks by means of differential equations, such as Euler and
Runge-Kutta methods. The two solutions are implemented and
have been submitted for inclusion in the BioDynaMo project
and are compared for accuracy and performance.

I. INTRODUCTION

The mechanisms behind cells functioning have been pro-
gressively unveiled by the scientific community discovering
the physical, biological and chemical principles on which
they are operating. The problem that scientists are facing
today is how to generate working hypotheses starting from
the data collected over the years. There is still a limited
number of software tools that can be effectively used for
this kind of applications. Simulators have been proven to
be a viable approach to interpret the results collected by
experiments.

BioDynaMo [1] is one of these simulators developed
by an international community of researchers and software
engineers. This paper specifically focuses on the implemen-
tation of the biology module that allows simulating gene
expression in the project developed by the researchers of
BioDynaMo on top of the whole existing system1.

A. BioDynaMo

The BioDynaMo project [1] is a simulator of biological
processes designed to support the work of researchers in the
biological field. Nowadays, a number of world-wide labs
create their own software for running simulations. However,
these solutions can often be utilized by specific labs and

1https://github.com/BioDynaMo/biodynamo

on specific tasks, without scaling and requiring significant
resources.

BioDynaMo has been designed to address this problem
in order to provide researchers with software support. The
project is developing a new general platform for computer
simulations of biological tissue dynamics, with brain de-
velopment as a primary target. The platform should be
executable on hybrid cloud computing systems, allowing for
the efficient use of state-of-the-art computing technology.

A set of different cellular behaviors is covered in this
simulation such as cell division, cell growth, gene ex-
pression, chemical gradient and mechanical forces. Spatial
locality of interaction is the main feature that makes this
project run efficiently on highly parallelized cloud systems.
This principle states that simulation objects reference to
each other in the case when they are close [2]. It allows
simulation space to be split up into fragments that do not
require a large amount of communication between each
other. Scale of simulation close to Cx3D [3], [4] upon which
BioDynaMo was initially created [5], [6]. However, with
additional features, the project reaches simulation level of
[7].

The aim of the BioDynaMo project is to push the limits of
this simulation type with both the highly efficient code and
the extensive parallelization on relatively cheap cloud-based
hardware [5].

B. Gene expression

Gene expression is the process by which gene products,
such as RNA and proteins, are produced. Sequences of DNA
store heritable information that is used to produce gene
product. Figure 1 depicts the main idea of this process: at
first DNA is transcribed into RNA, which is subsequently
translated into proteins [8]. Proteins make many of the
structures and all the enzymes in a cell or organism. Several
steps in the gene expression process might be modulated.
This includes both the transcription and translation stages.
Several biological processes controlled by gene expression
and slight changes of specific proteins’ concentration or
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links can underlie human diseases, population differences
and the evolution of morphological novelties [9]. In addi-
tion, types of cancer can be classified by tracking of gene
expression [10].

Figure 1: Steps of gene expression. From Wikipedia 2

II. GENE EXPRESSION IN SIMULATIONS

Computational models of gene expression can be used
for various reasons. For instance, they enable the charac-
terisation of the complex and dynamic relationship between
genetic encoding and phenotypic expression [11]. Moreover,
they can be used to generate in-silico data to assess the
performance and robustness of algorithms that infer gene-
regulatory networks [12].

There are two main approaches in gene regulatory models:
statistical and analytical. Statistical approaches have a high
level of accuracy due to the number of studies made on gene
array data and exhaustively reviewed in the literature [13],
[14]. In contrast, the value of analytical approaches applied
for modeling gene regulation is generally less appreciated,
in particular in the field of DNA-sequence-based model-
ing. This paper shall examine the analytical approaches
in order to investigate their potentiality and limitations. In
general, analytical approaches concentrate on simulation of
expression of a few genes and uses a mixture of different
mathematical models in the implementation. In order to
develop this approach, deep understanding of how parts of
the system work individually is required, and hypotheses
on how the composition of these parts behaves together.
Analytical approaches can simulate terms relating to the
binding of transcription factors and RNA polymerase to
the DNA, cooperative and inhibitory interactions between
transcription factors, mRNA and protein degradation, and
mRNA translation rate [15].

A. Thermodynamical model
In thermodynamical models, gene production is regulated

by bound activators and bound repressors. For a variety of
mixture of these binding factors on regulatory regions, the
thermodynamical model predicts the concentration of gene
products. The main assumption in this model is that the
level of production is proportional to bound activators and
inversely proportional to bound regressors [15].

2https://en.wikipedia.org/wiki/Gene expression#/media/File:Genetic code.svg

B. Boolean model

Each gene product in this method has the property that
represents its state ”ON” and ”OFF”. To define the relation-
ships between entities, logic functions ”and”, ”or” and ”not”
are used [16]. For example, if an expression of a gene is
controlled by two products, the gene produces mRNA only
if both products are ON in case of the function AND, the
gene is transcribed if one of two products is on in case of
OR function, and NOT means that gene is not transcribed
if both are ON.

C. Differential equation model

Differential equations can be used to model gene regula-
tion networks. In this model, interactions between entities
produced by gene expression and concentration of them are
defined by a set of differential equations. These equations
depend on the variety of parameters, such as time, space, the
concentration of other products such as mRNA and proteins
and production and degradation rate of the particular entity
[17].

III. IMPLEMENTATION

A. Mathematical basis

In BioDynaMo, a differential equation model has been
implemented using Ordinary Differential Equations (ODE)
which depend on a single variable i.e. time. The given task
is shown by equation (1)

f(p(t), t) =
dp(t)
dt

(1)

where f(p(t), t) the given function of changing of protein
concentration over time, p(t) is the concentration of protein
at time t. The idea is to track p through time. Two methods
have been implemented in order to solve this task:

• Runge-Kutta method
• Euler method

These methods solve the Cauchy boundary value problem
[18] for differential equation f(p(t), t) and given initial
values t0, p(t0) = p0. Both methods calculate pn = p(tn)
step by step at t0, t1, t2 . . . .

1) Runge-Kutta method: In general, Runge-Kutta method
for order s is defined by equation (2)

pn = pn−1 + h

s∑
i=1

biFi, n = 1, 2, . . . (2)

where Fi is defined as

Fi = f(xn−1 + hci,pn−1 + h

s∑
j=1

aijFj) (3)

where aij , ci, bi defined by tableau [19] see Table I:



Table I: Tableau for Runge-Kutta method of order s

0 0 0 0 . . . 0
c2 a21 0 0 . . . 0
c2 a31 a32 0 . . . 0
...

...
...

...
...

...
cs as1 as2 as3 . . . 0

b1 b2 b3 . . . bs

and h = (tn − tn−1) is time step of one iteration
In this work, we use Runge-Kutta of order 4. Thus, it has an
error rate O(h4) [20]. For Runge-Kutta of order 4 tableau
see Table II.

Table II: Tableau for Runge-Kutta method of order 4

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Thus, the Runge-Kutta method of order 4 is defined by
equations (4) and (5)

pn = pn−1 +
h

6
(F1 + 2F2 + 2F3 + F4) (4)

F1 = f(pn−1, tn−1)

F2 = f(pn−1 +
h

2
F1, tn−1 +

h

2
)

F3 = f(pn−1 +
h

2
F2, tn−1 +

h

2
)

F4 = f(pn−1 + hF4, tn−1 + h)

(5)

Algorithm 1 Runge-Kutta method

1: procedure SEARCH(c t, t s, p)
2: F1=Equation(c t, p)

3: F2=Equation(c t+ t s/2, p+ t s ∗ F1/2)

4: F3=Equation(c t+ t s/2, p+ t s ∗ F2/2)

5: F4=Equation(c t+ t s, p+ t s ∗ F3)

6: p = p+ t s ∗ (F1 + 2 ∗ F2 + 2 ∗ F3 + F4)/6

7: c t = c t+ t s

Where c t is current time tn, t s time step h, p is protein
concentration p, Equation is the given differential equation
f(p(t), t) and F1 - F4 parameters from equation (5)

The Runge-Kutta method has high accuracy but the per-
formance of this method is lower in comparison with the
Euler method due to the amount of operations it carries out:
4 calls to Equation against 1 call in Euler method.

2) Euler method: The Euler method is the Runge-Kutta
method of order s = 1. For Euler method tableau see Table
III:

Table III: Tableau for Euler method (Runge-Kutta method
of order 1)

0 0
1

The Euler method [19] is defined as equation (6)

pn = pn−1 + h · f(pn−1, tn−1), n = 1, 2, . . . (6)

The Euler method at each iteration makes only one operation
and once calls for f(p(t), t). This allows the calculations to
be faster than the previous method. However, the error rate
of this method is bigger O(h) [20].

Algorithm 2 Euler method

1: procedure COMPUTE(current time, time step,
protein)

2: p=p+ t s*Equation(c t, p)

3: c t = c t+ t s

3) Comparison: Both methods are used to solve the same
task. However, they differ in accuracy and performance.
The error rate of Runge-Kutta method O(h4) and O(h) for
Euler method. At the same time, Runge-Kutta has lower
performance due to the number of operations on each
iteration.

B. Biology module implementation

Simulation objects and modules for different types of
simulations are the main parts of BioDynaMo project. On
the stage of initialization of simulation objects, a unique
copy of module binds with each object. This allows to store
and work with additional information about particular cell
without changes of simulation object’s class.

Figure 2 depicts simplified sequence diagram of one
iteration for biology module GeneCalculation. It starts from
calling of method Simulate from Scheduler. Then Scheduler
for each cell in simulation looks for bound with it modules.
As the final step, method Run() in every found module is
called.



Figure 2: Sequence diagram of main actions of one iteration
of simulation

Listing 1 shows the implementation of biology module
GeneCalculation. This module simulates expression of genes
and contains all required additional variables for tracking of
the concentration of proteins. Thus, can work with any type
of simulation object. It has the implementation of Euler and
Runge-Kutta numerical methods for solving ODE which are
essential in the picked model. Both methods implemented
inside the body of method Run(). The user determines
which method is picked in particular simulation through
variable DE solve method from structure Param. Variable
substances stores current value for each simulating protein.
Lambda function functions from structure Param is defined
by user and it is required for this function to return vector
of values calculates all given functions f(p(t), t).

Structure Param contains variables that determine parame-
ters of the simulation. To this structure were added variables
that are essential for gene expression simulation such as
DE solve method and functions.

Listing 1: Implementation of biology module GeneCalcula-
tion
s t r u c t G e n e C a l c u l a t i o n : p u b l i c BaseBiologyModule {

double t i m e s t e p = Param : : s i m u l a t i o n t i m e s t e p ;
v e c t o r<a r r a y<double , Param : : p r o t e i n a m o u n t>>

s u b s t a n c e s ;

G e n e C a l c u l a t i o n ( ) :
BaseBiologyModule ( gAllBmEvents ) ,
s u b s t a n c e s ( i n i t v a l s ){}

t empla te <typename T>
void Run ( T∗ c e l l ) {

i f ( Param : : DE solve method == ” E u l e r ” ){
v e c t o r<double> u p d a t e v a l u e =

Param : : f u n c t i o n s ( Param : : s t e p g l o b a l ∗
t i m e s t e p , s u b s t a n c e s ) ;

f o r ( i n t i = 0 ;
i < Param : : p r o t e i n a m o u n t ; i ++){

s u b s t a n c e s [ 0 ] [ i ] +=
u p d a t e v a l u e [ i ] ∗ t i m e s t e p ;

}
}
e l s e i f ( Param : : DE solve method == ”RK4” ){

v e c t o r<double> k1 =

Param : : f u n c t i o n s ( Param : : s t e p g l o b a l ∗
t i m e s t e p , s u b s t a n c e s ) ;

f o r ( i n t i = 0 ;
i < Param : : p r o t e i n a m o u n t ; i ++)

s u b s t a n c e s [ 0 ] [ i ] += t i m e s t e p ∗k1 [ i ] / 2 . 0 f ;

v e c t o r<double> k2 =
Param : : f u n c t i o n s ( Param : : s t e p g l o b a l ∗
t i m e s t e p + t i m e s t e p / 2 . 0 f , s u b s t a n c e s ) ;

f o r ( i n t i = 0 ;
i < Param : : p r o t e i n a m o u n t ; i ++)

s u b s t a n c e s [ 0 ] [ i ] += t i m e s t e p ∗k2 [ i ] / 2 . 0 f
− t i m e s t e p ∗k1 [ i ] / 2 . 0 f ;

v e c t o r<double> k3 =
Param : : f u n c t i o n s ( Param : : s t e p g l o b a l ∗
t i m e s t e p + t i m e s t e p / 2 . 0 f , s u b s t a n c e s ) ;

f o r ( i n t i = 0 ;
i < Param : : p r o t e i n a m o u n t ; i ++)

s u b s t a n c e s [ 0 ] [ i ] += t i m e s t e p ∗k3 [ i ] −
t i m e s t e p ∗k2 [ i ] / 2 . 0 f ;

v e c t o r<double> k4 =
Param : : f u n c t i o n s ( Param : : s t e p g l o b a l ∗
t i m e s t e p + t i m e s t e p , s u b s t a n c e s ) ;

f o r ( i n t i = 0 ;
i < Param : : p r o t e i n a m o u n t ; i ++){

s u b s t a n c e s [ 0 ] [ i ] += t i m e s t e p ∗ ( k1 [ i ] +
2∗k2 [ i ] + 2∗k3 [ i ] + k4 [ i ] ) / 6 . 0 f ;

}
}

}
ClassDefNV ( G e n e C a l c u l a t i o n , 1 ) ;

} ;

Both algorithms for Euler and Runge-Kutta methods
were implemented in C++ and experiments were run on
Intel R© CoreTMi5-6200U CPU @ 2.30GHz × 4.

IV. RESULTS

Figures 3, 4, 5 and Table IV present the results of the solu-
tion to three Cauchy problems for equations (7), (9) and (11).
Solutions are presented using the Euler and Runge-Kutta
numerical methods with different parameter h. Furthermore,
they present the analytical solution for the same equations
in order to evaluate the accuracy of the methods. Each cell
in Table IV displays the difference between analytical and
numerical solutions.

Figure 3 depicts plots for the Cauchy problem (7){
f(p(t), t) = 1

t

p0 = p(0) = 0
(7)

The analytical solution for this task is depicted by equation
(8):

p(t) =
√
2t (8)

Figure 3a shows the solution by the Euler method. It is
observed that for h = 0.1, h = 0.01 and the analytical
solution the lines overlap. The plot with h = 1 does not
give correct values from the beginning.



Table IV: Accuracy of Euler and Runge-Kutta methods

Euler Runge-Kutta

Equation 7

time h = 0.01 h = 0.1 h = 1 h = 0.01 h = 0.1 h = 1 analytical
1 0.004081 0.045621 1.20004 3.026e-7 4.03e-5 0.07955 1.48324
10 0.002578 0.027378 0.591468 -1.011e-6 8.989e-6 0.02693 4.49444
100 0.001195 0.012795 0.235295 -4.925e-6 -4.925e-6 0.00859 14.14920
500 0.000661 0.006961 0.118461 -3.872e-5 -3.872e-5 0.00386 31.62594
1000 0.000504 0.005304 0.087704 4.438e-6 4.438e-6 0.00270 44.72359

Euler Runge-Kutta

Equation 9

time h = 0.01 h = 0.1 h = 1 h = 0.01 h = 0.1 h = 1 analytical
1 0.00088 0.010849 0.303724 1.342e-7 1.342e-7 0.002486 0.196275
10 -0.018060 -0.178960 -1.636460 3.948e-5 3.948e-5 0.003139 29.093460
100 -0.040630 -0.408630 -3.948630 0.000369 0.000369 0.003369 724.165630
500 -0.057691 -0.567691 -5.557691 0.002309 0.002309 0.002309 5217.74769
1000 -0.051150 0.651150 -6.251150 0.048849 0.048849 0.048849 11818.6511

Euler Runge-Kutta

Equation 11

time h = 0.01 h = 0.1 h = 1 h = 0.01 h = 0.1 h = 1 analytical
1 0.000789 0.007675 0.053916 -7.037e-8 -7.037e-8 6.293e-5 0.946083
10 2.406e-6 2.406e-6 2.241e-5 0.005272 0.052652 0.520572 1.658347
100 4.533e-6 4.533e-6 -5.467e-6 0.005024 0.050264 0.503264 1.562225
500 0.005004 0.050044 0.500314 4.118e-6 4.118e-6 4.118e-6 1.572565
1000 0.004997 0.049957 0.499637 -3.122e-6 -3.122e-6 -3.122e-6 1.570233
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Figure 3: The plot for function (7) made by Euler (a), Runge-Kutta (b) method with different h parameters and plot for
analytical solution (8)

Figure 3b shows the solution by the Runge-Kutta method.
It is observed that lines for all h and the analytical solution
overlap.

Figure 4 presents plots for the Cauchy problem 9:

{
f(p(t), t) = log(1 + t2) + exp−2t

p0 = p(0) = − 1
2

(9)

The analytical solution for this task is equation (10):

p(t) = t · log(t2 + 1)− 2t+ 2arctan(t)− 1

2
exp−2t (10)

Figure 4a depicts the solution by the Euler method. It
is observed that lines for h = 0.1, h = 0.01 and the
analytical solution overlap. The line for the Euler method
with parameter h = 1 diverges as the values increase. Figure
4b depicts the solution by the Runge-Kutta method. Lines
for all h and the analytical solution overlap.
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Figure 4: Plots for function (9) made by Euler (a), Runge-
Kutta (b) methods with different h parameters and plot for
analytical solution (10)

Figure 5 shows plots for the Cauchy problem 11{
f(p(t), t) = sin(t)

t

p0 = p(0) = 0
(11)

The analytical solution for this task is:

p(t) = Si(t) (12)

Si(t) is the sine integral function defines as

Si(t) =

∫ t

0

sin(z)

z
dz (13)

Figure 5a presents the solution by the Euler method. It is
perceived that the line for h = 0.01 and the analytical
solution overlap. Although, the lines for higher h diverges
from the analytical solution, they repeat the shape. However,
the values obtained with h = 1 are unreliable.

Figure 5b depicts the solution by the Runge-Kutta method.
Lines for all h and analytical solution distinctly overlap.
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Figure 5: The plot for function (11) made by Euler (a),
Runge-Kutta (b) methods with different h parameters and
plot for analytical solution (12)

V. DISCUSSION

The BioDynaMo project has a set of classes to deal with
different types of simulation: biological, physical and diffu-
sion. The biological simulation consist of different modules,
for example: GrowthDivide, GrowthModule, Chemotaxis.
Each cell can carry an individual set of biology modules.

As an extension to the project, a new biology module
GeneExpression has been added. This module stores protein
values for each cell. Furthermore, this module allows custom
laws definition in the form of ODEs that define protein
concentration. To solve sets of ODEs, a user may select
from two available options depending on their current needs:
the Euler method for higher performance and the Runge-
Kutta method for accuracy. However, in the case when the
simulation time step is small, in order to speed up the
simulation, the Euler method can be used without a notable
loss of accuracy. In addition, the user specifies functions



f(p(t), t) by which changes in concentration of proteins is
calculated and initial values for proteins.

VI. RELATED WORKS

Hucka et al. [21] presented a markup language to describe
biochemical network models named SBML. One of their
primary goals was to create a common format that can be
used across simulators. Several implementation exist for this
specification [22], [23].

The work presented in [24] uses differential equations in
order to model changes in the concentration of proteins as
well. Although, this work uses gene expression in a specific
task, i.e. studying the influence of different protein pathways
in the spreading of cancer cells.

The article [14] presents the reconstruction of gene reg-
ulatory networks (GRNs) from experimental data of gene
expression through computational methods. The study de-
scribes models for reverse engineering GRNs from gene
expression data. Along with Boolean and Bayesian models,
the Differential equation model is described.

The research [25] introduces a new statistical gene net-
work estimation method based on the dynamic Bayesian net-
work and nonparametric regression model with advantages
over Bayesian and Boolean networks. For example, it can
detect nonlinear dependencies. This article can be taken into
consideration in further work if the statistical approach will
be implemented in BioDynaMo.

VII. CONCLUSION

BioDynaMo is a simulator of biological processes de-
veloped by an international community of researchers and
software engineers working in close synergy in order to
implement the requirements coming from neuroscientists.
Bridging the gap between the neuroscience perspective and
the technical software engineering perspective is one of the
tasks of our team within the project. Collecting requirements
from specialists and implementing them is a non-trivial task.
We advocate the necessity of developing a requirements en-
gineering framework offering different syntaxes to represent
the same concept (text, graphical, mathematical) in order
to facilitate the communication between the stakeholders
without forcing them to change their current habits. For
example, a comprehensive modeling framework as discussed
in [26] may solve the problem.

Among the requirements to be understood and imple-
mented, our research team focused on the modeling of gene
expression in the simulation, which is discussed in detail in
this paper. We discussed the entire process of modeling and
development presenting the problem, the possible solving
techniques, providing multiple implementations, and com-
paring them under qualitative and qualitative aspects.

Simulation of biologic dynamics has several applications,
some direct and some indirect. Computer simulations of

biological tissue dynamics can serve the purpose of under-
standing diseases and dysfunction at the operational and sub-
operational level as well as being the effective substitute for
drug testing that does not involve living beings. At the same
time, potential application scenarios are also foreseeable in
cognitive architecture [27], where simulations may provide
insight into and, in general, for the development of smart
systems, including smart houses [28]–[30] and smart auto-
motive systems [31].

Finally, the entire project may benefit in terms of scala-
bility if re-engineered in order to deploy in a flexible and
continuous fashion, for example following the microservice
paradigm [32], [33].

REFERENCES

[1] L. Breitwieser, R. Bauer, A. D. Meglio, L. Johard, M. Kaiser,
M. Manca, M. Mazzara, F. Rademakers, and M. Talanov, “The
biodynamo project: Creating a platform for large-scale repro-
ducible biological simulations,” 4th Workshop on Sustainable
Software for Science: Practice and Experiences (WSSSPE4),
2016.

[2] P. J. Denning, “The locality principle,” in Communication
Networks And Computer Systems: A Tribute to Professor Erol
Gelenbe. World Scientific, 2006, pp. 43–67.

[3] F. Zubler and R. Douglas, “A framework for modeling the
growth and development of neurons and networks,” Frontiers
in computational neuroscience, vol. 3, p. 25, 2009.

[4] A. Hauri, “Self-construction in the context of cortical
growth,” Doctoral Thesis, ETH Zurich, 2013, dOI:
10.3929/ethz-a-009997273. [Online]. Available: https://www.
research-collection.ethz.ch/handle/20.500.11850/154144

[5] R. Bauer, L. Breitwieser, A. Di Meglio, L. Johard, M. Kaiser,
M. Manca, M. Mazzara, F. Rademakers, M. Talanov, and
A. D. Tchitchigin, “The biodynamo project: Experience re-
port,” in Advanced Research on Biologically Inspired Cogni-
tive Architectures. IGI Global, 2017, pp. 117–125.

[6] L. J. Breitwieser, R. Bauer, M. Manca, and F. Rademakers,
“Porting a Java-based Brain Simulation Software to C++,”
Sep. 2015. [Online]. Available: https://doi.org/10.5281/
zenodo.46842

[7] S. Hoehme and D. Drasdo, “A cell-based simulation software
for multi-cellular systems,” Bioinformatics, vol. 26, no. 20,
pp. 2641–2642, 2010.

[8] T. Misteli, “Protein dynamics: implications for nuclear archi-
tecture and gene expression,” Science, vol. 291, no. 5505, pp.
843–847, 2001.

[9] S. B. Carroll, J. K. Grenier, and S. D. Weatherbee, From DNA
to diversity: molecular genetics and the evolution of animal
design. John Wiley & Sons, 2013.

[10] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasen-
beek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing,
M. A. Caligiuri et al., “Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring,” science, vol. 286, no. 5439, pp. 531–537, 1999.

https://www.research-collection.ethz.ch/handle/20.500.11850/154144
https://www.research-collection.ethz.ch/handle/20.500.11850/154144
https://doi.org/10.5281/zenodo.46842
https://doi.org/10.5281/zenodo.46842


[11] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow,
J. M. Jacobs, B. Bolival Jr, N. Assad-Garcia, J. I. Glass, and
M. W. Covert, “A whole-cell computational model predicts
phenotype from genotype,” Cell, vol. 150, no. 2, pp. 389–
401, 2012.

[12] M. Bansal, G. D. Gatta, and D. Di Bernardo, “Inference of
gene regulatory networks and compound mode of action from
time course gene expression profiles,” Bioinformatics, vol. 22,
no. 7, pp. 815–822, 2006.

[13] F. Markowetz and R. Spang, “Inferring cellular networks–a
review,” BMC bioinformatics, vol. 8, no. 6, p. S5, 2007.

[14] M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, and
R. Guthke, “Gene regulatory network inference: data integra-
tion in dynamic models - a review,” Biosystems, vol. 96, no. 1,
pp. 86–103, 2009.

[15] A. Ay and D. N. Arnosti, “Mathematical modeling of gene
expression: a guide for the perplexed biologist,” Critical
reviews in biochemistry and molecular biology, vol. 46, no. 2,
pp. 137–151, 2011.

[16] S. A. Kauffman, “Metabolic stability and epigenesis in
randomly constructed genetic nets,” Journal of theoretical
biology, vol. 22, no. 3, pp. 437–467, 1969.

[17] T. Chen, H. L. He, G. M. Church et al., “Modeling gene
expression with differential equations.” in Pacific symposium
on biocomputing, vol. 4, no. 29, 1999, p. 40.

[18] J. Hadamard, Lectures on Cauchy’s problem in linear partial
differential equations. Courier Corporation, 2014.

[19] J. Butcher, “Runge-kutta methods,” Scholarpedia, vol. 2,
no. 9, p. 3147, 2007.

[20] K. E. Atkinson, An introduction to numerical analysis. John
Wiley & Sons, 2008.

[21] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C.
Doyle, H. Kitano, and the rest of the SBML Forum:, A. P.
Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A.
Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I.
Goryanin, W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr,
P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling,
U. Kummer, N. Le Novere, L. M. Loew, D. Lucio,
P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama,
M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff,
B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling,
K. Takahashi, M. Tomita, J. Wagner, and J. Wang, “The
systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models,”
Bioinformatics, vol. 19, no. 4, pp. 524–531, Mar. 2003.
[Online]. Available: https://academic.oup.com/bioinformatics/
article-lookup/doi/10.1093/bioinformatics/btg015

[22] E. T. Somogyi, J.-M. Bouteiller, J. A. Glazier,
M. Känig, J. K. Medley, M. H. Swat, and
H. M. Sauro, “libRoadRunner: a high performance
SBML simulation and analysis library: Table 1.”
Bioinformatics, vol. 31, no. 20, pp. 3315–3321, Oct. 2015.
[Online]. Available: https://academic.oup.com/bioinformatics/
article-lookup/doi/10.1093/bioinformatics/btv363
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