1705.06586v1 [cs.SE] 18 May 2017

arxXiv

Opportunities in Software Engineering Research
for Web API Consumption

Erik Wittern*, Annie Ying*, Yunhui Zheng, Jim A. Laredo, Julian Dolby, Christopher C. Young*, Aleksander A. Slominski
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Email: {witternj, aying zhengyu, laredoj, dolby, ccyoung, aslom}@us.ibm.com

Abstract—Nowadays, invoking third party code increasingly
involves calling web services via their web APIs, as opposed to the
more traditional scenario of downloading a library and invoking
the library’s API. However, there are also new challenges for
developers calling these web APIs. In this paper, we highlight a
broad set of these challenges and argue for resulting opportunities
for software engineering research to support developers in
consuming web APIs. We outline two specific research threads in
this context: (1) web API specification curation, which enables us
to know the signatures of web APIs, and (2) static analysis that is
capable of extracting URLs, HTTP methods etc. of web API calls.
Furthermore, we present new work on how we combine (1) and
(2) to provide IDE support for application developers consuming
web APIs. As web APIs are used broadly, research in supporting
the consumption of web APIs offers exciting opportunities.

I. INTRODUCTION

Programmers write applications using a growing variety
of publicly accessible web services, or by interacting with
dedicated, private backends. Applications typically consume
both, these services and backends, using web APIs — ap-
plication programming interfaces invoked over network that
rely on web technologies like HTTP as a transport protocol
or XML and JSON as data formats. In practice, these APIs
are often "REST-like”, in that they adhere to some of the
constraints imposed by the Representational State Transfer
(REST) architectural style [1]. The extent of the proliferation
of web APIs is indicative in the thousands of web APIs
listed in catalogs such as IBM’s API Harmony [2], Mashape’s
PublicAPIs [3], or ProgrammableWeb [4].

For developers, consuming web APIs poses many chal-
lenges, compared to that of traditional library APIs, including:

o Challenge 1: Clients have the guarantee that once they
download a traditional library, they have control over the
APT and the code being called. However, web APIs clients
have no control over the API and the service behind the
API, as a provider may change either or both.

« Challenge 2: Clients of a local library can depend on a
compiler to check whether a call conforms to the library
interface. Clients of web APIs, in contrast, do not know
whether the signature of a call—i.e., the URL, the request
payload, query parameters—is valid until run-time.'

* First authors
* Currently at Harled Inc in Kitchener, ON, Canada. Email: chris@harled.ca
lThough, there are frameworks for remote procedure calls, e.g., Thrift [5].

o Challenge 3: Even when clients invoke a web service via
a software development kit (SDK), the SDK 1is essentially
a wrapper that ultimately sends requests via the web APL
A web API call in an SDK can get out of synchronization
with the actual web API, a even more likely concern with
third-party SDKs.

o Challenge 4: Invoking web services opens a range of
issues concerning remote calls, including asynchrony,
service availability, service latency and more generally,
quality of service (QoS) issues. Handling these issues
may require additional client code and/or restructuring
of the architecture.

These and similar challenges have rarely been addressed in
software engineering research, especially comparing to the
vast amount on research on more traditional library APIs [6].
In our opinion, the lack of research to support the consumption
of web APIs is surprising, given the broad usage of web APIs.

In this paper, we argue for research in software engineering
to support consumption of web APIs.> In section II, we
outline our vision of such research and state concrete research
opportunities. Next, we present two examples of such research
efforts. First, in section III, we discuss work on web API
specification curation, which enables us to know the signatures
of web APIs [7]. Second, in section IV, we discuss work
on static analysis that is capable of extracting web API
calls from source code, including URLs, HTTP methods, and
request data [8]. Furthermore, in section V, we demonstrate the
practical significance of such research by presenting a novel
IDE integration tying together these two efforts, for warning
a programmer of possible errors in the web APIs calls in
their JavaScript code, directly addressing the aforementioned
Challenge 2. Section VI concludes.

II. OUR VISION IN WEB API RESEARCH

We envision that a first line of research relates to static anal-
ysis and IDE support for developers writing code containing
web API calls. Some examples include the following:

« Detect errors in source code invoking web APIs, e.g., by
statically checking that requests (comprising possibly the
URL, HTTP method, query parameters, a request pay-
load) match APIs’ requirements (our work [8], describe

2There are also many opportunities to support the provisioning of web
APIs, which is not the focus of this paper.

in Section IV). Provide developer support in IDEs, e.g.,
for error checking (Section IV) and auto-completion.

« Provide refactoring support, for example to help develop-
ers to migrate to new web API versions, similar to efforts
for traditional APIs, e.g., [9], [10].

o Mine web API usage for more advanced developer sup-
port, e.g., recommending effective web API usage pat-
terns, provisioning code snippets or even recommending
effective composition of APIs, similar to such efforts
for traditional library APIs, for which Robillard et al.
provides an extensive survey [0].

Another line of research involves mechanisms to document

a web API’s signatures; interfaces of web APIs are not
automatically available to clients, unlike in traditional library
APIs where the API is part of a library’s signatures. The
API’s signatures are needed, e.g., for the aforementioned
error checking and version migration. Machine-readable API
specifications have been proposed, like the OpenAPI specifi-
cation [11]. However, these specifications are not necessarily
available. A promising research area is as follows:

o Support the curation of web API specifications, e.g., the
OpenAPI specification [1]. Research can address how to
automatically create, maintain, or test such specifications
(Section III).

Because of the nature of web API calls, clients need
additional software engineering support, posing opportunities
of research, including:

o Research coding practices and patterns for an application
to deal with varying QoS, especially if used from different
geographic locations [12].

o Assess the impact of web API usage on non-functional
aspects. E.g., network usage is found to be the major
consumer of battery life in mobile applications [13], and
security and privacy concerns raised by the usage of
external services are of high priority to users [14].

To reap such opportunities, researchers in this new field of
supporting web API consumption have many technical oppor-
tunities in addressing web APIs. They include requests being
made asynchronously over the network, mostly using untyped
and stringified data (e.g., our static analysis in Section IV), the
lack of web API specifications (e.g., our work in automatically
generating specifications in Section III), or that web APIs are
commonly used from dynamic languages, e.g., JavaScript, a
primary language supported by browsers.

III. CURATION OF WEB API SPECIFICATIONS

A first line of research addresses the automatic creation and
maintenance of web API specifications, which are a required
input for many mechanisms to support web API consumption.
As we will also do in Section IV, we start by motivating
this work, then summarizing our research in this area, and
providing advice for how such research can be evaluated.

A. Problem Motivation

Web APIs do not per default expose descriptions of their
interfaces to clients (cf. Challenge 2 in Section I). Rather,

developers have to familiarize with individual endpoints using
human-readable documentation. The lack of machine-readable
interface descriptions limits the creation of capabilities like
static request checking (as we will see in Section V), auto-
completion, refactoring support, automatic testing, or API
composition support.

To address this shortcoming, various web API specification
or description formats exist, like the aforementioned OpenAPI
specification [11] (previously known as Swagger), the web
application description language (WADL) [15], or the REST-
ful API Modeling Language (RAML) [16]. These formats
describe aspects concerning the whole API like authentication
or security, as well as information about individual endpoints,
including the data required to send in requests and the re-
sponses to expect. Despite the existence of API specification
formats, they are rarely available to developers in practice,
especially for public APIs. Third-party efforts that create and
maintain specifications of popular APIs like APIs Guru [17],
which rely on API-specific mining facilities and contributions
from the open source community, exemplify this sparsity.

The problem this line of research is concerned with is to
automate the creation and maintenance of such specifications.

B. Challenges and Possible Solutions

A straight-forward solution to address the lack of API
specifications is to create them as part of web API provi-
sioning efforts. Indeed, API management solutions that aim
to help providing APIs like IBM’s API Connect [18] rely on
having a specification upfront or entering a comparable set
of information through graphical user interfaces (from which
later a specification can be exported). Similarly, web API
specifications can be created using source code annotations,
e.g. [19], [20]. However, both approaches require manual
effort (especially for legacy APIs) for initially creating and
for maintaining specifications. Also, they depend upon API
providers spending efforts, as consumers have no access to
the API source code or operations.

To automate specification creation and maintenance, re-
search has looked into inferring specifications from dynamic
server traces [7] or from observed HTTP requests [21]. Be-
yond these efforts, possible directions to look into include
inferring specifications from human-readable documentation,
or from API usage mined from open source repositories (cf.
Section IV-C). If working, these approaches would require
less or even no manual effort, and could be used to keep
specifications in sync with API implementations. However,
sparse input data is a main challenge for such approaches.
Usage data, for example, only helps to learn about parts of
web APIs that are actually used, leaving the risk of incomplete
specifications. If requests are encrypted, request and response
payloads are not available. Also, many web APIs feature end-
points that can best be described with path templates. In them,
dynamic URL segments that depend on user input or runtime
parameters are explicitly denoted, for example username in
.../user/{username}/profile. However, input data
like dynamic traces only contains concrete request instances

var getPicturesForTag = function (tag) {
var query = {

count: 10
}
var url = 'https://api.instagram.com/v1l/tags/' + tag + '/media/recent’
var sattings~gs {

methody 'GE

.-sendRequest (settings)
Sy

:‘:Avar sendRequest = function (setfings) {
“epjQuery.ajax(settings).done(function (response) {

console. log(response)
}) — =data flow

) =% = control flow

Fig. 1: Code excerpt of a request to the Instagram API

like .../user/erik/profile. The resulting challenge,
thus, is to infer more generic API specifications from (few)
examples. An example on how to address this challenge is our
previous work on inferring specifications from dynamic traces,
where we attempted solving this problem using machine-
learning techniques [7].

C. Evaluation and Relevance to Web API Researchers

To evaluate the curation of web API specifications, publicly
available specifications can act as ground-truth, e.g. [17]. As
further input data, web API usages can be obtained from
open source repositories like GitHub. Human-readable API
documentation pages are made available by most large API
providers. In our previous work, we obtained real-world usage
of IBM’s Watson APIs for one month and compared inferred
specifications against the human-written specifications of said
APIs [7]. Specifications are central to many other research op-
portunities, amplifying the importance of this line of research.

IV. STATIC ANALYSIS ON WEB API CALLS

A second line of research addresses the lack of support for
statically checking web API calls in JavaScript code [8].

A. Problem Motivation

To invoke a web API, applications can send HTTP requests
to a dedicated URL using one of its supported HTTP methods;
required data is sent as query or path parameters, or within
the HTTP request body. The URL, HTTP method, and data
to send are strings possibly constructed by string operations
within the applications. Figure 1 shows an exemplary excerpt
of a JavaScript application performing these actions. When a
request targets a URL that does not exist or sends data that
does not comply with the requirements of the web API, a
run-time error occurs. This prevalent calling mechanism for
web APIs does not allow type-safety checking. In other words,
checks for traditional compile-time errors are not available for
programmers writing code calling web APIs.

B. Our Approach and Relevance to Web API Researchers

To address this problem, we are working on a static checker
that takes as input OpenAPI specifications, and then statically
checks whether the web API requests in JavaScript code

conform to these specifications. This solution embodies two
technical challenges relevant to other researchers in the web
API reseach field:

e Our approach has to be able to extract requests which
are strings (i.e., the URL string, HTTP method, and
the corresponding data from a request), using an inter-
procedural static string analysis (i.e., program analysis
capable of extracting strings [22]). In comparison, static
analysis on traditional library API calls in a statically-
typed language can be extracted simply via an abstract
syntax tree.

o Because web APIs are commonly used in code written
in dynamically typed languages such as JavaScript, we
targeted our analysis on JavaScript code. Typically, inter-
procedural static whole-program analysis on JavaScript
code is more challenging (i.e., less scalable, due diffi-
culties from dynamical typing) than the same analysis
on Java code [22]-[25]. For the initial implementation,
we chose to handle requests written using the jQuery
framework due to its popularity — reportedly, 70% of
websites use the jQuery framework [26].

C. Evaluation and Relevance to Web API Researchers

To evaluate our approach, we applied our approach by
checking whether web API requests from over 6000 JavaScript
files on GitHub® were consistent or inconsistent with publicly
available web API specifications provided by the APIs Guru
project [17]. Other researchers in web API research may also
want to consider using the public web API specifications such
as the data from APIs Guru project for the evaluation of
approaches like our static analysis.

V. IDE SUPPORT FOR CHECKING WEB API REQUESTS

This section demonstrates the practical significance of re-
search we presented in Sections III and I'V through a new IDE
integration taking advantage of both research efforts.

From a high level, providing static checking comprises
two steps: First, we use inter-procedural static analysis [§]
discussed in section IV to extract string-based information
about the request, including the request URL string, HTTP
method, and the corresponding request data. Recall the code
in Figure 1 as an example. Focusing on the url variable, we
can see that it is composed from two constant strings and the
tag variable in the function getPictureForTag. The value
of url is then first passed into a field of the settings object,
and ultimately flows into jQuery’s Ajax call $.ajax in the
sendRequest function. The value of tag is a parameter and
could be different in multiple runs. Hence, when we aim to
extract the URL used in this request, we denote tag as a sym-
bolic value {tag} using curly braces, indicating that the value
is not known statically. Overall, the URL extracted for the
shown request is https://api.instagram.com/vl/tags/
{tag}/media/recent.

3https://github.com/

https://github.com/

[] @®) instagram_example.js — ~/Development/apiharmony/apih-atom-advice

instagram_exa
API Harmony detected 1 errors

var getP
var qu « Method “post* not found for path “/tags/{tag-name}/media/recent".
coun
}
var url = 'https://api.instagram.com/v1l/tags/' + tag + '/media/recent’

var settings
method:
url: ur
data: query (a)
}
sendRequest (settings)
}

var sendRequest = function (settings) {
$.ajax(settings).done(function (response) {
console. log(response)

n UTF-8 JavaScript ¥ master [+]+21 ([3u

[] @) instagram_example.js — ~/Development/apiharmony/apih-atom-advice

instagram_exa
API Harmony approves of this request

var getP
var qu Matching OpenAPI Specification “Instagram* found.
coun
} « Reguest matches path */tags/{tag-name}/media/recent".
var ur « Method “get" available for path “/tags/{tag-name}/media/recent”.
var se « All required query parameters are present.
meth: « Payload is in the right format.
url:
data: query (b)

}
sendRequest(settings)
}

var sendRequest = function (settings) {
$.ajax(settings).done(function (response) {
console. log(response)
3
}

File 0 v Nolsst LF A\ 1deprecation UTF-8 JavaScript ¥ master [++21

Fig. 2: Feedback in Atom (errors highlighted retroactively by
spotted boxes): (a) incorrect HTTP method, (b) correct request.

Second, a checking component determines whether ex-
tracted requests conform to any known web API specification,
possibly curated as described in section III. To do so, the
checking component retrieves one or more specifications from
the database that define a host matching the one in the
extracted request URL. Multiple specifications may be found
as multiple versions of an API can share the same host. The
component then in sequence checks whether the protocol, base
path, route, and HTTP method match. If any of these matches
fail for all of the retrieved specifications, an error is reported.
If at least one endpoint (route and HTTP method [7]) was
matched across the specifications, the component checks if
required query parameters are part of the extracted URL and
if payload data requirements are met by extracted payload data.
Again, if any of these conditions fail for all matched endpoints,
an error is reported. Otherwise, the request is deemed valid.
This approach is conservative in that it only reports errors if
no match can be found at all.

We implemented a corresponding checking procedure as a
prototypical plugin for the Atom code editor [27]. Code checks
are performed with some delay upon every user input, given
that the edited code contains a web API request. The checking
is a relatively expensive operation, which is thus invoked
via asynchronous request to be performed by an external
service. While this architecture works for an initial prototype,

it might need revision due to concerns of sending source
code to an external service. Results of the checking procedure
are displayed using overlays within the Atom editor, either
reporting the error (cf. Figure 2a) or what was successfully
checked (cf. Figure 2b).

VI. CONCLUSION

In this paper, we argue for software engineering research
addressing the consumption of web APIs — a topic that is of
high relevance in practice, but has seen little attention from
research so far. We discussed the nature of challenges in this
field by means of two concrete examples of our work, and
presented new work on how research efforts can be applied to
support developers in consuming web APIs without errors.

REFERENCES

[11 R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, U. of California, Irvine, 2000.

[2] IBM API Harmony. https://apiharmony-open.mybluemix.net/.

[3] PublicAPIs. https://www.publicapis.com/.

[4] ProgrammableWeb. http://www.programmableweb.com/.

[5] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable cross-
language services implementation,” Facebook White Paper, 2007.

[6] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated API property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613-637, 2013.

[7]1 P. Suter and E. Wittern, “Inferring Web API Descriptions From Usage
Data,” in Proc. of the Workshop on Hot Topics in Web Systems and
Technologies, 2015.

[8] E. Wittern, A. T. T. Ying, Y. Zheng, J. Dolby, and J. A. Laredo,
“Statically Checking Web API Requests in JavaScript,” in Proc. of ICSE,
to appear, 2017.

[9] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for

framework evolution,” ACM TOSEM, vol. 20, no. 4, p. 19, 2011.

W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid

approach to identify framework evolution,” in Proc. of ICSE, 2010, pp.

325-334.

Open API Initiative. https://openapis.org/specification.

D. Bermbach and E. Wittern, “Benchmarking web api quality,” in Proc.

of the International Conference in Web Engineering, 2016, pp. 188-206.

D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An empirical study of the

energy consumption of android applications,” in Proc. of ICSME, 2014,

pp. 121-130.

[14] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence
in smartphone security and privacy,” in Proc. of the Symposium on
Usable Privacy and Security, 2012.

[15] WADL - Web Application Description Language. http://www.w3.org/
Submission/wadl/.

[10]

[11]
[12]

[13]

[16] RAML - RESTful API Modeling Language. http://raml.org/.

[17] APIs.guru - Wikipedia for Web APIs. https://apis.guru/.

[18] IBM API Connect. https://developer.ibm.com/apiconnect/.

[19] Swagger Core Library. https://github.com/swagger-api/swagger-core.

[20] swagger-jsdoc. https://github.com/Surnet/swagger-jsdoc.

[21] S. M. Sohan, C. Anslow, and F. Maurer, “SpyREST: Automated RESTful
API Documentation Using an HTTP Proxy Server,” in Proc. of ASE,
2015, pp. 271-276.

[22] A. Feldthaus, M. Schifer, M. Sridharan, J. Dolby, and F. Tip, “Efficient
construction of approximate call graphs for JavaScript IDE services,” in
Proc. of ICSE, 2013, pp. 752-761.

[23] M. Schifer, M. Sridharan, J. Dolby, and F. Tip, “Dynamic determinacy
analysis,” in Proc. of PLDI, 2013, pp. 165-174.

[24] E. Andreasen and A. Mgller, “Determinacy in static analysis for jquery,”
in Proc. of OOPSLA, 2014, pp. 17-31.

[25] Y. Ko, H. Lee, J. Dolby, and S. Ryu, ‘“Practically tunable static analysis
framework for large-scale JavaScript applications,” in Proc. of ASE,
2015, pp. 541-551.

[26] Usage Statistics of JavaScript Libraries for Websites, August 2016. https:
/Iw3techs.com/technologies/overview/javascript_library/all/.

[27] Atom Editor. https://atom.io/.

https://apiharmony-open.mybluemix.net/
https://www.publicapis.com/
http://www.programmableweb.com/
https://openapis.org/specification
http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/wadl/
http://raml.org/
https://apis.guru/
https://developer.ibm.com/apiconnect/
https://github.com/swagger-api/swagger-core
https://github.com/Surnet/swagger-jsdoc
https://w3techs.com/technologies/overview/javascript_library/all/
https://w3techs.com/technologies/overview/javascript_library/all/
https://atom.io/

	I Introduction
	II Our vision in Web API Research
	III Curation of Web API Specifications
	III-A Problem Motivation
	III-B Challenges and Possible Solutions
	III-C Evaluation and Relevance to Web API Researchers

	IV Static Analysis on Web API Calls
	IV-A Problem Motivation
	IV-B Our Approach and Relevance to Web API Researchers
	IV-C Evaluation and Relevance to Web API Researchers

	V IDE Support for Checking Web API Requests
	VI Conclusion
	References

