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ABSTRACT

Predicting the intelligibility of noisy recordings is difficult and most
current algorithms only aim to be correct on average across many
recordings. This paper describes a listening test paradigm and as-
sociated analysis technique that can predict the intelligibility of a
specific recording of a word in the presence of a specific noise in-
stance. The analysis learns a map of the importance of each point
in the recording’s spectrogram to the overall intelligibility of the
word when glimpsed through “bubbles” in many noise instances. By
treating this as a classification problem, a linear classifier can be
used to predict intelligibility and can be examined to determine the
importance of spectral regions. This approach was tested on record-
ings of vowels and consonants. The important regions identified by
the model in these tests agreed with those identified by a standard,
non-predictive statistical test of independence and with the acoustic
phonetics literature.

Index Terms— Intelligibility, Noise, Glimpse, Objective, Sub-
jective

1. INTRODUCTION

This paper describes a novel listening test that measures the intelli-
gibility of mixtures of the same exact recording of a target word or
syllable with many different instances of noise. The noise, which we
call “bubbles” is designed to produce “glimpses” [1] of the speech
in various regions of the spectrogram, but obliterate the speech else-
where. This is an idealized model of the glimpsing concept, which
states that listeners can reconstruct speech from noisy observations
by focusing on the content of and relationship between localized re-
gions of uncorrupted speech in the observation. We hypothesize that
some glimpses are more important than others and investigate the rel-
ative importance of glimpses of particular utterances. Glimpses that
are important to an utterance’s intelligibility will frequently occur in
intelligible mixtures and be absent from unintelligible mixtures. The
locations of these important glimpses form an intelligibility map of
the utterance.

The problem of predicting whether a mixture of speech and noise
is intelligible based on features extracted from the exact speech and
noise signals involved is a novel classification problem that forms the
basis of this technique. We solve this classification problem using
linear support vector machines (SVMs), allowing us to interpret the
learned classifier as the importance of each time-frequency point,
i.e., the intelligibility map. By treating “microscopic” intelligibility
prediction as a classification problem in this way, we can measure
the ability of the model to generalize to new mixtures using classic
cross-validation procedures. By performing this experiment directly
on the signals in the time-frequency domain, we can make much

more specific predictions than models that are mediated by aver-
ages over signals, utterances, or time. We also perform an analysis
of these same data using descriptive statistics that are more flexi-
ble in producing intelligibility maps, but cannot be used to make
predictions about unseen mixtures.

2. BACKGROUND

The work in [4] investigated the importance of individual frequency
bands to the intelligibility of words in the context of randomly se-
lected subsets of other frequency bands. It shows that while this
importance is quite stable across listeners, it varies a great deal across
recordings. These data suggest that when little linguistic context is
available, the important frequencies correspond to the frequencies
of the first three formants found in those utterances. This paper ex-
pands this technique to include importance in timing information in
addition to frequency, providing a much more localized and context-
dependent prediction of intelligibility. The proposed procedure is
the acoustic analog of the visual “bubbles” method described by
[2] for identifying the regions of facial images that are important to
human viewers in the visual tasks of identifying gender, expressivity,
and identity. Our method is also inspired by recent advances in the
field of fMRI analysis, which in the past decade have started to use
classifiers to distinguish between brain states [3].

There are two systems that are similar to parts of the proposed
work. The model of [5] included a number of ad-hoc time-frequency
importance functions that improve the predictions of a number of
existing intelligibility models in time-varying noise. In contrast, by
framing the problem of intelligibility prediction as classification, the
current work can learn these importance functions from data.

Perhaps the most similar to the proposed work is [6] and related
papers, e.g., [7, 8], which describe the three-dimensional deep search
(3DDS) technique to identify important spectral regions of individual
utterances. They perform three different operations (truncation,
filtering, and the addition of white noise) to varying degrees on
individual utterances. The points at which these operations transform
the original syllable into another syllable allow the authors to identify
small regions of the spectrogram that are crucial to the identification
of the particular phones. This is in some ways a new take on the
classic study of acoustic phonetics, e.g., [9].

Our listening test technique differs from [6] in that by posing
intelligibility prediction as classification, our models will be able
to generalize to new conditions. We can use techniques like cross-
validation to measure the ability of the classifiers to generalize to
new noises, new listeners, and new speakers. Our ultimate goal is,
after using tools from ASR to align utterances, both to measure the
classifiers’ ability to generalize to new utterances and to develop a
microscopic intelligibility predictor that is applicable to all speech.
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din fin pin sin tin win

Figure 1: Statistical (top) and support vector machine-based (middle) intelligibility maps for mechanical Turk listeners on Cin utterances along
with the spectrograms of the clean utterances (bottom).

3. LISTENING TEST

The basic setup of the listening test is a six-alternative forced choice
procedure. Listeners were presented with a mixture of a single word
with noise and asked to select the correct word from six choices.
The speech was selected from the Hillenbrand vowel corpus [10]
and the audio portion of the “CMU Audio-Visual Profile and Frontal
View” (CMU AVPFV) database [11], which is an instance of the
Modified Rhyme Test (MRT). The vowels were presented in the
form of hVd syllables and consisted of had, head, heed, hid, hood,
and who’d from male speaker M06. The consonants from the MRT
we used were presented in the form of Cin syllables and consisted
of din, fin, pin, sin, tin, and win. We used female speaker “Helen”
and repetitions 2, 3, and 5 of the 10 to measure the consistency of
our analysis over different instances of the same word from the same
speaker. The MRT utterances had a rather high noise floor, as can be
seen in the spectrograms in Figures 1 and 3, but this did not affect
their intelligibility. All speech was sampled at 16 kHz.

The noise was designed to provide glimpses of the speech only
in specific time-frequency bubbles. It started with speech-shaped
noise loud enough to completely overwhelm the speech. We found
that an SNR of −28 dB was sufficient to make the MRT speech
completely inaudible and −33 dB for the Hillenbrand vowels. We
then attenuated this noise in “bubbles” that were jointly parabolic in
time and ERB-scale frequency [12] with a maximum suppression of
80 dB. The centers of the bubbles were selected uniformly at random
in time and in ERB-scale frequency, except for a 2-ERB buffer at
both the bottom and top of the frequency scale. Mathematically, the
mask applied to the speech-shaped noise, M(f, t), is
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∑
i
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where E(f) = 21.4 log10(0.00437f + 1) converts frequencies
in Hz to ERB, and {(fi, ti)}Ii=1 are the centers of the I bubbles.
We set σt and σf such that the bubbles are 350 ms wide at their
widest and 7 ERB high at their highest, which were the smallest

values that would avoid introducing audible artifacts. The number of
bubbles per second was set such that listeners could correctly identify
approximately 50% of the mixtures. We found that 12 bubbles per
second achieved this level for the MRT words and 10 bubbles per
second for the Hillenbrand vowels.

We used two groups of participants. The first group consisted
of a single expert listener who was familiar with the clean speech
material. The second was a collection of 74 workers on Amazon’s
mechanical Turk website1. With IRB approval, these listeners pro-
vided their informed consent to participate in the experiment and
stated that they were at least 18 years of age with normal hearing.

We created 199 mixtures of each word with randomly generated
bubble noise. We found that this number of mixtures was necessary
for reliable analyses. The vowel and MRT tasks were performed
separately, so listeners heard mixtures of only hVd words or Cin
words and selected from the corresponding list. The noisy mixtures
were interspersed with clean versions of the words to ensure that
the listeners were paying attention and to familiarize them with the
words. These noise-free utterances constituted between 10 and 20%
of the utterances presented to listeners, but were not included in the
main data analysis. Listeners were informed that if they incorrectly
answered more than 33% of these clean utterances their work would
be rejected, but this situation never arose. The mechanical Turk
listeners also listened to noise free versions of these utterances 15
times each to ensure that the original speech was intelligible to them.

Workers on mechanical Turk were paid $0.08 to identify 5 mix-
tures in a single “Human Intelligence Task” (HIT). On average, each
of the 74 participants completed 21 HITs, with the median being 6
HITs. Five of the participants completed more than 130 HITs each.
The median time to complete one HIT was 27 seconds, leading to
a median hourly rate of $10.67. This rate is comparable to subjects
recruited in person, but we were able to collect data much more
quickly, for example, labeling 3000 mixtures in 2 hours. The total
cost of running these experiments, including pilot tests was $250.

We experimented with different numbers of listeners per mixture.
The expert listener heard 12 repetitions of nine mixtures of each Cin.
That listener’s results were self-consistent in that the same mixture

1http://mturk.com
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generated the same response nearly all of the time. The mechanical
Turk listeners heard these same mixtures 21 times each. Their results
were less consistent, with the percentage correct for each mix being
nearly uniformly distributed between 0 and 100%. It is not clear
whether this is due to differences in skill, familiarity with the speech
material, or another cause. The rest of the mixtures were heard either
by 1 or 2 listeners, as shown in the × column of Table 1.

4. INTELLIGIBILITY MAPS

We analyzed the intelligibility of these various mixtures to determine
whether there are certain regions of the spectrogram of each word
that must be “glimpsed” for a particular mixture to be intelligible.
A mixture was considered intelligible if at least 70% of listeners
correctly identified it, unintelligible if at most 30% of listeners did,
and excluded from the analysis if it fell between these two values.

4.1. Descriptive: Statistical testing

The first intelligibility map estimator we propose is a descriptive
statistical test using Pearson’s chi-squared test of independence for
each time-frequency point. This test determined whether or not the
number of times that a particular point was glimpsed was indepen-
dent of the number of times the mixture was intelligible. If the test
revealed that with high confidence these two variables were not inde-
pendent at a particular point, then that point probably contributed to
the intelligibility of the word, either positively or negatively.

Specifically, we computed the contingency table, Cij(f, t), for
each clean word, which contained the count of the number of mix-
tures in which point (f, t) was included or not included in a bubble
(i = 1, 0, respectively) and in which the mixture was intelligible or
unintelligible (j = 1, 0, respectively). The test statistic is then

X2(f, t) =

1∑
i,j=0

(Cij(f, t)− Eij(f, t))2

Eij(f, t)
(3)

where if N is the total number of mixtures,

Eij(f, t) =
1

N

( 1∑
i=0

Cij(f, t)
)( 1∑
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Cij(f, t)
)
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We then computed P (f, t), the likelihood ofX2(f, t) under a χ2 dis-
tribution with 1 degree of freedom. If P (f, t) is less than α = 0.05
then i and j are probably not independent. If C11(f, t) > E11(f, t)
then we assume that that time-frequency point contributes to intel-
ligibility. Otherwise we assume it contributes against intelligibility.
We visualize this as an intelligibility map

Mχ(f, t) = sign (C11(f, t)− E11(f, t)) exp
(
− 1
α
P (f, t)

)
(5)

an example of which is shown in the top row of Figure 1.

4.2. Predictive: Support vector machine

The second method for computing an intelligibility map used a linear
classifier, in this case we used a support vector machine (SVM). This
method is predictive because, in contrast to the descriptive method,
it allows the quality of the fit to be measured via the prediction
accuracy of the model on unseen data.

The mixtures of each clean recording constituted a single learn-
ing problem. The features that we used are Gm(f, t), the amount

Table 1: Nested cross-validation accuracy of support vector machine
classifiers on expert (Exp) and mechanical Turk (MT) listeners for
hVd words and three different spoken instances of Cin words (Ver).
Each row used 199 mixtures of each word and certain mixtures were
heard by multiple people (×).

Word
Ver × din fin pin sin tin win

Exp 1 1 73.1 70.7 72.5 64.9 75.9 58.8
MT 1 2 76.6 68.1 81.5 52.1 75.6 71.9
MT 2 1 70.5 58.5 51.0 61.5 72.6 51.8
MT 3 1 77.2 57.3 55.0 61.9 68.9 57.5

Word
Ver × had head heed hid hood who’d

Exp 1 1 70.0 70.4 55.6 61.3 57.2 71.5
MT 1 1 67.2 58.8 59.6 55.7 52.7 56.4

that the speech shaped noise has been suppressed by its bubbles as
a function of frequency and time in the mth mixture. The machine
learning task is to predict whether the mth mixture was intelligible,
denoted ym. Because all of the features considered in a single prob-
lem corresponded to the same clean recording, the features implicitly
represented the speech and did not need to explicitly represent it.

Because of the large number of dimensions of the Gm(f, t)
(513 frequencies × 64 frames = 32832 dimensions), we first per-
formed principal components analysis (PCA) to reduce this dimen-
sionality to between 5 and 120. Computing PCA on the features
directly gave too much weight to the high frequency bubbles, which,
for the same number of ERBs include many more short-time Fourier
transform (STFT) frequency channels than the low frequency bub-
bles. We thus re-weighted the features before performing PCA to
counteract this effect. The weight we used was the cube root of
the incremental ERB frequency change between adjacent STFT fre-
quency channels. We used nested cross-validation to select the best
PCA dimensionality on the training data of each cross-validation
fold. The dimensionality selected was generally between 12 and 31,
with 31 being the most common by a small margin. The visualiza-
tions in Figures 1 and 3 use 31 PCA dimensions and are trained on
all of the data available. If the linear classifier is

ŷm = b+
∑
k

wk
∑
f,t

Bk(f, t)Gm(f, t) (6)

where Bk(f, t) is the kth PCA basis, then the corresponding intelli-
gibility map isMs(f, t) =

∑
k wkBk(f, t). Because its predictions

are invariant to its scale, the visualizations show Ms(f, t) after scal-
ing its maximum value to 1.

5. ANALYSIS

Table 1 shows the accuracy of the SVM in predicting the intelligi-
bility for each of the original speech utterances. These accuracies
were measured on test sets with equal numbers of positive and neg-
ative examples, balanced separately on each cross-validation fold,
so the baseline accuracy is 50%. They were averaged over three
repetitions of nested 10-fold cross-validation of 199 mixtures. On
the consonants, the table shows that the accuracies are quite good
for the expert listener and the mechanical Turk listeners on the first
instances. The other two instances were only seen by a single me-
chanical Turk listener each (denoted by the × column) and so, while
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had heed who’d

Figure 2: Statistical intelligibility maps for expert (top) and mechan-
ical Turk (middle) listeners on hVd utterances, with spectrograms of
the clean utterances (bottom).

still learnable for din and tin, are less learnable for the other con-
sonants. The vowels were similarly better learned for the expert
listener than for the single exposure mechanical Turk listeners.

Figure 1 shows examples of the two intelligibility maps for
the first set of the Cin utterances based on the mechanical Turk
data. Notice how the intelligibility maps tend to agree with standard
theories of acoustic phonetics. Specifically, the important regions
for the plosive consonants /d/ and /t/ in din and tin are the high
frequencies just before the vowel for detecting the burst and the
simultaneous low frequencies for detecting voicing. The plosive /p/
shows similar trends, although to a lesser degree. The fricatives /s/
and /f/ in sin and fin both place high importance on high frequencies
before the vowel, with the region lower and longer temporally for
sin than fin. The semi-vowel /w/ in win places importance on the
audibility of the first formant and the dipping second formant at
the beginning of the syllable. The SVM map provides more detail
than the statistical map, although the statistical map permits absolute
judgments of importance.

Figure 2 shows the statistical intelligibility maps for the expert
and mechanical Turk listeners on the hVd utterances, which are very
similar. The intelligibility maps of these vowels are quite different
from those of the consonants. They generally only depend on the
first formant being audible or the peak and higher frequency roll-off
of the first formant. The word who’d also places some emphasis on
the second formant, especially at the beginning of the syllable.

The variation of the intelligibility map for the single word tin
across recordings is shown in Figure 3. While there is some variabil-
ity between the three instances, all of them contain the main pattern
of a high frequency burst and a low frequency voicing detection. As
shown in Table 1, accuracies for all three instances are high.

6. CONCLUSION

This paper has described a listening test paradigm and associated
analysis technique that can predict the intelligibility of a specific
recording of a word in the presence of a specific noise instance. By
treating this as a classification problem, a linear classifier can be
used to predict intelligibility and can be examined to determine the
importance of spectral regions. In testing the approach on recordings

Figure 3: Intelligibility maps for mechanical Turk listeners across
three instances of tin spoken by the same speaker: statistical (top),
SVM (middle), spectrograms of the clean utterances (bottom).

of vowels and consonants, the important regions identified by the
model agreed with those identified by a descriptive statistical test
and with the acoustic phonetics literature. Subsequent work will gen-
eralize this model to predict the intelligibility of unseen utterances
in noise, to compare automatic speech recognition in noise to human
speech recognition, and to evaluate speech processing algorithms’
preservation of spectral regions that are important to intelligibility.
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