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ABSTRACT
In this paper, we consider a recent class of optimal rectangular fil-
tering matrices for single-channel speech enhancement. This class
of filters exploits the fact that the dimension of the signal subspace
is lower than that of the full space. Then, extra degrees of freedom
in the filters, that are otherwise reserved for preserving the signal
subspace, can be used for achieving an improved output signal-to-
noise ratio (SNR). Interestingly, these filters unify the ideas of opti-
mal filtering and subspace methods. We propose an optimal LCMV
filter in this framework with minimum output power that passes the
desired signal undistorted and cancels correlated noise. The cancel-
lation was not facilitated by the filters derived so far in this frame-
work. The results show that the proposed filter can achieve output
SNRs similar to that of competing filter designs, while having a
much higher output signal-to-interference ratio. This is showed for
both synthetic and real speech signals.

Index Terms— Speech enhancement, interferer cancellation,
LCMV, optimal filtering.

1. INTRODUCTION
The problem of speech enhancement has a rich and long history, but
it remains a widely studied problem due to its occurence in recent
applications such as voice-over-IP, hearing aids, teleconferencing,
mobile telephony, etc. Enhancement is vital in such systems as 1)
noise has a detrimental impact on the perceived quality and intelli-
gibility of speech signals and causes listener fatigue under extended
exposure and 2) many speech processing systems or components are
designed under the premise that only one, clean signal is present at
the time. Even though more and more systems are now using mul-
tiple channels, i.e., microphone arrays, many systems today are still
based on only a single channel, and this is also the context in which
we will study the speech enhancement problem.

The speech enhancement problem can be posed as a filtering
problem, wherein an estimate of the desired speech signal is ob-
tained via filtering of the observed, noisy signal. An example of
this is the classical Wiener filter. Such filtering approaches often
require that either an estimate of the speech statistics or the noise
statistics be found or known, and in the past decade, most efforts in
improving speech enhancement algorithms has been devoted to the
problem of estimating the noise statistics, with some examples be-
ing [1–3]. Recently, a number of important advances have, however,
been made formulating different kinds of optimal filters. These
include the adaptation of the linearly constrained minimum vari-
ance (LCMV) and the minimum variance distortionless response
(MVDR) principles to speech enhancement [4, 5] in combination
with the orthogonal [4] and harmonic decompositions [6], as well
as the extension of these to non-causual filters [7].

This work was supported in part by the Villum foundation.

An alternative approach to speech enhancement is the so-called
subspace method [8], wherein bases of the signal and noise sub-
spaces are obtained from the eigenvalue decomposition of the co-
variance matrix. Then enhancement is performed by modifying the
eigenvalues corresponding to the signal and noise subspaces after
which an estimate of the clean signal can be obtained. In the liter-
ature, the subspace methods are usually described as a competing
approach to speech enhancement, although some interpretations of
these approaches as filtering exist [9].

In this paper, we consider a new class of optimal filtering ma-
trices that combine the notion of subspace-based enhancement with
classical filtering approaches. As such, this approach unifies sub-
space and filtering methods in a common framework. More specif-
ically, we propose an LCMV filter in this framework that enables
cancellation of correlated noise, while at the same time suppressing
the uncorrelated noise as much as possible. Cancellation of corre-
lated noise was not possible with the filters derived in this frame-
work so far [10].

The remainder of this paper is organized as follows. In Sec-
tion 2, the signal model is introduced and the speech enhancement
problem is stated, after which the linear filtering approach with a
rectangular filtering matrix is introduced in Section 3 along with
some useful performance measures. In Section 4, the LCMV filter
is proposed, and its performance is studied in Section 5 on synthetic
as well as real-life speech signals, and the results are discussed.

2. SIGNAL MODEL AND PROBLEM FORMULATION
The signal enhancement (or noise reduction) problem considered in
this work is one of recovering the desired signal (or clean signal)
x(k), with k being the discrete-time index, from the noisy observa-
tion (sensor signal):

y(k) = x(k) + xi(k) + v(k), (1)

where xi(k) is a interfering signal correlated over time and v(k)
is an unwanted additive noise with no time correlation (i.e., white
noise). Both noise sources, however, are assumed to be uncorrelated
with x(k). Moreover, all signals are considered to be real, zero
mean, and stationary.

The signal model given in (1) can be put into a vector form by
considering the L most recent successive time samples of the noisy
signal, i.e.,

y(k) = x(k) + xi(k) + v(k), (2)

where y(k) =
[
y(k) y(k − 1) · · · y(k − L+ 1)

]T is a
vector of length L, (·)T denotes the transpose of a vector or a ma-
trix, and x(k), xi(k), and v(k) are defined in a similar way to y(k).
As a result of the assumptions, the correlation matrix of size L×L
of the noisy signal can be written as

Ry = E
[
y(k)yT (k)

]
= Rx + Rxi + Rv, (3)
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where E[·] denotes the mathematical expectation, and Rx =
E
[
x(k)xT (k)

]
, Rxi = E

[
xi(k)x

T
i (k)

]
, and Rv =

E
[
v(k)vT (k)

]
are the correlation matrices of x(k), xi(k), and

v(k), respectively. The noise correlation matrix, Rv, is assumed to
be full rank, i.e., its rank is equal to L. In the rest of the paper, we
assume that the rank of the desired signal correlation matrix, Rx,
is equal to P , where P is smaller than L. This assumption is rea-
sonable in several applications such as speech enhancement, where
the speech signal can be modeled as the sum of a small number
of sinusoids. In any case, for a given P , we can always choose L
much greater than P . Then, the objective of signal enhancement
(or noise reduction) is to estimate the desired signal vector, x(k),
or any known linear transformation of it from y(k). This should be
done in such a way that the noise is reduced as much as possible
with little or no distortion of the desired signal.

Using the well-known eigenvalue decomposition, the desired
signal correlation matrix can be diagonalized as

Rx = QxΛxQT
x , (4)

where Qx =
[

qx,1 qx,2 · · · qx,L

]
is an orthogonal ma-

trix, i.e., QT
xQx = QxQT

x = IL, with IL being the L × L
identity matrix, and Λx = diag (λx,1, λx,2, . . . , λx,L) is a di-
agonal matrix. The orthonormal vectors qx,1,qx,2, . . . ,qx,L are
the eigenvectors corresponding, respectively, to the eigenvalues
λx,1, λx,2, . . . , λx,L of the matrix Rx, where λx,1 ≥ λx,2 ≥
· · · ≥ λx,P > 0 and λx,P+1 = λx,P+2 = · · · = λx,L = 0.
Let Qx = [ Tx Υx ], where the L× P matrix Tx contains the
eigenvectors corresponding to the nonzero eigenvalues of Rx and
theL×(L−P ) matrix Υx contains the eigenvectors corresponding
to the null eigenvalues of Rx. It can be verified that

IL = TxTT
x + ΥxΥT

x . (5)

Notice that TxTT
x and ΥxΥT

x are two orthogonal projection ma-
trices of rank P and L − P , respectively. Hence, TxTT

x is the
orthogonal projector onto the desired signal subspace where all the
energy of the desired signal is concentrated and ΥxΥT

x is the or-
thogonal projector onto the null subspace. Using (5), we can write
the desired signal vector as

x(k) = QxQT
xx(k) = Txx̃(k), (6)

where x̃(k) = TT
xx(k) is the transformed desired signal vector of

length P . Therefore, the signal model for noise reduction becomes

y(k) = Txx̃(k) + Txi x̃i(k) + v(k), (7)

where x̃i(k) = TT
xixi(k) is the transformed interfering signal vec-

tor of length Q, Txi contains the Qth most significant eigenvectors
of Rxi , andQ is the rank of Rxi . Fundamentally, from the L obser-
vations, we wish to estimate the P components of the transformed
desired signal, i.e., x̃(k). Thanks to this transformation and the
nullspace of Rx, we are able to reduce the dimension of the desired
signal vector that we want to estimate. Indeed, there is no need to
use the subspace Υx since it contains no desired signal information.
From (7), we give another form of the correlation matrix of y(k):

Ry = TxRx̃TT
x + Rxi + Rv = TxΛx̃TT

x + Rxi + Rv, (8)

where

Rx̃ = E
[
x̃(k)x̃T (k)

]
= TT

xRxTx = TT
xQxΛxQT

xTx

= diag (λx,1, λx,2, . . . , λx,P ) = Λx̃ (9)

and, obviously, Rx = TxRx̃TT
x = TxΛx̃TT

x .

3. LINEAR FILTERING
From the general linear filtering approach, we can estimate the de-
sired signal vector, x̃(k), by applying a linear transformation to the
observation signal vector, y(k), i.e.,

z̃(k) = H̃y(k) = H̃ [x(k) + xi(k) + v(k)]

= x̃fd(k) + x̃ri(k) + ṽrn(k), (10)

where z̃(k) is supposed to be the estimate of x̃(k), H̃ =

[h̃1 h̃2 · · · h̃P ]
T is a rectangular filtering matrix of size P × L,

h̃p = [h̃p,0 h̃p,1 · · · h̃p,L−1]
T , p = 1, 2, . . . , P are finite-impulse-

response (FIR) filters of length L,

x̃fd(k) = H̃x(k) = H̃Txx̃(k) (11)

is the filtered transformed desired signal, while x̃ri(k) = H̃xi(k)

and ṽrn(k) = H̃v(k) are the residual interference and noise, re-
spectively. As a result, the estimate of x(k) can be formed as

z(k) = Txz̃(k) = TxH̃y(k) = Hy(k), (12)

where

H = TxH̃ =
[

h1 h2 . . . hL

]T (13)

is the filtering matrix of size L × L that leads to the estimation of
x(k). The correlation matrix of z̃(k) is then

Rz̃ = E
[
z̃(k)z̃T (k)

]
= Rx̃fd

+ Rx̃ri
+ Rṽrn , (14)

where Rx̃fd
= H̃RxH̃T = H̃TxΛx̃TT

x H̃T , and Rṽrn =

H̃RvH̃T . We also observe that Rz = TxRz̃T
T
x and tr (Rz) =

tr (Rz̃), where tr(·) denotes the trace of a square matrix. The cor-
relation matrix of z̃(k) or z(k) is helpful in defining meaningful
performance measures.

We then define the most useful performance measures for time-
domain signal enhancement in the single-channel case with a rect-
angular filtering matrix. The input SNR is a second-order measure
that quantifies the level of noise present relative to the level of the
desired signal. It is defined as

iSNR =
tr (Rx)

tr (Rin)
=
σ2
x

σ2
in
,

where σ2
x = E

[
x2(k)

]
and σ2

in = E
[
x2i (k) + v2(k)

]
are the vari-

ances of x(k) and [xi(k) + v(k)], respectively.
The output SNR, obtained from (14), helps quantify the SNR

after filtering. It is given by

oSNR
(
H̃
)
=

tr (Rx̃fd
)

tr (Rx̃ri
+ Rṽrn)

=
tr(H̃RxH̃T )

tr(H̃RinH̃T )
, (15)

where Rin = Rxi + Rv. The objective is to find an appropriate H̃
to make the output SNR greater than the input SNR. Consequently,
the quality of the noisy signal will be enhanced. It can be shown
that [4]

oSNR
(
H̃
)
≤ max

p

h̃T
p Rxh̃p

h̃T
p Rinh̃p

≤ λmax

(
R−1

in Rx

)
, (16)

where λmax

(
R−1

in Rx

)
is the maximum eigenvalue of the matrix

R−1
in Rx. This shows how the output SNR is upper bounded. It is
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easy to check that H and H̃, related through (13), yield the same
output SNR, i.e.,

oSNR (H) =
tr
(
HRxHT

)
tr (HRinHT )

= oSNR
(
H̃
)
. (17)

Fundamentally, there is no difference between H̃ and H. Both ma-
trices lead to the same result as we should expect.

Another useful measure for enhancement methods is the signal-
to-interference (SIR) ratio. The input SIR is defined as the ratio
between the power of the desired signal and that of the interference,
i.e.,

iSIR =
tr(Rx)

tr(Rxi)
=
σ2
x

σ2
xi

, (18)

where σ2
xi is the variance xi(k). To quantify the SIR after noise

reduction, we can consider the output SIR defined as

oSIR(H̃) =
tr(Rx̃fd)

tr(Rx̃ri)
=

tr(H̃RxH̃T )

tr(H̃RxiH̃
T )

= oSIR(H), (19)

and if H̃Txi = 0, the interferer is removed completely by the filter,
i.e., the output SIR is infinitely high.

We also have different measures regarding the distortion of the
desired signal, with one example being the desired signal reduction
factor defined as

ξsr(H̃) =
tr(Rx̃)

tr (Rx̃fd
)
=

tr (Λx̃)

tr(H̃TxΛx̃TT
x H̃T )

= ξsr (H) . (20)

Clearly, a rectangular filtering matrix that does not affect the desired
signal requires the constraint H̃Tx = IP , where IP is the P × P

identity matrix. Hence, ξsr(H̃) = 1 in the absence of distortion and
ξsr(H̃) > 1 in the presence of distortion.

4. PROPOSED METHOD
Let us first introduce a combined noise term w(k) = xi(k) + v(k)
and decompose its correlation matrix as

Rw = QwΛwQT
w, (21)

where the orthogonal and diagonal matrices Qw and Λw are de-
fined similarly to Qx and Λx, respectively. We assume that the
positive eigenvalues of Rw have the following structure: λw,1 ≥
λw,2 ≥ · · · ≥ λw,Q > σ2

wn and λw,Q+1 = λw,Q+2 = · · · =
λw,L = σ2

wn, where P +Q ≤ L. In this case, we can partition the
unitary matrix as Qw = [ Txi Tv ], where the L × Q matrix
Txi contains the eigenvectors corresponding to the firstQ eigenval-
ues of Rw and theL×(L−Q) matrix Tv contains the eigenvectors
corresponding to the last L −Q eigenvalues of Rw. It is seen that
xi = TxiT

T
xiw corresponds to the correlated noise, v = TvTT

vw

corresponds to the uncorrelated noise, and E(xiv
T ) = 0L×L.

The linearly constrained minimum variance (LCMV) approach
[11] consists of estimating x(k) without any distortion, completely
removing the correlated noise, and attenuating the uncorrelated
noise as much as possible. It follows that the constraints are

H̃Cxxi =
[

IP 0P×Q

]
, (22)

where Cxxi = [Tx Tv] is the constraint matrix of sizeL×(P+Q).
Our optimization problem is now

min
H̃

tr
(
H̃RyH̃T

)
s. t. H̃Cxxi =

[
IP 0P×Q

]
, (23)
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Figure 1: The (a) output SNRs, (b) output SIRs, and (c) signal re-
duction factors of the LCMV (HL), MVDR (HM), Wiener (HW),
and maximum SNR (Hmax) filters when applied on a synthetic,
noisy, periodic signal.

from which we find the LCMV filtering matrix as

H̃LCMV =
[

IP 0P×Q

] (
CT

xxiR
−1
y Cxxi

)−1

CT
xxiR

−1
y . (24)

We immediately see from (24) that we must have P + Q ≤ L,
otherwise the matrix CT

xxiR
−1
y Cxxi is not invertible. For P +Q >

L, the LCMV does not exist. For P +Q = L, the LCMV simplifies
to

H̃LCMV =
[

IP 0P×Q

]
C−1

xxi . (25)

Finally, we see that the LCMV for the estimation of x(k) is

HLCMV = Tx

[
IP 0P×Q

] (
CT

xxiR
−1
y Cxxi

)−1

CT
xxiR

−1
y . (26)

5. RESULTS AND DISCUSSION
First, we evaluated the proposed filter on a synthetic, periodic sig-
nal, being mixed with an interfering periodic signal and white noise,
which makes it possible to control the rank of the signal, interfer-
ence and noise subspaces. In these experiments, the power ratios
between the desired and interfering periodic signals and between
the desired periodic signal and the white noise were 10 dB. More-
over, the desired periodic signal was constituted by 5 harmonics
with a pitch of 0.175 rad/s, while the interfering periodic signal was
constituted by 3 harmonics with a pitch of 0.31 rad/s. Then, covari-
ance matrices needed for the filter design, i.e., Rx, Rxi , and Rv
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Figure 2: The estimated (a) output SNRs, (b) output SIRs, and (c)
signal reduction factors of the LCMV (HL), MVDR (HM), Wiener
(HW), and maximum SNR (Hmax) filters when applied on a real,
noisy, speech signal.

were formed using the covariance matrix models for periodic sig-
nals and white noise, respectively. In this way, we get closed-form
expressions for the performance measures of the filters, and do not
need to estimate any signal statistics. Using this setup, we measured
the output SNR, the output SIR, and the signal reduction factor for
the proposed filter, and compared it with MVDR, Wiener, and max-
imum SNR filters [10]. The performance measures were evaluated
as a function of the filter length, L, and they are shown in Fig. 1.
As can be seen, the LCMV filter requires a longer filter length to
achieve a high output SNR due to the extra constraints introduced.
However, for L > 50, the LCMV can achieve much higher out-
put SIR than all the other filters in the comparison, while having
an output SNR similar to that of the MVDR and Wiener filters. As
expected, the LCMV filter does not distort the desired signal in any
case and thereby has a signal reduction factor of 0 dB.

Then, the LCMV filter was also evaluated on a real, speech
signal. For this experiment, we used a 2.4 s long, female, speech
excerpt from the Keele database [12]. We added white noise to
the speech signal at an average ratio of 10 dB compared to the
speech signal, and we added a periodic interferer at a speech-to-
interference ratio of 0 dB. The interfering periodic signal was con-
stituted by 3 unit amplitude harmonics with a pitch of 0.25 rad/s.
Furthermore, the filter length was L = 150, the signal subspace
rank was assumed to be P = 20, and the interfering signal sub-
space rank was Q = 6. To design the filters at each time instance,

we used outer product averaged estimates obtained directly from
the past 400 samples of the clean speech, noise and interfering sig-
nals, respectively, as noise statistics estimation is out of the scope
of this paper. Using this setup, the same filter as in the previous
experiment were designed and applied to the noisy speech. Note
that a whole vector of time-consecutive, desired signal sample es-
timates were obtained at each time instance, and these are thereby
overlapping from one time instance to the following. The result-
ing enhanced signal was therefore obtained by averaging these over
time. In Fig. 2, the resulting output SNRs, output SIRs, and signal
reduction factors are depicted over time. As expected, the LCMV
filter generally has a lower output SNR than the MVDR filter, but it
also has a much higher output SIR.
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