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ABSTRACT

This paper proposes a method for modeling bridge reflectances and
body radiativity profiles as digital filters in the context of sound syn-
thesis by digital waveguides. The model is based on modal analysis
of bridge driving-point admittance measurements obtained experi-
mentally. Digital filter coefficients are estimated from modal analysis
parameters, which are obtained by an optimization process that min-
imizes the error between measured and synthesized admittances,
and between measured and synthesized radiativity profiles. Filter
coefficients are then used in a digital waveguide synthesis model to
render plucked string sounds.

Index Terms— String instrument, bridge, admittance, radiativ-
ity, digital filter, modal synthesis, digital waveguides

1. INTRODUCTION

String instruments radiate sound indirectly: energy from a narrow
vibrating string is transferred to a radiation-efficient body of larger
surface area. To a large extent, sound radiation is produced due to the
transverse velocity of the instrument body surfaces (e.g., the front
or back plates), and such surface motion is transferred to the body
through the force that the string exerts on the instrument’s bridge.
Because of the importance of the bridge in mechanically coupling
the strings and the body, the relation between applied force and both
the induced velocity at the bridge and the radiated sound has been
an object of study for over forty years [1].

Focusing on sound synthesis methods that do not rely on ex-
pensive convolutions with measured impulse responses, an early
work on efficient digital modeling of bridge admittances for sound
synthesis [2] proposed and evaluated several techniques for auto-
matic design of common-denominator IIR filter parameters from
violin bridge admittance measurements, making real-time violin
synthesis an affordable task by combining digital filters with digital
waveguides. However, while efficiency and accuracy can be well
accomplished (also when applied to other string instruments [3]]),
positive-realness (passivity) [4] cannot be easily guaranteed with
common-denominator IIR schemes, leading to instability problems
when used to build string terminations. In that regard, using the
modal framework [5] as a strategy for designing IIR filters offers two
advantages: (i) admittance can be represented through a physically
meaningful formulation, and (ii) positive-realness can be enforced.
Less efficient approaches for admittance modeling are based on
classical modal synthesis or frequency-domain methods [6]. Radia-
tivity profiles are easier to measure because they can be acquired
with sound pressure transducers, as opposed to mechanical vibration
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Figure 1: Two-dimensional bridge driving-point admittance.

transducers. Measured radiativity profiles have traditionally served
[7, 18] as a musical instrument analysis technique.

Our work is focused on efficient sound synthesis by using the
digital waveguid framework [9]]. The traveling wave solution of
the homogeneous wave equation is used to model each transversal
direction of motion of an ideal string. This is efficiently implemented
by bi-directional digital delay lines holding velocity traveling waves,
one per string and transversal direction. We ignore wave dispersion
due to bending stiffness. Propagation losses are consolidated at the
end of each delay line and implemented with a first-order recursive
digital filter. Starting from experimental measurements of bridge
admittance and body radiativity, this paper is concerned with the
design of lumped string terminations that efficiently model wave
reflectance at the bridge, string-string coupling at the bridge, and
sound radiativity. Our models are based on a modal decomposition
of the bridge input admittance, which is then used as a basis to design
said terminations as digital filters in parallel form.

The paper is organized as follows. Section[2]reviews the tech-
nique used to obtain a modal decomposition of the bridge input
admittance from vibration measurements. Following the digital
waveguide theory for lumped junctions, Section[3]introduces a bridge
reflectance formulation that allows the direct interconnection of any
number of waveguides and also obtaining the bridge force. In Sec-
tion 4} we propose a model for radiativity that is constructed by
fitting radiativity measurements to a projection of the modal decom-
position of the bridge input admittance. Two models are proposed
for radiativity: a first, simpler model is based on a real-valued pro-
jection over the admittance modal basis; a second, more elaborated
model is based on a complex-valued projection over the admittance
modal basis, requiring a reformulation of the reflectance model. Sec-
tion 5] concludes the paper by presenting some results and showing
directions for future work.
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2. MODAL ANALYSIS OF THE BRIDGE ADMITTANCE

We model the two-dimensional driving-point bridge admittance ma-
trix Y of Figure[T] via the modal framework, by means of an IIR
digital filter in parallel form. Starting from the passive admittance
matrix formulation introduced in [10] (see equation (II])), we devel-
oped an optimization technique for fitting the parameters of a passive
IIR digital filter to vibration measurements obtained experimentally.
A useful set of structurally passive two-dimensional driving-
point admittance matrices are expressed in the z-domain [[10] as

5 Yin(2)  Vio(z l
Yo = |y T - S )R ()

where each R, is a 2 X 2 positive semidefinite matrix, and each
m-th scalar modal response

1—272

(1 =pmz)(1 = przt)

is a second-order resonator determined by a pair of complex con-
jugate poles p,, and p},. The numerator 1 — z~2 is the bilinear-
transform image of s-plane zeros at DC and infinity, respectively,
arising under the “proportional damping” assumption [11]]. It can be
checked that H,,(z) is positive real for all |p,,| < 1 (stable poles).
We estimate p,,, in terms of the natural frequency and the half-power
bandwidth of the m-th resonator [4]].

Departing from admittance measurements in digital form and
the M-th order modal decomposition described in equation (T)), the
modal estimation problem is posed as the constrained minimization

Hp(z) =

minimize E(Y,Y)
w,B,R (2)

subjectto  C,

where w = {w1, -+ ,wn } are the modal natural frequencies, B =
{Bi1," -, Bm} are the modal bandwidths, R = {Ru, - ,Ram}
are the gain matrices, £(Y, Y) is the error between the measurement
matrix Y and the model matrix Y', and C is a set of constraints.

In a first stage, mode frequencies and bandwidths are estimated
in the frequency domain via sequential quadratic programming [12].
Then, mode amplitudes are estimated via semidefinite programming
[12] while enforcing passivity. We obtain accurate, low-order digital
admittance matrix models relying on the modal framework. The
frequency response of the horizontal entry Yin of a cello bridge
admittance matrix model (M = 15) is displayed in Figure 2} Details
about this modeling procedure, including both the measurement and
the fitting, can be found in [13].

3. REFLECTANCE MODEL

Following the digital waveguide formulation for loaded junctions
[4], let v;f (n) and v, (n) respectively be the vectors of incoming
and outgoing transversal velocity waves (in our case, each vector
is two-dimensional) from the n-th string connected to the bridge.
Analogously, let £, (n) and f;; (n) be the vectors of incoming and
outgoing transversal force waves of the n-th string acting on the
bridge. The transversal velocity v, (n) and force £, (n) of the n-th
string at the bridge are v,,(n) = vl (n) + v, (n) and f,(n) =
£ (n) + £, (n).

Being a series connection for transverse waves, the bridge and
the endpoints of the N strings present the same velocity at all times,
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Figure 2: Example fitting results of cello bridge horizontal admit-
tance entry Yin. Magnitude (top) and phase (bottom). Sampling
frequency of 22050 Hz. Dashed curves: admittance measurement;
solid curves: model synthesized with M = 27.

while the total sum of string forces must equal that of the bridge.
This yields
ve(n) =vi(n) =...=vn(n)

and
N

fs(n) =Y fu(n),

with v (n) and fp(n) being the bridge velocity and force vectors
respectively. In the z-domain, it can be proved that

_ 230, Za Vi (2)

FB (Z) - 1 + ZTYB (Z) ’ (3)

where Z,, is a diagonal matrix representing the wave impedance of

the n-th string,
N
n=1

and Y p(z) is the z-domain expression for the model of the driving-
point admittance (see Y(z) in equation (I)) . From the bridge force
vector F g(2), it should be straightforward to compute the bridge
velocity vector V g(z) via

Vi(2) =Yp(2)Fp(2). “

Back in the time domain, from the bridge velocity vector v (n) it
is possible to obtain the outgoing velocity wave vectors by means of

v, (n) =ve(n) — v (n). 5)

3.1. Parallel reflectance model

Because the formulation of the bridge driving-point admittance
Y () presents a parallel structure (see equation (T)) that we want
to maintain in our implementation, inverting Y 5 (z) as it appears
in equation (3) is impractical (the parallel structure would be lost).
This problem can be overcome by reformulating each scalar modal
response H,, (z) in equation (I) as proposed in [14]], and later ap-
plied in [10], using wave-digital parallel adaptors to interconnect
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multiple string (waveguide) terminations. Here we follow a similar
procedure (via applying the reformulation of second-order sections
as introduced in [14]) though instead of using wave-digital parallel
adaptors to interconnect multiple waveguides at the bridge, we pro-
pose a new reflectance formulation that enables direct attachment
of any number of waveguide terminations and, most importantly,
obtaining the bridge force F(z).

First, let’s revisit the reformulation of second-order sections
as introduced in [14] and applied in [10]]. Let each scalar modal
response H,(z) in Y g(2) be expressed as

Hp(2) = 12 (6)
” o 1+a7n,1Z71 +a7VL,2Z72’
where a1, = —2|pm| cos(Lpm) and ag,m = |pm|?. It is possible
to re-write H,,(2) as
— — bm 0 + bm 12371
Hp(2) =1 "HE(2) =1 ! ’ :
(2) +2 Ha(2) tz 1+ amiz=! + am,2272’
7
where by,,0 = —am,1 and b1 = —1 — am,2. The expression for
Y 5(z) becomes
Yi(2) = Y5 +27'Y%(2), ®)
with
_ M
Yz =) Rn
m=1
©

Y (2) =Y Hb(2)Rum.

Our proposed solution to the problem of formulating a reflectance
is to plug the reformulated admittance model of equation (8) into
equations (3) and (@) as follows. We first re-write equation (3) as

N
F5(2) + ZrYs(2)Fs(2) =2> Z,Vi(z)  (10)

n=1
and, by using equation (8)) and solving for the bridge force vector

F5(z), we obtain

_2 Zg:1 Z,V}(2) — 2 ' Zr Y} (2)Fp(2)

F :
5(2) 1+ 2ZrY5

(1)

Then, introducing equation (§) into equation (@), the expression for
the bridge velocity vector V g(z) becomes

Vi(z) = Y5F5(2) + 2 ' Y% (2)Fp(2). (12)

4. RADIATIVITY MODEL

By using a calibrated force hammer (impact at the bridge, in the
vertical and horizontal directions) and a sound pressure transducer
(microphone at 1.5m distance facing the top plate), we measured
radiativity frequency responses by deconvolving the measured sound
pressure signal by the input excitation force signal. Measured fre-
quency responses are Dy, (w) and D, (w), for horizontal and vertical
bridge excitation respectively. Our assumption is that, considering a
two-dimensional model for the bridge admittance, the total sound
pressure P at the microphone will be the sum of the contributions
from the two directions (horizontal and vertical) of the bridge force.
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4.1. Model with real gains

Our aim is to construct a digital filter E(z) such that the modeled
sound pressure signal P(z) can be obained during synthesis as

P(z) = E(2)F5(2), (13)

where Fg(2) = [ Fp,1n(2) Fp,»(2)]7 is the bridge force vector and
E(z) = [ En(2) Ey(z)] is constructed from two transfer functions,
each dedicated to one direction of force at the bridge. By taking
advantage of the modal estimation that was carried out when model-
ing the admittance [13]] we propose first a model for each transfer
function E(z) in E(z) as

M
E(2) = Hu(2)Ym, (14)
m=1

where vy, is a real-valued scalar used to weight the m-th mode. In
order to estimate the gains +,,, we solve the linear problem

minimize||By — d|], (15)
P

where v = [y1 -+ Ym - yar |7 is a real-valued gain vector, B is
a matrix (basis) with each m-th column containing samples of the
impulse response of H,,(2), and d is a vector containing samples of
the impulse response of measurement D. In other words, we project
the measured microphone onto the mode responses.

4.2. Model with complex gains

To allow for complex gains and therefore any relative phase between
modes, we model each of the scalar modal components of the ra-
diation as the real damped oscillation that results from summing
two complex resonators whose poles and residues respectively form
complex-conjugate pairs [4]. It is possible to reformulate the re-
flectance model so that resulting second-order sections can be reused
in the radiativity model, therefore minimizing the computational cost
required by using complex gains in our radiativity model.

4.2.1. Parallel reflectance model

Here we present an alternate method for formulating the parallel
admittance model so that it is possible to use a single set of second
order sections in both the reflectance and radiativity models. First,
we proceed to express the admittance expression in equation (1)) as

M

Y(2)=(1-2"2)> Un(2) R, (16)

m=1
where R, is a positive semidefinite matrix, and each scalar

1
U, = , 17
rl(z) 1+am,1271 +am,2272 ( )

has real coefficients, with a1,.m = —2|pm| cos(£pm) and az,m =
|pm |?. We reformulate each scalar U, (2) as

Cm0 + Cmaz” !
L+ am1z7t +amaz™?’
(18)
where ¢m,0 = —am,1 and ¢m,1 = —am,2. Now the expression for
the bridge driving-point admittance matrix Y g (z) can be written as

Un(z)=1+42"'00(z)=1+2""

Yi(z)=(1—-22)(Ys+2'Y%(2), (19)
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where

M
Yz=3) Rn
m=1

(20)
M
Y4(2) = > Uk(2)Rom.
m=1
In an analogous manner as introduced in Section (3| we use equa-
tions (T0), (T12), and (T9) to derive the z-domain expressions needed
for our reflectance model (the z arguments have been dropped for
notational simplicity):

Fp =
2N Z, Vot + 27227 YEFs — 27 (1 - 2 ) Zr YL Fp
1+ ZTYiB
1)
Ve =(1-27°)(YsFp+2 '"YLFp) (22)

4.2.2. Radiativity model

With our new formulation for the second order sections in the re-
flectance model, we can model each transfer function E(z) from
E(z) in equation (T3) as

M 1
1o, m + M,m=z
E(z) = : : 23
(2) mZ:l T (23)

where 7o, and 71, are real. Each m-th term in the sum has real
coefficients and corresponds to the result of adding two complex res-
onators with respective poles and residues being complex-conjugate.
Each m-th pair of complex poles p,, and p;, leads to denomina-
tor terms a1,m = —2|pm|cos(Lpm) and az,m = |pm|>. Using
equation (T7), we can write

M
E(z) =Y (om +mmz )Um(2). (24)

m=1

Vectors mq = [no1 - Nom--mon] and my =
[ mim- M,M }T can be obtained by solving the lin-
ear problem
minimize||Bn — d||, (25)
n

where 7 = [n,” n;7]" is a real-valued vector; d is a vector
containing samples of the impulse response of measurement D;
and B is a matrix (basis) with each m-th of the first M columns
containing samples of the impulse response of U, (z), and each m-
th of the remaining M columns containing samples of the impulse
response of 2z~ U, (2).

5. CONCLUSION

This paper proposes a method for modeling bridge reflectances and
body radiativity profiles as digital filters in the context of sound
synthesis by digital waveguides. The technique, which is based on
modal analysis of bridge driving-point admittance measurements,
provides a basis for estimating digital filter coefficients by minimiz-
ing the error between measured and synthesized admittances, and
between measured and synthesized radiativity profiles. Obtained
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Figure 3: Guitar modeling example, with M = 36 in the range
40 < f < 5000 Hz. Measured (thin line) versus synthesized (thick
line) bridge horizontal admittance (top) and radiativity (bottom).
Scaling was applied for clarity.

digital filter coefficients can be used to build an efficient sound syn-
thesis model including bridge reflectance, measured radiativity, and
(implicitly) lost vibrational energy from the bridge transmittance
to non-radiating modes. In Figure 3] an example modeled one-
dimensional guitar admittance and its radiativity profile are plotted
along with experimental measurements. Both are rendered via the
models in Sectionf.2] i.e. via the formulation used to express the
radiativity as a complex-valued projection over the admittance modal
basis. Sound examples rendered using these models can be found
onlin for guitar, violin, viola, and cello. From a psychoacoustics
perspective, listening tests could help exploring the trade-off between
computational cost (order model) and perceived sound fidelity.

A problem of this modeling procedure arises from the fact that
the modal parameters estimated from admittance measurements
are used for modeling measured radiativity profiles. Low-energy
modes present in the admittance measurement can be missed by
the optimization method due to their small contribution to the error
function, and it may be the case that some of these modes turn out to
be radiation-efficient. For that reason, the radiativity model may lack
some prominent resonances in some cases. In the near future, we
hope to improve on this aspect and also to explore the possibilities
of using a spherical modal basis in our radiativity model.
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