
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Submitted to 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 20-23, 2019, New Paltz, NY

INDEPENDENT VECTOR ANALYSIS WITH MORE MICROPHONES THAN SOURCES

Robin Scheibler and Nobutaka Ono

Tokyo Metropolitan University, Tokyo, Japan

ABSTRACT

We extend frequency-domain blind source separation based on in-
dependent vector analysis to the case where there are more mi-
crophones than sources. The signal is modelled as non-Gaussian
sources in a Gaussian background. The proposed algorithm is based
on a parametrization of the demixing matrix decreasing the number
of parameters to estimate. Furthermore, orthogonal constraints be-
tween the signal and background subspaces are imposed to regular-
ize the separation. The problem can then be posed as a constrained
likelihood maximization. We propose efficient alternating updates
guaranteed to converge to a stationary point of the cost function.
The performance of the algorithm is assessed on simulated signals.
We find that the separation performance is on par with that of the
conventional determined algorithm at a fraction of the computa-
tional cost.

Index Terms— Blind source separation, independent vector
analysis, overdetermined, optimization, array signal processing

1. INTRODUCTION

We address the problem of blindly separating K sound sources
recorded with M microphones when K < M . By far the most
popular technique for blind source separation (BSS) is independent
component analysis (ICA) which only requires statistical indepen-
dence of the sources [1]. A convolutive sound mixture is written

x̂m[t] =

K∑
k=1

(âmk ? ŝk)[t], (1)

where x̂m[t] is the m-th microphone signal, ŝk[t] is the k-th source
signal, and âmk[t] is the impulse response between the two. The
operator ? denotes convolution. In the time-frequency domain, con-
volution becomes frequency-wise multiplication and we have

xmfn =
K∑

k=1

amkfskfn, (2)

where xmfn and skfn are the short-time Fourier transforms
(STFT) [2] of x̂m[t] and ŝk[t], respectively, and amk[f ] is the
discrete Fourier transform of âmk[t]. Finally, f = 1, . . . , F and
n = 1, . . . , N are the discrete frequency bin and frame indices,
respectively. This is an approximation valid when the Fourier trans-
form is sufficiently longer than the impulse response. In this form,
the separation problem can be solved by applying ICA to every fre-
quency sub-band independently [3]. Unfortunately, the assignment
of output signals to sources in each of the sub-bands is unknown
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and the correct permutation must be recovered. Clustering is a pop-
ular solution for permutation alignment [4]. Nevertheless, this extra
step is notoriously hard to get right and avoiding it is desirable.
Independent vector analysis (IVA) does just that by considering the
problem as joint separation over frequencies [5, 6]. The compu-
tationally efficient, hyperparameter-free, method for ICA and IVA
known as iterative projection [7, 8, 9] forms the basis of our work.

Both for ICA and IVA, the determined case, i.e., K = M ,
is the most straightforward. It allows to do a change of variables
and directly maximize the likelihood of the separated signals. In
practice, however, using extra microphones adds robustness and in-
creases performance. This is the so-called overdetermined case with
K < M . Unfortunately, the aforementioned change of variables
cannot be done anymore. A straightforward solution to this prob-
lem is to run the algorithm for M sources, and retain the K outputs
with the largest power. Alternatives to power-based selection exist,
for example [10]. Due to the large number of parameters, O(M2),
to estimate, such approaches come with a high computational cost.
Ideally, we want to estimate no more than O(KM) parameters.

Several methods with better complexities have been proposed.
These methods fall broadly in two categories. First, some methods
not based on the aforementioned change of variables can directly
tackle the overdetermined case [11, 12], but some require regular-
ization [13]. Second, methods that first reduce the number of chan-
nels to K and then apply a determined separation algorithm. This
is done for example by selecting the best K channels [14, 15], or
by principal component analysis (PCA) [15, 16, 17]. Nevertheless,
these methods inherently risk removing some target signal upfront,
irremediably degrading performance. Anecdotally, a few methods
have been proposed for instantaneous mixtures [18, 19], and in
the time-domain [20]. All the above methods are single mixture
methods that require permutation alignment. Few techniques have
been proposed for overdetermined IVA. The single source case, i.e.,
K = 1, known as independent vector extraction (IVE), has been
tackled with a gradient ascent method [21].

We propose OverIVA, an algorithm to perform IVA with K <
M . The proposed algorithm is hyperparameter-free, guaranteed to
converge, and only requires the estimation of O(KM) parame-
ters. We derive two variants based on the Laplace and time-varying
Gaussian source distributions. The resulting algorithms can be seen
as extensions of IVE [21] to more than one source, and with the
fast converging updates of AuxIVA [8]. Numerical experiments re-
veal its separation performance to be comparable to that of full M -
channels IVA at a fractionK/M of the computational cost. We also
find that adding extra microphones fails to improve the performance
when using PCA as a pre-processing in diffuse noise.

The rest of this paper is organized as follows. Section 2 de-
scribes the hypotheses and signal model. In Section 3, we derive
the proposed algorithm. The numerical experiments are discussed
in Section 4. Section 5 concludes.
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2. MODEL

The microphone signals xfn = [x1fn, . . . , xMfn]
> ∈ CM at fre-

quency f and time n is modelled as

xfn = Afsfn + Ψfzfn, (3)

where sfn = [s1fn, . . . , sKfn]
> ∈ CK contains the source sig-

nals, zfn ∈ CM−K is a vector of noise, and Af ∈ CM×K and
Ψf ∈ CM×M−K are the respective mixing matrices. Our objec-
tive is to estimate the demixing matrix Ŵf ∈ CM×M such that the
source vector sfn is recovered from the measurements[

sfn

Φfzfn

]
= Ŵfxfn. (4)

The matrix Φf is an arbitrary invertible linear transformation re-
flecting that we do not aim at separating the noise components. In-
deed, we may even choose Φf to simplify the task at hand. Namely,
we choose it so that

Ŵf =

[
Wf

Uf

]
with

Wf =
[
w1f · · · wKf

]H ∈ RK×M ,

Uf =
[
Jf −IM−K

]
∈ RM−K×M ,

(5)
with Jf ∈ CM−K×K . With a slight abuse of notation, we let
zfn = Ufxfn. Following blind source separation principles, we
will assume that the target sources have some non-Gaussian dis-
tribution. On the other hand, because we do not want to separate
the noise components, they are likely to stay mixed and thus their
distribution can be assumed close to Gaussian. However, the Gaus-
sianity of the background by itself will turn out to be ineffective at
separating the foreground components. We thus rely on orthogonal
constraints to further help separation [22, 21]. We formalize this
intuition with the following hypothesis.

1. The separated sources are statistically independent

skn ⊥ sk′n′ , ∀k 6= k′, n, n′ (6)

where we use the notation skn ∈ CF to mean the vector
of frequency components of the k-th source vector at frame
n. In addition, the separated sources have a time-varying
circular Gaussian distribution (or Laplace, see Section 3.1)

ps(skn) =
1

πF rFkn
e
− ‖skn‖

2

rkn , (7)

where rkn is the variance of source k at time n.

2. The separated background noise vectors have a time-invariant
complex Gaussian distribution across microphones

pzf (zfn) =
1

πM−K |det(Rf )|
e−zH

fn(Rf )−1zfn (8)

where Rf is the (unknown) spatial covariance matrix of the
noise (after separation). Moreover, the separated background
noise is statistically independent across frequencies.

3. The sources and background span orthogonal subspaces after
separation, namely,

0 =
1

N
YfZ

H
f = WfCfU

H
f , with Cf =

1

N
XfX

H
f ,

(9)
where Xf = [xf,1, . . . ,xf,N ], Yf = WfXf , and Zf =
UfXf . The matrix Cf is the covariance of the input signal.

Based on these hypothesis, we can write explicitly the likelihood
function of the data and find the demixing matrices maximizing it.
A few points are in order. We assume the covariance matrix of the
noise is rank M − K. In practice, this means that we will not be
able to remove noise that has the same steering vector as one of
the sources. Independence of noise across frequencies is a simpli-
fying assumption and is typically not fulfilled. We confirm in the
experiment of Section 4 that this does not seem to be a problem.
One can also wonder how the algorithm can tell apart sources from
noise. While we do not offer a precise analysis, we conjecture that
the K strongest sources have a very non-Gaussian distribution. On
the contrary, the mix of the noise and remaining weaker sources
will have a distribution closer to Gaussian. As such, we expect the
maximum likelihood to choose the strongest sources automatically.

3. ALGORITHM

By using (7) and (8), and omitting all constants, we can write the
negative log-likelihood of the observed data

J = −2N
∑
f

log | det(Ŵf )|+
∑
kn

(
F log rkn +

‖skn‖2

rkn

)
+
∑
fn

(
log | det(Rf )|+ zH

fn(Rf )
−1zfn

)
. (10)

where ‖skn‖2 =
∑

f |w
H
kfxfn|2. The first term is due to the

change of variables. First, one can show that the gradient of (10)
with respect to Rf is zero when Rf = UfCfU

H
f . Furthermore,

for this choice of Rf , regardless of the choice of Uf , we have∑
n

zH
fnR−1

f zfn = tr
(
R−1

f ZfZ
H
f

)
= N(M −K). (11)

As a consequence, once Rf has been fixed, the background part of
the cost function can be ignored for the estimation of Ŵf .

The minimization of (10) with respect to Wf can be carried
out as in AuxIVA [8] via the iterative projection method. Because
direct minimization for Wf is difficult, this method minimizes (10)
alternatively with respect to wkf , k = 1, . . . ,K.

rkn ← 1
F

∑
f |w

H
kfxfn|2, Vkf ← 1

N

∑
n

1
rkn

xfnx
H
fn,

wkf ←
(
ŴfVkf

)−1

ek, wkf ←
wkf(

wH
kf

Vkfwkf

)− 1
2
.

(12)

Once these updates have been applied, we must modify the lower
part of the demixing matrix, i.e. Jf , so that the noise subspace stays
orthogonal. For fixed Wf , we can solve (9) for Jf and obtain

Jf =
(
E2CfW

H
f

)(
E1CfW

H
f

)−1

, (13)

where E1 = [IK 0K×M−K ] and E2 = [0M−K×K IM−K ].
The final algorithm applying updates to Wf and Jf alterna-

tively is detailed in Algorithm 1. Each of the updates from (12)
and (13) set the gradient of the cost function to zero with respect
to the parameter optimized. Thus, the value of the cost function is
non-increasing under these updates. While convergence to a global
minimum is not guaranteed, convergence to a stationary point is.
Concerning the initial value of Wf , we find that a rectangular iden-
tity matrix is satisfactory.



Submitted to 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 20-23, 2019, New Paltz, NY

Input : Microphones signals {xfn}, # sources K
Output: Separated signals {sfn}
sfn ← xfn, ∀f, n
Wf ← [IM 0K×M−K ], ∀f
Jf ← 0M−K×K , ∀f
for loop← 1 to max. iterations do

for k ← 1 to K do
rkn ← 1

F

∑
f |skfn|

2, ∀n
for f ← 1 to F do

Vkf ← 1
N

∑
n

1
rkn

xfnx
H
fn

wkf ← (ŴfVkf )
−1ek

wkf ← wkf

(
wH

kfVkfwkf

)− 1
2

skfn ← wH
kfxfn, ∀n

Jf ←
(
E2CfW

H
f

) (
E1CfW

H
f

)−1

end
end

end
Algorithm 1: OverIVA

3.1. Laplace overdetermined IVA

The algorithm presented so far assumes a time-varying Gaussian
distribution of source vectors. It is possible to change the model
to a time-invariant circular Laplace distribution as in AuxIVA [8].
Under this new source model, the cost function becomes

L = −2N
∑
f

log | det(Ŵf )|+
∑
kn

‖skn‖2 +
∑
fn

log pzf (zfn).

Ignoring constants, one can show that this new cost function is ma-
jorized by (10) for the specific choice [8]

rkn = 2

√∑
f
|wH

kfxfn|2. (14)

In this case, OverIVA becomes an auxiliary function based opti-
mization procedure that is still guaranteed to converge to a station-
ary point.

3.2. Computational Complexity

When the number of time framesN is larger than the number of mi-
crophones M , the runtime is dominated by the computation of the
weighted covariance matrix Vkf . The computational complexity
in that case is O(KFM2N). When the number of microphones
is larger, the bottleneck is the matrix inversion with complexity
O(KFM3). The total complexity of the algorithm is thus

COverIVA = O(KFM2 max{M,N}). (15)

The leading K comes from the number of demixing filters (one
per source), and F is the number of frequency bins. In contrast,
conventional AuxIVA needs to update allM demixing filters, which
leads to complexity

CAuxIVA = O(FM3 max{M,N}). (16)

The overall complexity is thus reduced by a factor K/M . This is
significant in many practical cases as the number of target sources
is rarely larger than four, and the number of microphones can easily
be over ten for larger arrays.

Target sources Noise sources

2 m

10 m

7.
5 

m

Mic array

Figure 1: Setup of the simulated experiment.

4. PERFORMANCE EVALUATION

In this section, the separation and runtime performances of the pro-
posed and conventional algorithms are compared.

4.1. Setup

We simulate a 10m×7.5m×3m room with reverberation time
of 300ms using the image source method [23] implemented in
the pyroomacoustics Python package [24]. We place a half-
circular microphone array of radius 4 cm at [4.1, 3.76, 1.2]. The
number of microphones is varied from 2 to 8. Between 2 and 4
target sources are placed equispaced on an arc of 120° of radius
2m centered at the microphone array and at a height of 1.2m. Dif-
fuse noise is created by 10 additional sources on the opposite side
of room. This setup, illustrated in Fig. 1, is that of a few speakers
holding a meeting in a noisy open office.

After simulating propagation, the variances of target sources are
fixed to σ2

k = 1 (at an arbitrary reference microphone). The signal-
to-noise and signal-to-interference-and-noise ratios are defined as

SNR =
1
K

∑K
k=1 σ

2
k

σ2
n

, SINR =

∑K
k=1 σ

2
k

Qσ2
i + σ2

n

, (17)

where σ2
i and σ2

n are the variances of the Q interfering sources
and uncorrelated white noise, respectively. We set them so that
SNR = 60 dB and SINR = 10 dB. Speech samples of approxi-
mately 20 s are created by concatenating utterances from the CMU
Sphinx database [25]. The experiment is repeated 50 times for
different attributions of speakers and speech samples to source lo-
cations. The simulation is conducted at a sampling frequency of
16 kHz. The STFT frame size is 4096 samples with half-overlap
and uses a Hann window for analysis and matching synthesis win-
dow. We compare OverIVA to three methods.

1. AuxIVA: Full IVA with M channels, followed by picking
the K strongest outputs.

2. PCA+AuxIVA: Reduce the number of channels to K via
PCA, followed by IVA. This is only done when K ≥ 2.

3. OGIVEw: For K = 1, orthogonally constrained indepen-
dent vector extraction (OGIVEw) [21].

We further compare the time-varying Gauss and Laplace versions
of all these algorithms. AuxIVA-based algorithms are run for 100
iterations. OGIVEw is run for 4000 iterations with step size of 0.01.
The scale of the separated signals is restored by projecting back on
the first microphone [26].
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Figure 2: Box-plots of signal-to-distortion ratio (SDR, top row) improvements between mixture and separated signals. Dots represent outliers. The number of
sources increases from 1 to 4 left to right and top to bottom. The number of microphones increases from 2 to 8 on the horizontal axis.

Figure 3: Left, ratio of median runtimes of OverIVA/PCA+AuxIVA to full
AuxIVA. Right, runtime per second of audio (i.e., real-time factor) for single
source extraction.

4.2. Runtime Performance

To verify the claim of Section 3.2, we measured the runtime of 100
runs of each algorithm and compute the median. As shown in Fig. 3,
on the left, the ratio of the runtime of OverIVA to that of AuxIVA
follows closely the predictedK/M . Unsurprisingly, PCA+AuxIVA
is much more computationally efficient since it only performs IVA
on K channels. However, its separating performance falls short as
discussed in the next section.

For a single source, as shown in Fig. 3, right, OverIVA is very
fast and has real-time factor (RTF) less than one for up to 8 micro-
phones (using 100 iterations). Comparatively, AuxIVA has RTF less
than one only up to 3 microphones. We also find that our straight-
forward Python implementation of OGIVEw is not competitive. Let
us note that OGIVEw requires many gradient ascent iterations that
might run faster in a compiled language such as C or C++.

4.3. Separation Performance

The separation performance of the algorithms is assessed in terms
of signal-to-distortion ratio (SDR) as defined in [27]. These metrics

are computed using the mir eval toolbox [28]. Fig. 2 shows box-
plots of SDR improvements (with respect to the mixture signal).

We find that of all algorithms, OverIVA and AuxIVA perform
best and similarly over all cases investigated. It is interesting to
notice a large gap between the determined case (where both algo-
rithms are identical) and using one extra microphone. Just the one
extra input signal boosts SDR by 3 to 4 dB. Adding further micro-
phones consistently improves SDR, albeit at a slower pace. In the
single source extraction scenario (i.e., K = 1), OverIVA turns out
to be perfectly suitable and largely outperforms the state-of-the-art
method OGIVEw. When K ≥ 2, the PCA+AuxIVA method falls
short in terms of separation, with virtually no improvement when
using more microphones. This is likely due to the diffuse noise,
since PCA is only optimal when the noise is uncorrelated across
channels. Finally, the difference between using Gauss or Laplace
models seems consistent across algorithms. For 1 and 2 sources,
Gauss IVA performs better than Laplace IVA. However, the trend
reverses for 3 and 4 sources. We conjecture that the Laplace Aux-
IVA might be more robust to mismatched initialization. Using more
microphones seems to make the gap in performance disappear.

5. CONCLUSION

We introduced OverIVA, a hyperparameter-free algorithm for blind
source separation with more microphones than sources. The al-
gorithm applies the efficient updates from auxiliary function-based
IVA while maintaining orthogonality between the signal and noise
subspaces. A parametrization of the demixing matrix that reduces
the number of parameters to estimate is introduced to reduce com-
plexity. We show that using more microphones indeed increases,
sometimes dramatically, performance, and that OverIVA solves the
problem at a fraction of the cost of full IVA. We also verify that the
algorithm performs largely over the state-of-the-art in the so-called
blind source extraction (single source) case. Future work will focus
on applying the algorithm to recorded data and assessing its perfor-
mance for real-time implementation.
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