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ABSTRACT

Acoustic event detection and scene classification are major research

tasks in environmental sound analysis, and many methods based

on neural networks have been proposed. Conventional methods

have addressed these tasks separately; however, acoustic events and

scenes are closely related to each other. For example, in the acous-

tic scene “office”, the acoustic events “mouse clicking” and “key-

board typing” are likely to occur. In this paper, we propose multi-

task learning for joint analysis of acoustic events and scenes, which

shares the parts of the networks holding information on acoustic

events and scenes in common. By integrating the two networks, we

expect that information on acoustic scenes will improve the perfor-

mance of acoustic event detection. Experimental results obtained

using TUT Sound Events 2016/2017 and TUT Acoustic Scenes

2016 datasets indicate that the proposed method improves the per-

formance of acoustic event detection by 10.66 percentage points in

terms of the F-score, compared with a conventional method based

on a convolutional recurrent neural network.

Index Terms— Acoustic event detection, acoustic scene classi-

fication, convolutional recurrent neural network, multitask learning

1. INTRODUCTION

There has been increasing interest in analyzing various sounds in

real-life environments such as cooking sounds in a kitchen or car

passing sounds in a street [1]. Various applications can be expected

from the automatic analysis of environmental sounds, for example,

abnormal sound detection systems [2], automatic life-logging sys-

tems [3, 4], surveillance systems [5, 6], and hearing-impaired sup-

port systems [7, 8]. In environmental sound analysis, the follow-

ing two tasks have mainly been studied: acoustic event detection

(AED) and acoustic scene classification (ASC). AED is the task

of detecting acoustic event labels and their onset/offset in an audio

recording, where an acoustic event indicates a type of sound such

as “mouse clicking,” “people talking,” or “bird singing.” ASC is

the task of predicting acoustic scene labels from a relatively long

duration recording, where an acoustic scene indicates a recording

situation with human activity such as “office,” “train,” or “cooking.”

For AED and ASC, many methods based on the Gaussian mix-

ture model (GMM) [9, 10], hidden Markov model (HMM) [11, 12],

and support vector machine (SVM) [13], have been proposed. As

alternative approaches for AED, those based on non-negative ma-

trix factorization (NMF) [14, 15] have been studied. Such ap-

proaches enable the analysis of polyphonic acoustic events by de-

composing their spectrum into product of a basis and activation ma-

trix, where each basis and each activation vector indicate a single

acoustic event and the active duration of the corresponding event,

respectively. More recently, developments in acoustic event and

scene analysis have led to renewed interest in deep neural networks

(DNNs) [16,17]. The DNN-based approaches achieve better results

than the conventional methods based on HMM, GMM, and SVM.

In AED and ASC, most of the studies have addressed acous-

tic events and scenes analysis separately; in many cases however,

acoustic events and scenes are related to each other. For example,

in the acoustic scene “office”, the acoustic events “mouse click-

ing” and “keyboard typing” are likely to occur, whereas the acous-

tic events “car” and “bird singing” do not tend to occur. In other

words, when analyzing the acoustic events “mouse clicking” and

“keyboard typing,” it is expected that information on the acoustic

scene “office” will help in detecting these acoustic events. On the

basis of this idea, AED utilizing information of the acoustic scene

in an unsupervised manner [18, 19] and ASC taking information of

acoustic events into account [20], which are based on Bayesian gen-

erative models, have been proposed. However, these conventional

methods do not estimate both acoustic events and scenes explicitly.

Moreover, these methods cannot be applied to state-of-the-art neu-

ral network-based methods.

In this paper, we present a new method for the joint analysis of

acoustic events and scenes based on multitask learning. The contri-

bution of this work is summarized as follows:

• we propose a method for joint analysis of acoustic events

and scenes using multitask learning combining state-of-the-art

AED and ASC approaches.

• we demonstrate that the multitask learning-based method im-

proves the AED performance.

The remainder of this paper is structured as follows. In Sec. 2,

conventional methods for AED and ASC are first discussed and the

proposed method for joint analysis of acoustic events and scenes

based on multitask learning is then introduced. In Sec. 3, the exper-

iments carried out to evaluate the performance of event detection

and scene classification are reported. Finally, we summarize and

conclude this paper in Sec. 4.

2. MULTITASK LEARNING OF ACOUSTIC EVENTS AND

SCENES

2.1. Conventional Method for Event Detection and Scene Clas-

sification

In this section, we review conventional AED and ASC methods

based on neural networks. AED involves the estimation of acous-

tic event labels and their onset/offset times, where acoustic events

may overlap in the time axis. In recent years, many neural network

based methods, such as a convolutional neural network (CNN)-

based approach [21] and a recurrent neural network (RNN)-based

approach [22], have been proposed. Specifically, it has been re-

ported that neural networks combining a CNN and a bidirectional

gated recurrent unit (BiGRU) successfully analyze acoustic events

http://arxiv.org/abs/1904.12146v4


with reasonable performance [23,24]. In the CNN-BiGRU network,

the acoustic feature X ∈ R
D×T , which is a time and frequency–

spectrum representation, is input to the network. Here, D and T

are the number of frequency bins and the number of time frames

of the input acoustic feature, respectively. The convolution layer

convolutes the input feature map with two-dimensional filters, then

max pooling is conducted to reduce the dimension of the feature

map. The output of the convolutional layer V ∈ R
D′

×T×C is then

concatenated as V′ = (x1,x2, . . .xt, . . . ,xT ) ∈ R
(D′

·C)×T , and

then V′ is fed to the BiGRU layer, where t and C are respectively

the time index and the number of filters of the convolution layer.

After that, the output vector ht is calculated using the following

equations:

g
f
t = σ(Wf

gxt +U
f
ght−1 + b

f
g ), (1)

r
f
t = σ(Wf

rxt +U
f
rht−1 + b

f
r ), (2)

h
f
t = (1− g

f
t )⊙ ht−1

+ g
f
t ⊙ tanh(Wf

hxt +U
f

h(r
f

hht−1) + b
f

h), (3)

g
b
t = σ(Wb

gxt +U
b
ght+1 + b

b
g), (4)

r
b
t = σ(Wb

rxt +U
b
rht+1 + b

b
r), (5)

h
b
t = (1− g

b
t )⊙ ht+1

+ g
b
t ⊙ tanh(Wb

hxt +U
b
h(r

b
hht+1) + b

b
h), (6)

ht =

[

h
f
t

hb
t

]

, (7)

where W and U are parameter matrices and b is a bias vector. Su-

perscripts f and b are the forward and backward networks, respec-

tively. Subscripts g and r indicate the update gate and reset gate,

respectively. g, r, ⊙, and σ indicate the update gate vector, reset

gate vector, Hadamard product, and sigmoid function, respectively.

The BiGRU layer is followed by a fully connected layer, which is

the output layer of the network calculated as

yt = σ(ht). (8)

The CNN-BiGRU network is optimized under the following sig-

moid cross-entropy objective function E1(Θ1) using the backprop-

agation through time (BPTT):

E1(Θ1) = −

T
∑

t=1

{

zt log(yt) + (1− zt) log(1− yt)
}

= −

M
∑

m=1

T
∑

t=1

{

zm,t log ym,t+(1−zm,t) log
(

1−ym,t

)

}

,

(9)

where m and zm,t are the index of the acoustic event category and

the target label in time frame t, which is 1 if acoustic event m is

active in time frame t, and 0 otherwise.

ASC is the task of estimating the acoustic scene with which

a sound clip is most associated. It has been reported that CNN-

based methods achieve state-of-the-art performance in ASC [25,26]

In CNN-based ASC, the time-frequency representation of acoustic
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Figure 1: Example of network structure for proposed multitask

learning of acoustic events and scenes

feature X is fed to a convolutional layer. The CNN layer is followed

by a fully connected layer, which is the output layer of the network

calculated as

yt = S(ht), (10)

where S indicates the softmax function. This network is opti-

mized under the following softmax cross-entropy objective function

E2(Θ2):

E2(Θ2) = −

N
∑

n=1

{

zn log S(yn)
}

, (11)

where n and zn are the number of acoustic scene categories and the

target label, respectively.

2.2. Proposed Method

The conventional methods for AED and ASC have been studied

separately. However, many acoustic events and scenes are related;

thus, we consider that the middle layers of the networks for both

AED and ASC extract features common to the acoustic event and

scene. On the basis of this idea, we propose the multitask learning

of acoustic events and scenes, which shares the parts of the networks

holding information of acoustic events and scenes in common. The

multitask learning enables us to jointly analyze multiple tasks that

are related to each other [27]. In speech processing, it has been

reported that multitask learning successfully improves the perfor-

mance of speech recognition [28, 29]. Moreover, it has also been

reported that when there is a difference in the degree of difficulty

between tasks, the performance of the harder task is improved us-

ing the information obtained from the easier task [27]. In this work,

we consider that AED is the harder task and ASC is the easier task,

and expect that the information of acoustic scenes will help AED.

The concept of the proposed method is shown in Fig. 1, where

we refer to the shared part of the network as “shared layers.” In

this network, we apply the CRNN as the event detection network

and the CNN as the scene classification network, and the CNN lay-

ers are shared between the event detection and scene classification



Table 1: Experimental conditions

Acoustic feature Log-mel energy (64 dim.)

Frame length / shift 40 ms / 20 ms

Length of sound clip 10 s

Network structure of shared layers 3 CNN

# channels of CNN layers (shared) 128, 128, 128

Filter size (shared) 1×3

Pooling size (shared) 8, 4, 2 (max pooling)

Network structure of scene layers 2 CNN

# channels of CNN layers (scene) 64, 16

Filter size (scene) 3×3

Pooling size (scene) 10, 5 (max pooling)

Network structure of event layers 1 BiGRU & 1 fully conn.

# units in GRU layer (event) 32

# units in fully conn. layer (event) 32

networks.

The objective function for the proposed method is expressed as

E(Θ) = E1(Θ1) + αE2(Θ2), (12)

where α is the weight of the acoustic scene classification loss. Note

that the proposed method can also be applied to different networks

from that shown in Fig. 1 when the networks can be optimized by

Eq. (12).

3. EVALUATION EXPERIMENTS

3.1. Experimental Conditions

We evaluated the performance of AED and ASC using the TUT

Sound Events 2016 [30] development, the 2017 [25] development,

and the TUT Acoustic Scenes 2016 [30] development datasets. In

these datasets, we used sound clips including four acoustic scenes;

“home,” “residential area” (TUT Sound Events 2016), “city cen-

ter” (TUT Sound Events 2017), and “office” (TUT Acoustic Scenes

2016), which contain 192 min of audio. Here, the acoustic scene

“office” did not have acoustic event labels; thus, we manually an-

notated event labels to the sound clips with the protocol described

in [30] and [25]. These sound clips contain the 25 acoustic events

listed in Table 3.

We used log-mel energies of 64 dimensions as acoustic features,

which were calculated for each 40 ms time frame with 50% over-

lap. The acoustic features were then input to the network shown in

Fig. 1. AED and ASC results were obtained from the outputs of the

network, in which active acoustic events were predicted using 0.5 as

the threshold of activation. The experiments were conducted using

a four-fold cross-validation setup. Other experimental conditions

are listed in Table 1.

3.2. Metrics

In AED, since acoustic events may overlap, the event detection per-

formance is evaluated on the basis of a segment-based F-score and

error rate (ER) [31]. To calculate the segment-based F-score, the

precision and recall are first calculated as

Table 2: Performance of acoustic event detection and scene classi-

fication

Method
Event Scene

F-score ER F-score

CRNN (event) 38.90% 0.776 -

CNN (scene) - - 66.36%

Multitask (α=0.1) 44.31% 0.721 46.72%

Multitask (α=0.01) 49.56% 0.695 58.94%

Multitask (α=0.001) 41.11% 0.760 52.93%
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Figure 2: Acoustic event detection and scene classification perfor-

mance as functions of weight α

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

where TP, FP, and FN are the total counts of true positive, false

positive, and false negative for all time frames and acoustic events,

respectively. The segment-based F-score is then calculated as

F-score =
2 · Precision ·Recall

Precision + Recall
. (15)

To calculate the segment-based ER, substitutions (S), deletions (D),

and insertions (I) are first calculated as

S(k) = min(FN(k),FP(k)), (16)

D(k) = max(0,FN(k)− FP(k)), (17)

I(k) = max(0,FP(k)− FN(k)), (18)

where k indicates the index of the time frame. The ER is then cal-

culated as



Table 3: Acoustic event detection performance for each event

Event
(object) (object) (object) (object) (object) bird brakes

breathing car children cupboard cutlery
banging impact rustling snapping squeaking singing squeaking

CRNN F-score 0.00% 3.83% 0.00% 0.00% 0.00% 51.84% 17.86% 0.00% 67.24% 0.00% 0.00% 0.00%

(event) ER (×10−3) 1.05 26.12 24.67 1.76 1.52 89.32 10.19 1.93 132.87 25.49 1.66 3.96

Proposed F-score 0.00% 4.01% 0.00% 0.00% 0.00% 52.52% 0.83% 0.00% 63.05% 0.00% 0.00% 0.00%

(α=0.01) ER (×10−3) 1.05 26.06 24.67 1.76 1.52 91.12 10.57 1.93 138.76 25.49 1.66 3.96

Event dishes drawer fan
glass keyboard large mouse mouse people people washing water tap wind

jinging typing vehicle clicking wheeling talking walking dishes running blowing

CRNN F-score 15.99% 0.00% 60.45% 0.00% 4.05% 51.45% 0.00% 0.00% 0.03% 42.68% 34.65% 43.48% 0.00%

(event) ER (×10−3) 11.04 1.76 159.77 1.98 24.53 56.07 6.89 2.35 98.82 119.87 21.93 16.77 13.42

Proposed F-score 20.70% 0.00% 64.31% 0.00% 8.21% 53.50% 1.45% 0.00% 0.00% 49.97% 45.40% 40.68% 2.86%

(α=0.01) ER (×10−3) 10.69 1.76 165.03 1.98 24.30 52.97 6.87 2.35 98.82 105.14 21.15 16.98 13.30

ER =

∑K

k=1 S(k) +
∑K

k=1 D(k) +
∑K

k=1 I(k)
∑K

k=1 N(k)
, (19)

where K and N(k) are the total number of time frames and the

number of acoustic events in time frame k, respectively.

On the other hand, in ASC, acoustic scenes do not overlap;

thus, it is regarded as a simple classification task. The F-score is

calculated using Eqs. (13) – (15), where TP, FP, and FN are the to-

tal counts of true positive, false positive, and false negative for all

sound clips, respectively.

3.3. Experimental Results

As comparative methods, we evaluated the detection of an event

using CRNN (referred to as CRNN (event)) and the classification

of a scene using CNN (referred to as CNN (scene)). CRNN (event)

had the same structures and parameters as those of the shared and

event layers in Fig. 1, whereas CNN (scene) had the same structures

and parameters as those of the shared and scene layers.

Experimental results are shown in Table 2. The results show

that the proposed multitask-based method enables the joint analysis

of acoustic events and scenes with a reasonable performance com-

pared with CRNN (event) and CNN (scene). In particular, when α =

0.01, the proposed method improved the performance by 10.66 per-

centage points in terms of the F-score of the event detection result

compared with that of the conventional method. This result indi-

cates that information of acoustic scenes improves the performance

of AED.

Further evaluations were conducted to investigate how the pro-

posed method performs with various settings of α. The perfor-

mances in event detection and scene classification for various α are

shown in Fig. 2. The results show that when α is less than 1.0, the

performance of AED is better than that of the conventional CRNN

(event). When α is larger than 0.1, the performance of ASC im-

proved, whereas that of AED was worse than that of the conven-

tional CRNN (event). This implies that AED is a harder task than

ASC, and thus, the parameter α should be set to a small value to

achieve AED with better performance than the conventional meth-

ods.

For a more detailed examination, we list the detection results

for each event in Table 3. In this experiment, we evaluated the de-

tection performance using α = 0.01. The results show that the pro-

posed method improves the F-score and ER in many of the acoustic

events. For example, the acoustic events “dishes”, “people walk-

ing,” and “washing dishes” can be detected more accurately by the

proposed method; the F-scores of these acoustic events increase

by 4.71, 7.29, and 10.75 percentage points, respectively, compared

with the conventional CRNN (event). On the other hand, the detec-

tion performance for “brakes squeaking” and “car” do not improve.

This is because they may occur in both the acoustic scenes “residen-

tial area” and “city center,” and thus, information of acoustic scenes

may not effectively improve the performance of AED.

4. CONCLUSION

In this paper, we proposed multitask learning for the joint analysis

of acoustic events and scenes. In the proposed method, we applied

a CRNN as the event detection network and a CNN as the scene

classification network, and the CNN layers in both network were

shared. Then, we integrated their objective functions using a weight

parameter and optimized the network simultaneously. Experimental

results indicated that the proposed method enables joint analysis of

acoustic events and scenes with reasonable performance compared

with the conventional methods. Moreover, the proposed method

improves the performance of acoustic event detection by 10.66 per-

centage points in terms of the F-score and by 0.081 in terms of ER,

compared with a conventional CRNN-based method.
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