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Abstract

A challenging problem in deep learning-based machine listening field is the degradation of the perfor-
mance when using data from unseen conditions. In this paper we focus on the acoustic scene classification
(ASC) task and propose an adversarial deep learning method to allow adapting an acoustic scene classifi-
cation system to deal with a new acoustic channel resulting from data captured with a different recording
device. We build upon the theoretical model of HAH-distance and previous adversarial discriminative deep
learning method for ASC unsupervised domain adaptation, and we present an adversarial training based
method using the Wasserstein distance. We improve the state-of-the-art mean accuracy on the data from
the unseen conditions from 32% to 45%, using the TUT Acoustic Scenes dataset.

Keywords: Acoustic scene classification, unsupervised domain adaptation, Wasserstein distance, ad-
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1 Introduction

The task of acoustic scene classification (ASC) con-
sists in classifying a sound segment x ~ X’ into one
of the predefined classes y ~ ) representing different
acoustic scenes (e.g., “urban area”, “metro station”),
where X and ) are the underlying distributions of the
sound segments and predefined classes, respectively.
ASC has recently been tackled with deep learning
methods [T, 2 3, 4]. These methods can be viewed
as consisting of a feature extractor that outputs a
latent representation z from x and a label classifier
that assigns a label y to z.

Training and testing data can exhibit different cap-
turing conditions (e.g., different recording devices)
and subjective and noisy labels (e.g., an “urban area”
scene labeled as “residential area” and “town”), re-
sulting in the degradation of the performance of
the method [Bl [6]. One promising way for tackling
the above mentioned problems is domain adaptation
(DA) [7, 8, @, 10] and, in the relevant terminology,
the above mentioned problems are the capture and

label biases, respectively [8] [11].

Domain adaptation is a sub-space align-
ment/divergence minimization problem  which
consists in optimizing a system on the data from
the source domain and then adapting it to the
data from the target domain [, 10, 12]. The data
from the source and target domains exhibit any
combination of the capturing and labeling biases,
leading to what is known as domain shift or dataset
bias phenomenon. This phenomenon manifests as
differences between the distributions Xs and Xrp,
and/or Vg and Yr, where the indices S and T refer
to the source and target domains, respectively. The
goal of DA is to minimize the error of a classifier
when classifying data from the target domain. This
is usually achieved by training a system which
minimizes the discrepancy between the distributions
Zg and Zp of the learned latent representations
from the source and target domains, zg and zp
respectively.  All the labels for the source data
are available but only some or none labels are
available for the target data. This results in semi- or
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unsupervised DA, respectively.

We consider here the unsupervised adversarial DA,
focused on the capturing bias problem. Previous ap-
proaches can be organized in two categories, depend-
ing on when DA is performed. Methods in the first
category such as [7, [13] [14] perform DA jointly with
the optimization on the source domain data. Meth-
ods in the other category such as [10, 15} [16] are two-
stage approaches that first perform optimization on
the source domain data and then do DA. The pre-
vious ASC unsupervised adversarial DA state-of-the-
art (SOTA) method [5] falls in this second category.
However, this method suffers from vanishing gradi-
ents and slow learning process, during the minimiza-
tion of the discrepancy between the distributions of
the source and target domains.

In this paper we present a deep learning method for
ASC unsupervised adversarial DA which is based on
the theoretical analysis of domain adaptation based
on optimal transport, presented in [I7]. We replace
the adversarial adaptation process SOTA method [5]
with the Wasserstein generative adversarial networks
(WGAN) formulation [18], tackling the computa-
tional problems that hampered the performance of
the previous SOTA method. Furthermore, we en-
hance the WGAN algorithm by using an extra loss
for preventing the performance from dropping on the
source domain when the system is adapted to the
target domain. We achieve an increase of 13% in the
mean accuracy on the target data compared to pre-
vious SOTA approach [5] using the TUT Acoustic
Scenes dataset [19]. The contributions of our work
are:

1. Providing the first theoretical based approach for
deep learning DA on general audio;

2. Presenting the first work adopting the Wasser-
stein distance for ASC unsupervised adversarial
DA,

3. Significantly improving the performance of ASC
unsupervised adversarial DA over the previous
SOTA method [5].

The rest of the paper is structured as follows. In
Section [2] we present the most widely used theoret-
ical background in DA. In Section [B] we introduce

our proposed method. The setup for evaluating our
method is presented in Section [ and the results are
discussed in Section[il Finally, the paper is concluded
in Section

2 Background

We present here a summary of the most widely used
theoretical background for understanding adversarial
deep learning based unsupervised DA methods, and
the interested reader can refer to [12] 20] for further
details.

2.1 Classifier error and target error
bound

A domain D is defined as the pair of a distribution Z
and a labeling process f. Z is the distribution of z,
i.e. z ~ Z,and z is used as an input to f. The output
of f is considered as the ground truth that a classifier
h should predict when performing classification over
z. It follows that Dg = (Zg, fs) and Dr = (Zr, fr)
are the source and target domains, respectively. The
expected error of an h over its input z is

e(h, f) = Eo[L(h(2), f(2))], (1)

where L is a loss function. e(h, f) indicates the aver-
age disagreement between the prediction of the clas-
sifier h and the output of the labeling function f.

If z comes from the source (resp. target) domain,
that is, zg ~ Zg (resp. zp ~ Z7), then the error
is the source error eg(h, fs) (resp. the target error
er(h, fr)). The aim of unsupervised DA is to obtain
a classifier h that yields a low value for eg and adapt
it to yield a low value for e, without employing the
labels from D during the adaptation process.

We can obtain a classifier h that yields a low value
for eg by following classical supervised training ap-
proaches. However, we cannot optimize h on zp from
the target domain Dy in a supervised manner, since
we do not have access to the labels from Dp. In-
tuitively, if there was a low discrepancy between Zg
and Zp, then the classifier h would also yield a low
value for ep. Calculating or estimating this discrep-
ancy allows us to obtain a generalization bound for



er, and reducing this bound will consequently reduce
er as shown in [12] 17 2T].

The discrepancy between Zg and Z7 can be mea-
sured with the HAH-distance [12},20]. In the case of
binary classifiers H, the HA#H-distance is defined as

duan(Zs, 2r) =

2 sup [Pyez,lh(z) £ 1 (2)]
h,h'€H

— Panz, [h(z) # W (2)]
(2)

In a nutshell, dyay (Zs, Z7) returns the highest pre-
diction difference between two classifiers in ‘H under
the two distributions Zg and Z7. We use dyay to
bound the target error for DA [12] 20, [13] as

1
ET(ha fT) S Es(hu fs) + id'HA'H(ZS7 ZT) + )\7 (3)
where

A :es(h’*a fS) + ET(h*a fT)a and
h* =argmin(es(h, fs) + er(h, fr)).
heH

(4)
(5)

h* and A are termed as the ideal joint classifier and
combined error of the ideal joint classifier, respec-
tively [12 20]. Eq. Bl shows that the upper bound
of the target error ep(h, fr) is affected by three fac-
tors: the error on the source domain (i.e., eg(h, fs));
the HAH-distance between the source and target
distributions; and the combined error of the ideal
joint classifier (i.e., A). In DA it is safely assumed
that there is a classifier that performs well on both
the source and the target domains, thus yielding a
small value of A and therefore allowing to neglect
its effect [I2]. Under this assumption, the problem
of DA reduces to obtaining a classifier with a good
performance on the source domain (i.e., minimizing
es(h, fs)) and trying to minimize the discrepancy
between the distributions of the two domains (i.e.,
duan(Zs, Zr)).

2.2 Adversarial formulation

Consider a set of domain classifiers H4 (i.e., classifiers
that predict whether z is from Dg or D). Then,

according to [22],

duan(Zs, 27) =

=2 sup [Pyuz,[h(z) # B (2)] = Panz,[h(z) # W (2)]]
h,h'cH

<2 sup [Pyuzg[ha(z) = 1] = Panz, [ha(z) = 1]
hg€Ha
=2 sup |Pzuzglha(z) = 0] + Pauz, [ha(z) = 1] - 1].
hg€Ha
(6)

Thus, the ideal hg yields as an upper bound for
dyan(Zs, Z7) [7]. This can be exploited in an adver-
sarial setting, where the focus is to obtain a domain
classifier hy good enough to predict the domain of
z and a feature extractor that confuses the domain
classifier. In this setting, instead of directly minimiz-
ing dyap, one aims at obtaining a feature extractor
M that is able to fool a good domain classifier hq.

2.3 Previous SOTA

The previous SOTA approach for ASC unsupervised
adversarial DA [5] falls in the second category of ap-
proaches mentioned in the introduction (i.e. first
performing optimization on source domain and then
doing DA). In the first stage, a feature extractor
Mg is obtained during the optimization of the la-
bel classification, and in the second stage, a copy
My of Mg is further optimized during the adversar-
ial training. Following the framework presented in
Section 2.2], the second stage of this approach con-
sists of an adversarial training that aims at minimiz-
ing dyan(Ms(xs), Mp(xr)). The implementation
of the adversarial training follows the typical formu-
lation initially presented in [23], using two losses. The
first one is used for optimizing hy over the output of
My and the second loss is utilized for making Mr to
produce an output that maximizes the domain clas-
sification error. In the field of generative adversarial
neural networks (GANS), these are the losses associ-
ated with the discriminator (i.e., hq) and the genera-
tor (i.e., Mp). The GAN loss Lgan used in the pre-
vious SOTA approach can be formulated [5], 10, 23]



as

Lean(ha, M) = Exg[log o(ha(Ms(xs)))]+
Ex; [log(l — o(ha(Mr(x7))))l,  (7)

where o is the sigmoid function. The adversarial pro-
cess aims [23] at solving the optimization problem

(8)

However, solving the optimization problem described
in Eq. (8)) is known to introduce computational issues,
such as vanishing gradients and slow learning process
for hg [I8]. These problems hamper the performance
of the adversarial training [I8] and thus limit the per-
formance of the method proposed in [5]. The method
proposed in this paper aims at tackling these prob-
lems for the ASC unsupervised DA task.

min max Lgan (ha, Mr).
hg M

3 Proposed method

Our proposed method builds upon the framework
presented in Section 2] and it can be applied with
any deep neural network (DNN) that performs ASC.
We employ a DNN and the Wasserstein generative
adversarial networks (WGAN) formulation and algo-
rithm, presented in [I8]. Our DNN consists of a fea-
ture extractor M, a label classifier h, and a domain
classifier hy. We consider as z the output of our fea-
ture extractor M, which is used as an input to our h.
The output of h is a vector and the output of hy is a
scalar.

3.1 Source domain training
As a first step, we optimize M and h using the labeled
data (xs,ys) from source domain (Xg, Yg), where yg
is an 1-hot encoding of the available classes. We em-
ploy the binary cross-entropy as the source domain
loss function eg(h, fs):

>

(x,y)€(Xs,Ys)

Elabels(hu M) = - yT IOg(h(M(X)))v

9)
and we obtain the classifier h* and the source domain
feature extractor Mg by

h*, MS = argmin Elabcls(hy M) (10)
h,M

Algorithm 1 WGAN based training algorithm

Require: the learning rate «, the clipping parame-
ter ¢, the batch size m, the number of iterations
ng, the domain classifier hy with parameters wg,
the feature extractor Mg with parameters was, .
Initialization: wys, = wag
while wy;, not converged do
fori=1,...,n4 do
Get m samples {x5}™ , from Xg
Get m samples {x1}™ ; from Xr

Guwa < V= 21 ha(Ms(x;)))—

L 52 ha(Mr ()

Wy < Wqg — « Opt(wdv gwd)
wq + clip(wg, ¢)

9: end for
10:  Get m samples {x2,y,}" ; from (Xg,Ys)

11:  Get m samples {xI}™ , from Xp

120 Gupy, V'LUZ\/IT [% 21 ha(Mp(x,))—

L 32 yElog(h* (Mr(se)

130 WMy ¢ Wy — & Opt Wy Gwar,. )
14: end while
15: return My

The parameters of the feature extractor Mg are de-
noted wyr, and will be used as initial values for the
adapted feature extractor Mry.

Wasserstein adversarial formula-
tion

3.2

As a second step, we aim at adapting Mg to the tar-
get domain using an adversarial training process as
described in Section However, as pointed out
in Section 23] using dy a3 as a discrepancy measure
between distributions yields computational problems.
To alleviate this issue, we propose to employ the
order-1 Wasserstein distance (called Wasserstein dis-
tance from now on) W [I8| 24] as a metric for the
discrepancy between Zg and Zp. W comes as a nat-
ural and intuitive candidate for our method since its



minimization does not suffer from the problems men-
tioned in Section 23] Additionally, the usage of a
binary label classifier h by HAH-distance introduces
an intractable problem in practice, but W distance
does not suffer from this problem as it does not re-
quire h to be a binary classifier [I7]. Furthermore, W
is proven to enhance the results of adversarial train-
ing, and it is a weak topology over the space of Z al-
lowing important convergence modes such as smooth
convergence and point-wise convergence [12] [18] [17].
Finally, W accounts for the geometry of the space of
Z, therefore being an appropriate distance for mea-
suring the discrepancy between the two distributions
Zp and Zp [I7]. W is defined [18] as
W(Z~‘57 ZT) = (zs,zT)NHIl[f(ZT,ZT)E(ZS’ZT)[”ZS ZT”]?
(11)

where [[(Zs, Z7) is the set of all joint distributions
whose respective marginals are Zg and Z7. It is
proven [I7] that we can use W as a divergence metric
to upper bound the target error e using an expres-
sion similar to Eq. @B)):

er(h, fr) < Es(h, fs) +W(Zs,2r) + A (12)
In Eq. (I2) the factors corresponding to the source
error and the ideal joint classifier (i.e., eg(h, fs) and
A) are the same as in Eq. [B). The difference is the
factor representing the discrepancy between the two
distributions, Zg and Zp, ie., W(Zg, Zr) instead
of dgan(Zs,2r). Thus, we can use the WGAN
training algorithm presented in [I8], which yields the
adapted feature extractor Mp. The process of the
adaptation of Mr is performed by the iterative min-
imization of the losses

> ha(Ms(x)) = > ha(Mr(x)) and  (13)
xeXg xeXp

> ha(Mr(x)) + Liapess(h*, Mr). (14)
xeXr

Eq. (@) and ([@4) (without the Liapes(h*, Mr) term)
are proposed in the original WGAN algorithm and
their minimization is shown to minimize the W dis-
tance in Eq. (II) [I8]. We enhance the original
WGAN losses and training algorithm by including an

extra cross-entropy loss (the second term in Eq. (I4),
similarly to [5]. The goal of this addition is to pre-
vent the adapted model from deteriorating the per-
formance on the source domain Dg. Our method is
summarized in Algorithm [[] and our enhancement to
the original WGAN algorithm is at line [[2] of this al-
gorithm. Lines [f] and 2] are the calculations over a
minibatch of the gradients of Eq. (I3) and (I4)), re-
spectively. Note that Algorithm [I] uses an optimizer
Opt chosen as the RMSProp optimizer [25] and a clip-
ping function clip defined as:

(15)

clip(x, ¢) = max(min(z, ¢), —c).

4 Evaluation setup

To evaluate our method and obtain comparable re-
sults, we use the same data and models for M and
h as in the previous SOTA method for ASC unsu-
pervised DA [5]. The data that we use are from the
TUT Acoustic Scenes dataset used in the previous
SOTA approach [5, 9], and consist of 64 log mel-
bank energies, extracted from audio recordings of 10
different acoustic scenes, namely: “airport”, “bus”,
“metro”, “metro station”, “park”, “public square”,
“shopping mall”, “street pedestrian”, “street traffic”,
and “tram”. The recordings are performed with three
different devices, denoted A, B, and C. Device A is
regarded as a high quality recording device and the
other two as consumer devices. Data from device
A are 24 hours long, and data from devices B and
C are two hours long, each. We follow the split-
ting of the data in training, validation, and testing
as in [5] [19], leading to training and validation set
consisting of approximately 15 hours of data from de-
vice A, 1.35 hours from device B, and 1.35 hours from
device C. Consequently, the testing set consists of ap-
proximately 7 hours of data from device A, 0.5 hours
from device B, and 0.5 hours from device C. We also
adopt the definition of source and target domain data
as in [B, [19]. That is, we regard the data from device
A as our source domain data, and the data from the
consumer devices as our target domain data.

We employ the non-adapted, pre-trained model re-
ferred to as “Kaggle model” in [5] as our Mg, and the
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Figure 1: Normalized confusion matrices for the non- and adapted models on the target domain data

x7 € Xp.

pre-trained classifier as our h. Both Mg and h are
freely available at [19]. Mg consists of five 2D con-
volutional neural network (CNN) layers, with square
kernel shapes of widths {11, 5, 3, 3,3}, and amount of
channels {48,128,192,192,128}. The utilized stride

(2,3) for the first two CNNs and (1,1) for the
others. All CNNs are followed by a rectified linear
unit (ReLU) non-linearity, and the first two and last
CNNs also use batch normalization and max pool-
ing, with square kernels of shape 3 and a stride of
{(1,2),(2,2),(1,2)}. h consists of three feed-forward
layers, each one followed by a ReLU. The output non-
linearity of h is the softmax function. The method
was implemented using the PyTorch framework [26]
for Python programming language. For the adapta-
tion stage, the RMSProp optimizer is used with a
learning rate of 5 x 107° and have its rest parame-
ters at the proposed default values. We use a batch
size of 16 and the adapted Mr was obtained after
the saturation of the first term in Eq. [[4] (after ap-
proximately 300 epochs). For a reproducible research
purpose, we offer all of our codd!] and adapted My
modef in online repositories.

Ihttps://github.com/dr-costas/undaw
%https://doi.org/10.5281/zenodo . 2649151

5 Results and discussion

We present the mean accuracy and the normalized
classification results per class as a confusion ma-
trix, for adapted and non-adapted models. Table [
presents the obtained mean accuracy of the adapted
and non-adapted models from our method and the
previous SOTA approach. As it can be seen from
Table [ our adaptation method provides a signifi-
cant increase of 13% in mean accuracy for the target
domain compared to the previous SOTA. The 1% de-
crease in accuracy of the adapted model on the source
domain and the 1% increase in accuracy of the non-
adapted model on the target domain, are considered
insignificant and can be attributed to number round-
ing processes. In Figure[Il are the confusion matrices
for the non-adapted and adapted models on the tar-
get domain data x7 € Xp. In Figure [IH] it can be
seen that there is an increase of the values on the di-
agonal, compared to Figure [al This indicates that
with the proposed approach, the discrepancy between
Zs and Z7 decreased and h is able to perform clas-
sification up to an extent. There are classes where
the adapted model yielded an accuracy above 50%,
like street traffic, shopping mall, bus, and park. For
the same classes, the non-adapted model could only
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Table 1: Mean accuracy of the adapted and non
adapted models on the source Dg and target D do-
mains.

Non adapted | Adapted

Ds Dr Ds Dr
Previous SOTA [5]  0.65 0.20 0.65 0.32
Proposed approach  0.65 0.21 0.64 0.45

classify the street traffic class, while for the others it
yielded an accuracy below 40%.

6 Conclusions and future work

In this work we presented a first approach for acoustic
scene classification unsupervised domain adaptation
that is based on the Wasserstein distance, along with
the underlying theoretical framework. The presented
method is evaluated on the TUT Acoustic Scenes
dataset and the obtained results surpassed the previ-
ous state-of-the-art mean accuracy on the target do-
main by 13%. Future work on ASC DA will include
the evaluation of the method on a larger dataset,
along with using better ASC models. Besides, we
will also apply these methods to alternative problems
such as speech enhancement, where DA may help ac-
counting for very adverse recording conditions.
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