arXiv:1906.00654v1 [cs.LG] 3 Jun 2019

CONTINUAL LEARNING OF NEW SOUND CLASSES USING GENERATIVE REPLAY

Zhepei Wang®, Cem Subakan®, Efthymios Tzinis®, Paris Smaragdis®, Laurent Charlin’®

% University of Illinois at Urbana-Champaign, Department of Computer Science
> Mila—Quebec Artificial Intelligence Institute
¢ HEC Montréal, Canada CIFAR Al Chair
% Adobe Research

ABSTRACT

Continual learning consists in incrementally training a model on a
sequence of datasets and testing on the union of all datasets. In
this paper, we examine continual learning for the problem of sound
classification, in which we wish to refine already trained models to
learn new sound classes. In practice one does not want to maintain
all past training data and retrain from scratch, but naively updat-
ing a model with new data(sets) results in a degradation of already
learned tasks, which is referred to as “catastrophic forgetting.” We
develop a generative replay procedure for generating training audio
spectrogram data, in place of keeping older training datasets. We
show that by incrementally refining a classifier with generative re-
play a generator that is 4% of the size of all previous training data
matches the performance of refining the classifier keeping 20% of
all previous training data. We thus conclude that we can extend a
trained sound classifier to learn new classes without having to keep
previously used datasets.

Index Terms— Sound classification, neural networks, contin-
ual learning, generative replay

1. INTRODUCTION

Standard supervised machine learning setup posits that the full
training dataset is available to the model at once. This is a sim-
plistic assumption. In the wild, the training data may arrive in (non-
iid) batches and new classes may appear throughout the learning
process. This is typical of human learning where new concepts
(classes) are learned throughout life.

Continual learning proposes a more realistic sequential learn-
ing paradigm composed of training episodes [1} [2, 3. At each
episode, the model is only trained on data from a single new task
and does not have access to data from earlier tasks. Continual learn-
ing is also useful for devices with constrained access to data (either
due to storage limitations, or privacy constraints). In such cases
classifiers need to be continually trained to learn new classes while
minimizing storage. This limits the amount of possible retraining
on previous tasks.

Continual learning is particularly challenging for neural net-
works because of catastrophic forgetting: at each episode the net-
work will “forget” the knowledge it has learned in earlier tasks
[4,15)]. While a flurry of methods have been recently proposed for
continual learning [6! (7, |8, 9l [10], much work remains before con-
tinual learning becomes a practical technique.

In this paper, we explore a continual learning setup for training
a classifier on environmental sound classes. This is a challenging

This work is supported by NSF grant #1453104.

task because it necessitates learning a classifier on time-series data,
as opposed to typical applications in the continual learning literature
that focus on static data (e.g., images) [7].

To alleviate catastrophic forgetting, we utilize the generative
replay technique [8]], which provides very competitive continually-
learned classifiers. A generator is trained simultaneously with the
classifier. For each task, the generator is used to simulate earlier-
task examples for the classifier. Further, we propose a convolutional
autoencoder architecture to embed time-series data, and we make
use of the two-step learning framework introduced in [11] to learn
the generative model to replay earlier tasks.

We experiment with the ESC-10 (Environmental Sound Classi-
fication) dataset [12]. Namely, we compare our proposed genera-
tive replay based method with rehearsal which consists in storing a
fixed percentage of the data associated with earlier tasks to combat
forgetting. Stored data is used as training data in each of the sub-
sequent episodes. This method has been shown to be a very strong
baseline [[13|]. We show that by using a generative model with size
approximately equal to 4% of the whole training set, we are able to
match the classification accuracy obtained with a rehearsal method
which stores 20% of the training dataset.

2. METHODOLOGY FOR CONTINUAL LEARNING

2.1. Definition of Continual Learning

In continual learning [1} 2 3], the goal is to train a model on a
sequence of datasets {D1, Da, ..., Dr}, where each dataset corre-
sponds to a (new) task. According to the standard continual learn-
ing setup, when training the model for task ¢, the data of past tasks
and future tasks are not available. That is, when training for task
t, we are only allowed to use the dataset D;. The objective is to
learn a single model which is able to predict well on data from
all tasks 1,...,7, despite training in a sequential manner. This
is challenging in neural network models as training on the current
task without incorporating data from earlier tasks typically results
in forgetting the existing knowledge. This phenomenon is referred
to as Catastrophic Forgetting [41|5]. Namely, when training for task
t, the model forgets the knowledge related to tasks with index < ¢,
if no measures are taken to mitigate forgetting. In the following
two subsections, we describe two strategies to combat catastrophic
forgettingﬂ

! In addition to avoiding catastrophic forgetting, another goal of contin-
ual learning is to improve/speed-up learning on future and past tasks. This
is referred to as forward transfer and positive backward transfer [6]. This is
a very interesting research direction for continual learning, but in this paper
we focus more on combating catastrophic forgetting.

2.2. Naive Rehearsal

A simple method to combat catastrophic forgetting is to keep a
buffer of random samples to remember the past tasks. The buffer
contains examples from earlier tasks to reinforce the knowledge
from earlier tasks, when training on the current task. This method
is referred to as naive rehearsal or simply rehearsal, as we do in
the rest of this paper. Although simple, this method is surpris-
ingly effective, and has been shown to perform very comparable
to state-of-the-art continual learning methods on various standard
continual learning experiments [13]]. For this reason we use re-
hearsal as a baseline method. When training for ¢, we keep a buffer
M= U’,i;ll M., where M, contains randomly selected examples
from task k, such that &k < t — 1. The cost function associated with
rehearsal is:

1
‘Crt]aivcrcplay = W Z COSt(ya fg(ﬂ?))+

(z,y)EDy

cost(y’, fo(z")),

)

where the first term accounts for the loss on the current task (current
loss), and the second term accounts for the rehearsal loss. The input
features are denoted with x, the target values are denoted with y,
the continually trained classifier is denoted with fg(.), and cost(.)
denotes a classification loss, which is typically chosen as the cross-
entropy loss. In Figure [I] we illustrate the schematics of the loss
function.

t

Xt \f_t\ % current loss
/ 1:t—1
1:¢—1 Aqp buffer
Xoior yrt=l —— rh. loss

Figure 1: The diagram for the loss computation in the naive re-
hearsal method at task . We separately compute two losses for the
current tasks, and a rehearsal (rh.) loss on the stored buffer.

Even though rehearsal combats forgetting, it requires the stor-
age of data in form of a rehearsal buffer. In the next section, we
introduce another method which mitigates forgetting by continually
learning a generative model, which does not require storage of past
data items.

2.3. Generative Replay

An effective alternative to rehearsal is generative replay [8]]. This
method continually trains a generative model in addition to the clas-
sifier to replay the data from earlier tasks. By the virtue of having
a generative model, in lieu of storing examples from earlier tasks,
we generate data, and use this generated data to avoid forgetting (by
using it as training data). The cost function for continual classifier
training is therefore written as follows:

‘Céenreplay = Z COSt(ft(:C)7y)+ Z COSt(ft(Ig)vft—l(xg))7

(z,y)EDy zg€Dy

@

where, the first term is the loss associated with the current task,
and the second term is the loss associated with the rehearsal, where
Dy is data simulated from the generative model model after being
done with training it until task ¢ — 1, which is used to rehearse the
datasets {D1,...,Dy—1}. The schematic illustration of this loss
function is shown in Figure Similarly, the generator G is trained
by using the examples from the current dataset D, and the simulated
examples from the generator G*~1:

Lyen = Z gencost(x) + Z gencost(zy), 3)

x€D¢ €Dy

where again the loss function is composed of the current loss term
(the first term) and the rehearsal loss (the second term). We illustrate
the workflow of the method in Figure 2]

f@}i:i‘%» Xri;:]lta;l/(‘iﬂ\fiplay loss
Xt current loss

Figure 2: Diagram for continually training a generative model using
generative replay: At task ¢, the data is replayed from the genera-
tive model G*~!, and its likelihood is evaluated on the generative
model G* that we currently train. The dashed blocks means that
the parameters are frozen, and not being updated, and solid blocks
mean that the block parameters are optimized.

1:t—1 ! 1:t—1

replay ! f } target replay loss
. j7 i \) /

t—1 1:t—1
|
G Y

t
Xt Yt —— current loss

Figure 3: Training the classifier using the generative replay at task ¢:
The data for the earlier tasks is generated from G*~*. The outputs
of the current classifier f* and the earlier classifier f;—1 are matched
to compute a replay loss.

Note that in our application the generator G generates of spectra
segments as our goal to classify segments of audio data. Next, we
describe the details of the architecture of the generator G.

2.4. The Generative Model Architecture

In this paper, we use maximum-likelihood based generative model-
ing as opposed to Generative Adversarial Networks (GANSs) [14] as
the former is significantly easier to train [[15].

In our generative models, we use a convolutional autoencoder
to compute embeddings for spectrogram sequences. The architec-
ture of our autoencoder is shown in Figure[d] which consists of us-
ing convolutional layers across the time axis to model the temporal
structure, and then reducing and increasing the feature dimension-
ality using fully connected layers. After learning the embeddings h,
we learn the generative model by fitting a Gaussian mixture model
(GMM) on the latent embeddings, as described in the 2-step learn-
ing method in [11]. Advantages of using GMMs in the latent space

is advocated by multiple papers in the literature [[16} 111 (17,18 [19].
In our experiments we have observed that separating the learning
of parameters of the prior distribution on the latent variables from
the learning of autoencoder resulted in the accurate learning of the
generative model (which we refer to as 2-step training). We have
observed that the joint training of GMM and the autoencoder of-
ten resulted in slightly worse results than that of the 2-step learning
approach, and therefore we have chosen to use the 2-step training
rather than jointly training the prior and the autoencoder. We also
compare the proposed generative modeling scheme with VAEs with
standard Gaussian prior [20], and observe that the proposed gen-
erative modeling scheme yields much superior generations, which
results in better classification.

Autoencoder Architecture

N
Encoder Decoder '
5 5 =R
Z 5 2 8 g
g gl e, sl 1,8 g g
—>@-><->®-><—->g—>‘h)—>g m—»@-»m-»@-»w—J—)
= 2 3 E] o o ol
© © 8 8 S S Sih
& & 2 2 2
& & 2 = S
L Ll Lol Lol L/,

Figure 4: The autoencoder architecture used to model the spec-
tra. The convolutional encoder maps the spectra into latent space
h, which is then transformed by the decoder into reconstructed rep-
resentation. We apply ReLU after each of the first two convolutional
layers in both the encoder and the decoder.

3. EXPERIMENTAL SETUP

In this section we introduce our continual learning setup for audio
classification. The experiments simulate scenarios where the model
incrementally learns new sound classes without having full access
to the previously-encountered sound classes. The model observes
ten sound classes in a sequence of five tasks, where in each task two
new classes are presented. This is similar to similar to the setup
in [21].

3.1. Data

We select the publicly available ESC-10 [12] dataset for our exper-
iments. The ESC-10 dataset consists of 400 five-seconds record-
ings sampled at 44kHz of acoustic events from 10 classes, namely:
chainsaw, clock ticking, crackling fire, crying baby, dog barking,
helicopter, rain, rooster, seawaves, and sneezing.

For each recording we extract a Time-Frequency (TF) spectro-
gram representation using a 2048 samples window and a 512 sam-
ples hop size. Next, we compute the square root of the mel-scaled
spectrogram using 128 mel-features for each spectrogram. We fur-
ther segment our data to snippets that correspond to ~ 220 ms so
that each input data sample has a size of 128 x 16. We ignore low-
energy spectra whose Frobenius norm is less than le-4. Finally,
we normalize each spectrogram by the maximum energy from each
mel-spectrogram so that each value lies in [0, 1]. Our initial exper-
imental results demonstrate that normalized mel-spectrograms are
more discriminative under the chosen classifier architecture and can
be easily reconstructed from the generator. In total there are 9500
mel-spectrograms that we further split into training, validation and
test set with aratioof 7: 2 : 1.

To setup the experiment in the setting of continual learning, we
partition the dataset into five subsets/tasks where all classes are mu-
tually exclusive. We group the classes based on the their label in-
dices so the two sound classes from the same group are more similar
to each other compared to classes from the other groups.

3.2. Generative Replay Setup

We next discuss the setup for generative replay including the archi-
tecture of the classifier and the generator.

3.2.1. Classifier Architecture

The classifier contains two 1-D convolutional layers with 64 and
128 filters, respectively, one average pooling layer and two fully-
connected layers with 50 and 10 hidden nodes each. For the convo-
lutional layers, we use a filter of length 3 and perform same-padding
to the input. We use a rectified linear unit (ReLU) as a nonlinear-
ity after each convolutional layer and the first fully-connected layer.
The output of the second fully-connected layer is passed into a soft-
max layer for a 10-class classification.

3.2.2. Generator Architecture

We experiment with both the autoencoder and the variational au-
toencoder architectures as the generator. The encoder consists of
three 1-D convolutional layers followed by a fully-connected layer
with 50 hidden units. Each of the convolutional layers uses 128 fil-
ters of lengths 6, 4, and 3 and strides of 1, 2, and 2, respectively. The
decoder consists of three 1-D transposed convolutional layers, each
with 128 filters of length 4, 4, and 7 and stride of 2, 2, and 1, respec-
tively. We do not perform zero-padding and we apply ReLU after
each one of the first two convolutional layers in both the encoder
and the decoder as shown in Figure[d The variational autoencoder
architecture contains an additional linear layer on top of the convo-
lutional encoder with 50 dimensions with a reparameterization trick
for being able to sample from the latent space.

3.3. Rehearsal Setup

We compare the proposed generative replay mechanism with re-
hearsal based methods. We set up the rehearsal data by storing p%
of the training data at each task into a buffer. This buffer is avail-
able to the models throughout all tasks. In our setting, the size of
the buffer increases linearly with the number of tasks. We adjust
the percentage of the rehearsal data such that the the data from each
task have equal probability to be drawn. The parameter of the per-
centage p of the rehearsal data lies in p € {5, 10,20, 100}.

3.4. Training Setup

For all experiments, we optimize our models using Adam[22]. The
batch size is set to 100, and there are 10 - 15 batches per epoch
for each task. To train the classifier, we use an initial learning rate
equal to Se-4 and we train it for 300 epochs by minimizing the cross-
entropy loss for each task. Moreover, in order to train the generator,
we use an initial learning rate of le-3 and train it for 1700 epochs
for each task. The autoencoder loss is the binary cross-entropy for
each time-frequency bin between the original spectrogram and the
reconstruction. The loss for the variational autoencoder is the sum
of binary cross-entropy and KL-Divergence between the modeled
distribution and unit Gaussian.

4. RESULTS AND DISCUSSIONS

We report the performance of various replay strategies under the
sound classification setup. For each experiment we report the per-
formance obtained by the models using five different permutations
of the order of tasks. In each task, we report the mean accuracy on
the test set, which contains all sound classes that the model has seen
up until the current task.

Test accuracy of ESC 10 with Different Replay Strategies

Accuracy

057 —m— AE+GMM

* VAE
—#— RHS 100%
0.41 —#— RHS 20%
- RHS 10%
—¥— RHS 5%

1 2 3 4 5
Task id

Figure 5: Test accuracy on the ESC-10 dataset using generative re-
play and rehearsal methods with various buffer sizes. The x-axis
denotes the task index and the y-axis refers to the accuracy of the
model’s prediction. Each point represents the mean of the accuracy
after five runs using different permutations for the tasks.

4.1. Overall Results

Figure |§] shows the test accuracy of different generative re-
play strategies and rehearsal methods for various buffer sizes.
“AE+GMM?” refers to the proposed generative replay setting with
an autoencoder and a Gaussian mixture learned in two steps as de-
scribed in Section2-4] “VAE” corresponds to the variational autoen-
coder mentioned in Section “RHS X%” denotes a rehearsal
based method with X% training data stored into the buffer. “RHS
100%” is used as an upper-bound estimation of the performance of
any replay strategy since it corresponds to the ideal case where all
the training data is available in all future stages.

Overall, RHS 100% has the highest mean accuracy and it fits
the expectation as an upper-bound estimation of any replay strat-
egy. The performance of rehearsal methods increases as the pro-
portion of the data stored in buffer increases. We also notice that
for all methods the variance of the test accuracy tends to decrease
as the number of tasks increases. Initially, the variance is large be-
cause a random binary classification task might deviate too much
in terms of difficulty from another. However, towards the end, the
models have seen all sound classes regardless of the permutation,
and therefore the mean accuracy tends to stabilize.

4.2. Comparison Between AE+GMM and VAE

AE+GMM significantly outperforms VAE as a replay strategy. The
mean accuracy of AE+GMM is similar to RHS 20%, while VAE
performs significantly worse than 5%. We analyze such notable
difference by looking at the samples generated by both models as
illustrated in Figure [fj We show three examples from the train-
ing set and the respective generations using AE+GMM and VAE.

Note that VAE smooths out the temporal structure of the generated
mel-spectrograms and lacks diversity between classes. On the other
hand, AE+GMM generates mel-spectrograms with much more di-
verse temporal structure, exhibiting much closer resemblance to the
examples from the training set.

(a) Training Set (b) AE+GMM (c) VAE

feature
feature
feature

time time time

o o o
H 75 ‘ 5 75 H
8 8 = 8
£ 50 £ 50 &

25 —: 25

=
0 0+——
0 5 10 15 0 5 10 15
time time time

125 125

100 100 | S
L — g 75 3
2 e 2 2
8 8 = 8
2 50 £ s0 &

—— —
2 2 - —
0 0
0 5 10 15 0 5 10 15
time time time

Figure 6: Mel-spectrograms from the training set (column a), gen-
erated by AE-GMM (column b) and generated by a VAE (column
c). Notice how the VAE generated data do not reproduce salient
class features, whereas the proposed AE+GMM generator does so
better.

4.3. Comparison Between AE+GMM and Rehearsal Based
Methods

We observe that AE+GMM performs significantly better than re-
hearsal schemes with buffer proportion p = 5%, 10%. The accu-
racy of AE+GMM is almost identical to RHS 20% at the last task
and marginally higher in all previous tasks. The total number of
trainable parameters in AE+GMM is less than 480, 000. The size
of the network is equivalent to W ~ 3.5% of the train-
ing data. In other words, using a generator whose size is less than
4% of the training data, we are capable of reaching the accuracy
comparable to storing 20% of the data. The result demonstrates the
effectiveness of AE+GMM generative replay strategy when limited
storage space is available.

5. CONCLUSION

We showed that generative replay is an effective continual learn-
ing method for audio classification tasks. Using a generative model
whose size is less than 4% of the size of the training data, we ob-
tain a test accuracy comparable to a buffer-based rehearsal scheme
which needs to store 20% of all used training data. These results
highlight the potential of using generative models instead of keep-
ing previously seen training data when there are storage constraints.
We see these aspects being crucial to sound recognition systems for
which keeping prior training data is prohibitive, but often need (to
learn) to perform new tasks on the fly.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

6. REFERENCES

J. C. Schlimmer and D. Fisher, “A case study of incremental
concept induction,” in AAAI, vol. 86, 1986, pp. 496-501.

R. S. Sutton, S. D. Whitehead, et al., “Online learning with
random representations,” in Proceedings of the Tenth Interna-
tional Conference on Machine Learning, 1993, pp. 314-321.

M. B. Ring, “Child: A first step towards continual learning,”
Machine Learning, vol. 28, no. 1, pp. 77-104, 1997.

S. Thrun and T. M. Mitchell, “Lifelong robot learning,”
Robotics and Autonomous Systems, vol. 15, pp. 25-46, 1995.

R. French, “Catastrophic forgetting in connectionist net-
works,” Trends in Cognitive Sciences, no. 4, 1999.

D. Lopez-Paz and M. Ranzato, “Gradient episodic memory
for continual learning,” in Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems.
Curran Associates Inc., 2017, pp. 6470-6479.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert,
“icarl: Incremental classifier and representation learning,” in
Proc. CVPR, 2017.

H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning
with deep generative replay,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 2990-2999.

Z. Li and D. Hoiem, “Learning without forgetting,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 12, pp. 2935-2947, 2018.

G. L. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,”
arXiv preprint arXiv:1802.07569, 2018.

C. Subakan, O. Koyejo, and P. Smaragdis, “Learning the Base
Distribution in Implicit Generative Models,” ArXiv e-prints,
Mar. 2018.

K. J. Piczak, “ESC: Dataset for Environmental Sound
Classification,” in Proceedings of the 23rd Annual ACM
Conference on Multimedia. ACM Press, 2015, pp. 1015-
1018. [Online]. Available: |http://dl.acm.org/citation.cfm?
doid=2733373.2806390

Y. Hsu, Y. Liu, and Z. Kira, “Re-evaluating continual
learning scenarios: A categorization and case for strong
baselines,” CoRR, vol. abs/1810.12488, 2018. [Online].
Available: http://arxiv.org/abs/1810.12488

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative
adversarial nets,” in Advances in Neural Information Pro-
cessing Systems 27, Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, Eds. Curran Asso-
ciates, Inc., 2014, pp. 2672-2680. [Online]. Available: http:
/Ipapers.nips.cc/paper/5423- generative-adversarial-nets.pdf

M. Lucic, K. Kurach, M. Michalski, O. Bousquet, and
S. Gelly, “Are gans created equal? a large-scale study,” in
Proceedings of the 32Nd International Conference on Neural
Information Processing Systems, ser. NIPS’18. USA: Curran
Associates Inc., 2018, pp. 698-707. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3326943.3327008

M. D.Hoffman and M. J. Johnson, “ELBO surgery: yet an-
other way to carve up the variational evidence lower bound,”

in NIPS workshop for approximate Bayesian inference, Dec.
2016.

[17]

(18]

[19]

[20]

[21]

[22]

Z.Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational
deep embedding: an unsupervised and generative approach
to clustering,” in Proceedings of the 26th International Joint
Conference on Artificial Intelligence. AAAI Press, 2017, pp.
1965-1972.

N. Dilokthanakul, P. A. M. Mediano, M. Garnelo, M. C. H.
Lee, H. Salimbeni, K. Arulkumaran, and M. Shanahan, “Deep
unsupervised clustering with gaussian mixture variational
autoencoders,” CoRR, vol. abs/1611.02648, 2016. [Online].
Available: http://arxiv.org/abs/1611.02648

J. Tomczak and M. Welling, “Vae with a vampprior,” in Inter-
national Conference on Artificial Intelligence and Statistics,
2018, pp. 1214-1223.

D. P. Kingma and M. Welling, “Auto-Encoding Variational
Bayes,” arXiv e-prints, Dec. 2013.

A. Rios and L. Itti, “Closed-loop GAN for continual
learning,” CoRR, vol. abs/1811.01146, 2018. [Online].
Available: http://arxiv.org/abs/1811.01146

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online].
Available: http://arxiv.org/abs/1412.6980

http://dl.acm.org/citation.cfm?doid=2733373.2806390
http://dl.acm.org/citation.cfm?doid=2733373.2806390
http://arxiv.org/abs/1810.12488
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://dl.acm.org/citation.cfm?id=3326943.3327008
http://arxiv.org/abs/1611.02648
http://arxiv.org/abs/1811.01146
http://arxiv.org/abs/1412.6980

	1 Introduction
	2 Methodology for Continual Learning
	2.1 Definition of Continual Learning
	2.2 Naive Rehearsal
	2.3 Generative Replay
	2.4 The Generative Model Architecture

	3 Experimental Setup
	3.1 Data
	3.2 Generative Replay Setup
	3.2.1 Classifier Architecture
	3.2.2 Generator Architecture

	3.3 Rehearsal Setup
	3.4 Training Setup

	4 Results and Discussions
	4.1 Overall Results
	4.2 Comparison Between AE+GMM and VAE
	4.3 Comparison Between AE+GMM and Rehearsal Based Methods

	5 Conclusion
	6 References

