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ABSTRACT

A method to estimate an acoustic field from discrete micro-

phone measurements is proposed. A kernel-interpolation-based

method using the kernel function formulated for sound field inter-

polation has been used in various applications. The kernel func-

tion with directional weighting makes it possible to incorporate

prior information on source directions to improve estimation accu-

racy. However, in prior studies, parameters for directional weight-

ing have been empirically determined. We propose a method to

optimize these parameters using observation values, which is par-

ticularly useful when prior information on source directions is un-

certain. The proposed algorithm is based on discretization of the

parameters and representation of the kernel function as a weighted

sum of sub-kernels. Two types of regularization for the weights, L1

and L2, are investigated. Experimental results indicate that the pro-

posed method achieves higher estimation accuracy than the method

without kernel learning.

Index Terms— sound field estimation, kernel interpolation,

multiple kernel learning, directional weighting, regularization

1. INTRODUCTION

Estimating and interpolating an acoustic field from discrete mea-

surements of microphones are fundamental problems in acoustic

signal processing. Such estimations can be applied to the visu-

alization of acoustic fields [1], interpolation of room impulse re-

sponses [2,3], identification of sound sources [4,5], capturing sound

fields for spatial audio [6–8], and spatial active noise control [9,10],

among others. We focus on the sound field estimation problem in a

source-free region.

A typical strategy of sound field estimation is to decompose

the measurements into spatial Fourier basis functions [11], such as

plane waves [7] and spherical harmonics [12,13]. However, the em-

pirical setting of the truncation order and expansion center for the

basis expansion is necessary. Sparsity-based approaches using the

same basis functions have also been widely investigated [14, 15] to

increase the spatial resolution. The main drawback of this method is

that the inference operator of expansion coefficients becomes non-

linear. Thus, the estimation is basically performed by iterative pro-

cessing.

The infinite-dimensional analysis of a sound field is proposed

in [16], which corresponds to the kernel ridge regression when es-

timating a pressure field with pressure microphones [17]. This

method does not require the empirical setting of truncation order

and expansion center. Furthermore, the estimation is performed by

a linear operation. In [18, 19], the kernel function using prior infor-

mation on source directions is proposed. The estimation accuracy

can be higher than that of the method without prior source direc-

tion [17, 20] by using the directionally weighted kernel.

The kernel function with directional weighting includes two pa-

rameters to be set, which are derived from the parameters of the von

Mises–Fisher distribution [21]. One is the prior source directions

and the other represents the spread of the weighting. In [18, 19],

these parameters were empirically determined; however, source di-

rections are not necessarily available in practical situations. More-

over, the optimal setting of the spread parameter is not a trivial task.

We propose a method to optimize the parameters of the direc-

tional kernel function from microphone measurements. We simplify

the problem by discretizing the parameters and representing the ker-

nel function as a weighted sum of sub-kernels. As a result, an opti-

mization problem similar to the multiple kernel learning [22, 23] is

derived. We investigate two types of regularizations for the weight-

ing parameter to derive an algorithm for solving this problem. Al-

though the kernel function is optimized by iterative processing, the

estimation process is still a linear operation. We performed numer-

ical simulations in a three-dimensional (3D) space to evaluate our

proposed method.

2. PROBLEM STATEMENT AND PRIOR WORKS

Suppose a region of interest Ω ⊆ R
3 is a simply connected open

subset of R3. The pressure field at the position r ∈ Ω and angular

frequency ω ∈ R is denoted as u(r, ω) (i.e., u : Ω × R → C).

When Ω does not include any sources, u satisfies the homogeneous

Helmholtz equation as

(

∆+ k2
)

u(r, ω) = 0, (1)

where ∆ denotes the Laplace operator and k := ω/c is the

wavenumber with the sound velocity c. We assume that the pres-

sure field is measured by M omnidirectional microphones arbitrar-

ily placed inside Ω. The position and observed signal of the mth

microphone are denoted as rm ∈ Ω and sm(ω) ∈ C, respectively,

(m ∈ {1, . . . ,M}). Hereafter, ω is omitted for notational simplic-

ity.

Our objective is to estimate u(r) for r ∈ Ω from the micro-

phone measurements {sm}Mm=1 (see Fig. 1). This sound field esti-

mation problem is formulated as follows:

minimize
u∈H

M
∑

m=1

|u(rm)− sm|2 + λ‖u‖2H , (2)

where H is some function space for which we seek a solution, and

‖ · ‖H is a norm on H .

When H is a function space called a reproducing kernel

Hilbert space (RKHS), (2) corresponds to kernel ridge regres-

sion [24]. We assume that RKHS H is defined with the inner prod-

uct 〈·, ·〉H and positive-definite kernel κ : H × H → C. On the
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Figure 1: Sound field estimation inside Ω using discrete set of mi-

crophones.

basis of the representer theorem [25], its solution is represented as

u(r) =
M
∑

m=1

αmκ(r, rm), (3)

where αm ∈ C. Thus, (2) is transformed to the optimization prob-

lem for αm and its solution is obtained as

α = (K + λI)−1
s, (4)

where α = [α1, . . . , αM ]T, s = [s1, . . . , sM ]T, and K is the Gram

matrix defined as

K =







κ(r1, r1) · · · κ(r1, rM )
..
.

. . .
..
.

κ(rM , r1) · · · κ(rM , rM )






. (5)

An appropriate kernel function κ associated with H and 〈·, ·〉H
should be defined to obtain an appropriate estimate of u(r).

2.1. Kernel function for sound field estimation

The pressure field u, i.e, the solution of (1), can be well approxi-

mated by the superposition of plane waves [19], i.e., the Herglotz

wave function [26], as

u(r) =

∫

S2

ũ(x)ejk
Trdx, (6)

where ũ is the (square-integrable) complex amplitude of the plane

wave of arrival direction ( x ∈ S2unit sphere in R
3), and k = −kx

is the wave vector. The kernel function using this representation is

proposed in [18, 19]. The inner product and norm over the Hilbert

space H are defined as

〈u1, u2〉H :=

∫

x∈S2

ũ1(x)
∗ũ2(x)

w(x)
dx, (7)

‖u‖H :=
√

〈u, u〉H , (8)

where w(x) is a directional weighting function. This function is in-

troduced to incorporate prior knowledge on source directions. The

kernel function κ(r1, r2) is set as

κ(r1, r2) =
1

4π

∫

S2

w(x)e−jkT(r1−r2)dx. (9)

A specific w(x) is defined by using the von Mises–Fisher dis-

tribution in directional statistics [21] as

w(x) :=
1

4πC(β)
eβηTx, (x ∈ S2) , (10)

C(β) :=







1, β = 0

eβ − e−β

2β
, β ∈ (0,∞)

, (11)

where β ∈ [0,∞) is a constant parameter and η ∈ S2 represents the

prior arrival direction of the source. For β > 0, the smaller w(x) is,

the larger the norm ‖u‖H in (8) becomes, and vice versa. Thus, the

regularization term (2) becomes larger when the difference between

the prior arrival direction η and the direction of x becomes larger.

On the other hand, when β = 0, the arrival directions of sound

waves are assumed to be uniform. By substituting w(x) in (10)

into (9), the kernel function with directional weighting is derived

as [19]

κ(r1, r2) =
1

C(β)
j0
(

[

(jβ sin θ cosφ− kx12)
2

+(jβ sin θ sinφ− ky12)
2 + (jβ cos θ − kz12)

2
]

1

2

)

, (12)

where j0(·) is the 0th-order spherical Bessel function of the first

kind, φ and θ are respectively the azimuth and zenith angles of η,

and [x12, y12, z12]
T := r1 − r2.

2.2. Problem statement

The weighting function w(x) defined in (10) represents a unimodal

distribution directed to a single source. The parameters η and β
must be set to specify the kernel function (12). These parameters are

empirically determined using prior information on source directions

in previous studies. However, in practice, the prior source directions

η are not necessarily available. Even when η is accurately given,

the appropriate setting of β is not obvious. Furthermore, more than

one source can exist and reverberation can be non-negligible.

Our goal is to jointly optimize the weighting function w and the

sound field estimate u using the observation values, which can be

formulated as

minimize
u∈H ,w

M
∑

m=1

|u(rm)− sm|2 + λ‖u‖2H . (13)

Such a joint optimization is particularly useful when the prior in-

formation on the sources is uncertain or the target sound field is

complex because of multiple sources and/or reverberation.

3. PROPOSED METHOD

We generalize the weighting function by a convex combination of

(10) as

w(x) =

D
∑

d=1

γd
4πC(βd)

eβdη
T

d
x, (14)

where γd (d ∈ {1, . . . , D}) is the weighting coefficient in R≥0, i.e.,

non-negative real constant. The parameters η and β are discretized

into Dη values of ηd and Dβ values of βd (i.e., D = DηDβ).

Then, the kernel function is represented as the weighted sum of the

sub-kernels as

κ(r1, r2) =
D
∑

d=1

γdκd(r1, r2|ηd, βd) s.t. γd ≥ 0, (15)



Algorithm 1: Algorithm for L1 regularization

Initialization: γd = 1/D (d = 1, . . . , D)
while stopping criteria are not satisfied do

Compute J(γ)
dmax = arg max

d

γd

Compute δ

J̄ = 0, γ̄ = γ, δ̄ = δ

while J̄ < J(γ) do

γ = γ̄, δ = δ̄
ν = arg min

{d | δd<0}

−γd/δd, ρmax = −γν/δν

γ̄ = γ + ρmaxδ
dmax = arg max

d

γd

δ̄dmax
= δdmax

− δν , δν = 0

Compute J̄ = J(γ̄)
end

Line search for ρ ∈ [0, ρmax] along δ

γ = γ + ρδ
end

where the sub-kernel κd is given by (12) with ηd and βd. Thus,

problem (13) is transformed into the problem of determining γd as

well as u. This problem is known as multiple kernel learning [22,

23] in the context of machine learning. We also denote the vector

of γd as γ = [γ1, . . . , γD]T ∈ R
D
≥0.

To jointly optimize γ and u, some constraint should be imposed

on γ because excessively large γ can lead to a small cost function

value. We investigate two types of regularization for γ: L1 and L2.

3.1. Kernel learning with L1 regularization

First, we consider the L1 regularization for γ. The optimization

problem is written as

minimize
γ∈RD

≥0
,u∈H

M
∑

m=1

|u(rm)− sm|2 + λ‖u‖2H (16)

s.t.























κ(r, rm) =
D
∑

d=1

γdκd(r, rm|ηd, βd)

‖γ‖1 =
D
∑

d=1

γd = 1

.

The constraint on L1-norm can promote sparsity of γ, meaning that

a small number of sub-kernels κd for representing the kernel func-

tion κ will be selected. Moreover, it can be guaranteed that the

directional weighting function w(x) satisfies
∫

S2
w(x)dx = 1.

To solve (16), we apply the algorithm proposed in [27]. First,

(16) is rewritten as

minimize
γ

J(γ) s.t. ‖γ‖1 = 1, γd ≥ 0, (17)

where J(γ) is the solution of the kernel ridge regression as

J(γ) := minimize
α

‖Kα− s‖2 + λαH
Kα. (18)

Here, the Gram matrix K ∈ C
M×M is the weighted sum of the

Gram matrices consisting of κd, defined as K(d) ∈ C
M×M , ob-

Algorithm 2: Algorithm for L2 regularization

Initialization: σ = 0.5, γd = 1/D (d = 1, . . . , D),

K =
∑

d γdK
(d), α = (K + λI)−1

while stopping criteria are not satisfied do

v =
[

α⊤K(1)α, . . . ,αTK(D)α
]T

γ = v
‖v‖

K =
∑

d γdK
(d)

α = σα+ (1− σ)(K + λI)−1s

end

tained as

K =

D
∑

d=1

γdK
(d). (19)

As discussed in Sect. 2, (18) has a closed-form solution. Thus, the

gradient of J(γ) with respect to γd is obtained as

∂J

∂γd
= −λαH

K
(d)

α, (20)

Then, the reduced gradient method is applied to solve (17) with the

constraints of γ satisfied. The descent direction δ ∈ R
D consisting

of δd is derived as

δd =































0, for γd = 0 and
∂J

∂γd
−

∂J

∂γdmax

> 0

−
∂J

∂γd
+

∂J

∂γdmax

, for γd > 0 and d 6= dmax

∑

d′ 6=dmax,γd′>0

∂J

∂γd′
−

∂J

∂γdmax

, for d = dmax

.

(21)

Here, dmax is the index of the largest element of γ. The line search

of the step-size parameter is also necessary to ensure γd ≥ 0. The

iteration is repeated until some stopping criteria are satisfied. The

L1 regularization algorithm is summarized in Algorithm 1.

3.2. Kernel learning with L2 regularization

Next, L2 regularization for γ is considered. The optimization prob-

lem is written as

minimize
γ∈RD

≥0
,u∈H

M
∑

m=1

|u(rm)− sm|2 + λ‖u‖2H (22)

s.t.























κ(r, rm) =

D
∑

d=1

γdκd(r, rm|ηd, βd)

‖γ‖22 =
D
∑

d=1

γ2
d ≤ 1

.

By the relaxation of the L1-norm equality constraint with the

bounded L2-norm, this constraint puts importance on the fitting of

the kernel function to the observation values rather than the sparsity

of γ. Moreover, the resulting algorithm can be faster than that of

the L1 regularization.



Figure 2: NMSE plotted against frequency

(a) L1 regularization (b) L2 regularization

Figure 3: Estimated pressure distribution

(a) L1 regularization (b) L2 regularization

Figure 4: Normalized error distribution. NMSEs for L1 and L2

regularization were −12.64 dB and −8.82 dB, respectively.

To solve (22), we apply the algorithm proposed in [28]. The

dual problem of the kernel ridge regression (2) is written as

maximize
α∈CM

−α
H
α−

1

λ
αKα+ s

H
α+α

H
s. (23)

Then, problem (22) can be rewritten as

min
γ∈RD

≥0

max
α∈CM

−α
H
α−

1

λ

D
∑

d=1

γdαK
(d)

α+ s
H
α+α

H
s (24)

s.t. ‖γ‖22 =

D
∑

d=1

γ2
d ≤ 1.

By transforming (24) into the max–min problem, the minimization

problem for γ and the maximization problem for α are alternately

solved in [28]. The algorithm is summarized in Algorithm 2.

4. EXPERIMENTS

We conducted numerical experiments in a 3D free field to evalu-

ate the proposed method. For comparison, the method with the

fixed kernel function without prior information of source direc-

tions [17] is used. This kernel function corresponds to (15) for

β = 0, i.e., uniform directional weighting w(x) = 1, which be-

comes κ(r1, r2) = j0(k‖r1 − r2‖).
The target region Ω was a sphere of radius 0.40 m, and the

coordinate origin was set at the center of Ω. Omnidirectional mi-

crophones were arranged on two layers of spherical surfaces, whose

radii were 0.40 m and 0.45 m, to avoid the non-uniqueness prob-

lem [6, 11]. The number of microphones was 25 for each layer, so

the total number M was 50. The microphones were arranged on

each layer by using the spherical t-design [29]. Two point sources

were placed at (2.5, 0.0, 0.0) m and (0.0, 2.5, 1.0) m, and their

amplitudes were both 20. White Gaussian noise was added to the

observation signals so that the signal-to-noise ratio (SNR) becomes

20 dB. The speed of sound was set to 340 m/s.
In the proposed method, the kernel functions κd were obtained

by discretizing η and β into 10 values each, i.e., Dη = 10 and

Dβ = 10. The arrival directions ηd were set by regularly dividing

the azimuth angle [−π, π). The parameters βd were set from 0.0 to

9.0 at intervals of 1.0.

As an evaluation measure, we define the following normalized

mean squared error (NMSE):

NMSE := 10 log10

∑

i∈I |utrue(r
(i)
eval)− uest(r

(i)
eval)|

2

∑

i∈I |utrue(r
(i)
eval)|

2
, (25)

where utrue and uest respectively denote the true and estimated

pressures, and {r
(i)
eval}i∈I denotes evaluation positions obtained by

discretizing Ω every 0.05 m.

Fig. 2 shows the relationship between frequency and NMSE.

The NMSEs of the two proposed methods were lower than that of

the method using β = 0. In particular, L1 regularization performed

better than L2 regularization at all the frequencies. This result indi-

cates that the sparsity constraint on γ was effective in this setting.

On the other hand, the computational time of L2 regularization was

almost 10−2 times that of L1 regularization for estimating γ. As an

example, the estimated pressure and normalized error distributions

on the x-y-plane at 900 Hz are shown in Figs. 3 and 4, respectively.

In this case, 57% of γd became 0 in the L1 regularization.

5. CONCLUSION

We proposed a kernel-interpolation-based sound field estimation

method with learning kernels. The parameters for directional

weighting in the kernel functions have been empirically determined

on the basis of prior information on source directions; however,

such information is not necessarily available in practical situations.

To optimize these parameters on the basis of the observation val-

ues, we formulated the optimization problem by discretizing the

parameters and representing the kernel function as the weighted

sum of sub-kernels. Two types of regularization, L1 and L2, for

the weights were investigated. Although the algorithms for solving

these optimization problems are iterative processing, the estimation

operation is linear and can be implemented using a finite response

filter. The proposed method outperformed the method without the

kernel learning in the numerical experiments.
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