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ABSTRACT

Remixing separated audio sources trades off interferer attenua-
tion against the amount of audible deteriorations. This paper pro-
poses a non-intrusive audio quality estimation method for control-
ling this trade-off in a signal-adaptive manner. The recently pro-
posed 2f-model is adopted as the underlying quality measure, since
it has been shown to correlate strongly with basic audio quality
in source separation. An alternative operation mode of the mea-
sure is proposed, more appropriate when considering material with
long inactive periods of the target source. The 2f-model requires
the reference target source as an input, but this is not available in
many applications. Deep neural networks (DNN5) are trained to es-
timate the 2f-model intrusively using the reference target (iDNN2f),
non-intrusively using the input mix as reference (nDNN2f), and
reference-free using only the separated output signal (rDNN2f). It is
shown that iDNN2f achieves very strong correlation with the origi-
nal measure on the test data (Pearson p = 0.99), while performance
decreases for nDNN2f (p > 0.91) and rDNN2f (p > 0.82). The
non-intrusive estimate nDNN2f is mapped to select item-dependent
remixing gains with the aim of maximizing the interferer attenua-
tion under a constraint on the minimum quality of the remixed out-
put (e.g., audible but not annoying deteriorations). A listening test
shows that this is successfully achieved even with very different se-
lected gains (up to 23 dB difference).

Index Terms— Audio quality, source separation, remixing.

1. INTRODUCTION

Many applications of audio source separation aim to attenuate the
interfering background signal b(n) relative to the target signal s(n)
given the input signal z(n) = s(n) + b(n), e.g., for increasing the
relative speech level in TV programs [1], or for aesthetic reasons in
music remixing [2]. Source separation computes the estimates 3(n)
and b(n) and a modified output mix can be obtained as y(n) =
3(n) + vb(n), with remixing gain 0 < < 1, and 3(n) + b(n) =
z(n). In the following, the remixing gain g is considered in dB:
g = —20log;,(y). Due to the imperfection of the estimates §(n)
and l;(n), artifacts and distortions become audible for increasing
values of g.

This paper presents a method (depicted in Fig. 1) to control the
perceived sound quality of y(n) by mapping the estimated quality ¢
of §(n) to the remixing gain g. Sound quality § is quantified using
a novel non-intrusive estimation of the recently-proposed 2f-model
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Figure 1: A non-intrusive audio quality estimate (nDNN2f) is pro-
posed to control the remixing trade-off between interferer reduction
and final perceived quality. Dashed red lines depict training steps.

for predicting Basic Audio Quality (BAQ) for source separation [3],
shown to correlate strongly with human perception [4].

Also our previous work [5] proposes a method for quality con-
trol in remixing. This paper introduces main novelties such as: (i)
predicting the sound quality ¢ as an intermediate result and intro-
ducing a mapping g = m(q), which can be easily adjusted ac-
cording to perceptual data, (ii) employing the 2f-model, (iii) con-
sidering an improved dialogue separation method, (iv) using sig-
nals at 48 kHz sampling rate, and (v) using deeper and waveform-
based DNNs. Other related works apply DNNs to predict the qual-
ity of source separation, e.g., estimating Source-to-Distortion-Ratio
(SDR) given the separated target signal [6] and estimating Source-
to-Artifact-Ratio (SAR) given the separated target and the mixture
signal [7], but these metrics correlate weakly with the perception of
sound quality [4, 8, 9, 10]. Intrusive and non-intrusive estimations
of speech quality for communication applications are investigated
in [11]. Non-intrusive methods for estimating various speech qual-
ity indices have been proposed in [12, 13]. With particular focus on
intelligibility of speech recorded in rooms, [14] proposes the esti-
mation of the speech transmission index without using the room im-
pulse response. Computational models of intelligibility and quality
have also been applied for training DNNs for source separation by
using perceptually inspired loss functions [15]. When objectives are
not differentiable, previous works have used simplified implemen-
tations [16], gradient approximation [17], DNN-based approxima-
tions [18], Generative Adversarial Networks (GAN) [19, 20], and
deep reinforcement learning [21, 22].

This paper is structured as follows. First, an alternative op-
eration model of the 2f-model is proposed as underlying quality
measure (Sec. 2.1). This quality measure is intrusive, i.e., re-
quires the reference target source, not available in the application
at hand. Non-intrusive and reference-free DNN estimates are pro-
posed (Sec. 2.2 — 2.3). A mapping from a non-intrusive DNN-
based estimate (nDNN2f) is proposed (Sec. 2.4) and evaluated in
the remix-control application by means of a listening test (Sec. 3).
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Layer In C1D CiIDM | C1IDM | C1IDM | C1DM | C1DM | CIDM | Flat. Dense Dense | Dense Out
# Units Waveform 257 9% 9 96 9 9% 9 - 256 256 1
/ Filters values
(;Eg;: 2or1, 192000 | 257,375 | 96, 188 96, 94 96, 47 96, 24 96, 12 96, 6 576 256 256 1
Filter Size 1024 3 3 3 3 3 3
Stride - 512 1 1 1 1 1 1 - - - B
. hardtanh
Activation - ReLU ReLU ReLU ReLLU ReLU ReLU ReLLU - ReLU ReLLU [0, 100]
# Param. — 526,593 74,112 27,744 27,744 27,744 27,744 27,744 0 147,712 | 65,792 257

Table 1: The architecture of the proposed DNNs. CID stands for 1D convolutional layer. C/DM is C1D followed by a max-pool layer with
pooling size of 2. BatchNorm follows the input layer and every C1DM layer and every hidden dense layer. Zero-padding same is used. Dense
layers use 40% dropout. Total number of trainable parameters is 955,880.

2. METHOD

2.1. Quality estimation using the adapted 2f-model

The underlying computational measure for BAQ is the 2f-model
as described in [3]. It uses two features from PEAQ [23] as im-
plemented in [24]. This original feature extraction applies a so-
called boundaries detection for discarding signal segments from
both probe and reference signals when the reference is effectively
silent. If a large portion of the reference is silent, both PEAQ fea-
tures and the 2f-model indicate no distortions, regardless of the con-
tent of the probe signal.

This issue went unnoticed during the original development of
the 2f-model, since the used data always contained significant en-
ergy in the reference signal, and the discard condition was not trig-
gered in a significant manner. In longer real-world signals, longer
pauses of the reference signals occur more often, and the 2f-model
score may deviate more from the perceived quality.

We propose to address this issue by deactivating the boundary
detection in the PEAQ feature extraction. By doing so, the audio
segments with silent reference signal are not discarded, but their
audio quality estimate is computed with the 2f-model, and these
signals are also included in the training of the DNNs estimating
the 2f-model score. Deactivating the boundary detection does not
change the results presented in [4] because of the non-silent nature
of the reference signals considered there.

2.2. Predicting the 2f-model by DNNs

This work proposes using DNNs for estimating the 2f-model out-
put in three ways: (i) intrusive, having access to the same reference
signal as the original 2f-model (iDNN2f), (ii) non-intrusive, using
the mixture signal from the dialogue separation input as the quality
reference (nDNN2f), similar to [5], and (iii) reference-free, without
any reference signal (rDNN2f). While only nDNN2f and rDNN2f
can be used in the envisioned application, iDNNZ2f is also investi-
gated to quantify the effect of having access to the target signal.

The network architecture is shown in Table 1. It takes time-
domain signals as input (i.e., it is wave-form based), in segments
of 192°000 samples (corresponding to 4 s at 48 kHz sampling rate)
from the probe signal and possibly from the reference signal. The
loss function is computed as mean squared error (MSE) between
the prediction of the model and the reference 2f-model score. The
training is run for 50 epochs using ADADELTA [25] optimizer with
initial learning rate 0.1, reduced by the factor 0.5 when the valida-
tion loss has not improved for 5 epochs. The model with the lowest
validation loss is selected.

2.3. Traing, validation, and test data

The training data is generated with the intention of producing a
range of different separation distortions, combined with a range
of levels of interferer attenuation. The training signals are cre-
ated using 2h 37 min of broadcast audio with separate stems for
clean speech and background (music and effects), and 1h23 min
of other clean speech samples mixed with music or noise sam-
ples as background. Speech and background signals are mixed
at random signal-to-noise ratios (SNR) uniformly distributed in
[—10,10] dB. Estimates of separated speech are computed using
two dialogue separation methods ([1] and an earlier version of
the system described in [26] with less training data and minor
implementation differences) and adding the estimated background
scaled by {—o0, —40, —14} dB, and by synthesizing artificial dis-
tortions. The estimated background components are obtained by
subtracting the separated or simulated speech output from the input
mixture. Original component signals with backgrounds scaled by
{—00, —35, —20, 0} dB mimick artifact-free separation. Individual
artificial distortions are applied to the original speech components
with parametrization in round brackets refering to the implemen-
tation in [27]. These include: additive musical noise (90%), low-
pass filtering (3" order Butterworth with cut-off at 1 kHz), clipping
(50%), and reducing time-frequency resolution (50 ms, 500 Hz). In
addition, these artificial distortions are used with parameters ran-
domized in ranges such that the distortions just become audible
and background estimates attenuated by 45 dB. This results in to-
tal training data of 96 h length to which 30 min of silence is added.
During training, each data batch of 64 examples is further dupli-
cated with inverting the audio signal phase and copying the target
2f-model score, resulting into training batch size of 128.

Two additional data sets are created with the same separation
and augmentation. The validation data is created from 15 min of
raw data. The unseen test data is created from 45 min of broadcast
material. Even though the validation and test data sets contain items
not used for the training, the separation and augmentation to obtain
speech estimates was the same. Therefore, a fourth data set simulat-
ing an unseen separation system is constructed by processing the
45 min of raw test material with the dialogue separation system pre-
sented in [26]. The output component signals are combined with the
background level scaled by {—o0, —40, —14, 0} dB. Additionally,
the clean speech signals and the unprocessed input mixtures were
used for testing. The authors are aware that a related separation
system was used for generating a part of the training material, but
verified that the outputs of the two systems sound clearly different.
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Figure 2: Proposed linear mapping from the BAQ estimate g for the
separated dialogue signal 3(n) to the remixing gain g (k = 0).

2.4. Mapping to remixing gains

Our goal is to control the trade-off between interferer attenua-
tion and sound quality by maximizing g under the constraint that
f(y(n)) > K, where f(-) quantifies the perceived audio quality,
and K is the desired quality level. A closed-loop solution would
estimate the quality of y(n), and perform a search over a range of
values for g. Because of the efficiency of computing only one qual-
ity estimate per item (or segment), we propose using an open-loop
approach. In [5], it was proposed to directly estimate g such that
a quality condition (set during training and based on an underlying
objective measure) was met. In this paper we use an injective map-
ping: g = m(§), where § = nDNN2f(5(n),z(n)). In this way,
g is an intermediate result based on an underlying objective mea-
sure and the final mapping can be adjusted using perceptual data
specifically collected for this purpose.

This assumes a monotonic relationship between ¢ and f(y(n)),
and that this relationship can be controlled by g. This relationship
can be very complex due to psycho-acoustical factors and depend-
ing on the separation system performance. Our first approximation
proposed here assumes m(-) to be linear.

Since designing the mapping m(-) requires perceptual data
which we did not have in the first place, we turned to a pool of in-
ternal items produced in the context of [26]. For these, the remixing
gains were manually selected through a consensus between three
expert engineers, aiming to maximizing the interferer attenuation
while maintaining a good final overall quality. This data was not
collected with the goal of designing m(+), but our intention was to
have a first rough mapping. Linear regression was performed, and
the resulting mapping was g = 0.71¢ — 22.28, with the range lim-
ited to 4 < g < 26dB, as values outside this range were never
seen in the manual mixing control. The mapping is illustrated by
the dashed line in Fig. 2. The possibility for further tuning this
mapping was introduced by k, i.e., g = m(§) + k. This initial
mapping was evaluated with the listening test described in Sec. 3.2,
and thanks to those results it was revised to be more conservative:
g = 0.45¢ — 12.67 + k, as shown by the solid line in Fig. 2.

3. EVALUATION

3.1. Quality scores prediction performance

Table 2 shows the performance of the proposed networks in predict-
ing the 2f-model score on validation set, test set, and unseen separa-
tion system. The iDNN2f correlates with the 2f-model very strongly
in all test scenarios, including the unseen system (p = 0.99). A per-
formance drop is observed for nDNN2f, depending on the difficulty
of the task: it is only minimal on the validation set (p = 0.98) and
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Validation set Test set Test set
+ unseen system
p 0.99/0.98/0.92 | 0.99/0.95/0.86 0.99/0.91/0.82
Slope 0.99/0.96/0.85 | 0.98/0.90/0.73 0.97/0.86/0.70
MAE 2.7/4.0/6.6 2.7/4917.7 3.1/83/11.3
RMSE 43/6.4/119 39/7.8/12.8 4.7/13.35/17.77

Table 2: Pearson correlation p, linear regression slope, mean av-
erage erorr (MAE), and root mean squared error (RMSE) between
DNN-based predictions and reference 2f-model. Each cell contains
3 values, referring to iDNN2f / nDNN2f / rDNN2f.

Min p | Max p | Aggregated p
2f-model 0.80 0.92 0.86
PEMO-Q 0.67 0.84 0.77
PESQ 0.70 0.83 0.76
POLQA (v2) 0.64 0.82 0.74
iDNN2f 0.52 0.75 0.71
HAAQI 0.59 0.82 0.69
PEASS OPS 0.54 0.86 0.67
VISQOLAudio 0.58 0.73 0.67
PEAQ ODG 0.49 0.75 0.63
WEnets PESQ 0.09 0.61 0.25
rDNN2f 0.09 0.27 0.17
nDNN2f 0.03 0.38 0.16

Table 3: Minimum, maximum, and aggregated correlation p with
BAQ perceptual scores from the 6 listening tests concerning source
separation. The correlation values for the proposed DNN-based es-
timates are shown in bold and compared with the state of the art.
Full details and references for the listening tests, the state-of-the-art
measures, and the correlation experiments can be found in [4].

it becomes more significant on the test set (p = 0.95) and on the
unseen system (p = 0.91). Still, the correlation with the 2f-model
is strong in all cases (p > 0.91). The performance penalty for the
reference-free version (rDNN2f) is bigger and the correlation with
the 2f-model can decrease to p = 0.82. These performance values
would decrease with active boundary detection, especially in the
more challenging cases.

Additionally, we considered an evaluation with perceptual
scores from 6 listening tests on BAQ for source separation [4] to
investigate the limits of the three DNN’s and to test directly against
perceptual reference scores. These listening tests involved source
separation estimates of music instruments, singing voice and speech
from music (the majority) and speech mixtures from various separa-
tion systems. Hence, there is a substantial departure from the train-
ing conditions. The DNN estimates are computed over chunks of
4 seconds with 50% overlap and the average over all segments and
channels is considered. Table 3 reports minimum and maximum
Pearson correlation p achieved on these listening tests together with
the aggregated correlation, i.e., the average correlation in the Fisher-
z-domain [4]. The correlation scores for the proposed networks are
reported in bold along with other state-of-the-art objective measures
from [4]. While iDNN2f is still able to compete with the state of the
art, nDNN2f and rDNN2f show basically no correlation with the
perceptual reference scores. A similar phenomenon was observed
in [4] for WEnets PESQ [13]. The authors of WEnets PESQ report
Pearson correlation of 0.97 with the reference measure PESQ on
their test set, but when tested on these source separation data sets,
the trained network revealed much weaker correlation than PESQ.

We can conclude that the performance of nDNN2f is satisfac-
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Figure 3: Listening test results: Average perceptual scores are shown together with 95% confidence intervals, showing that the nDNN2f
quality estimate can be mapped to select non-trivial item-dependent remixing gains with desired perceived output quality.

tory only for the application domain and the separation systems seen
during training or with little departures from them. In the following,
nDNN2f is used to control the unseen separation system, for which
it showed strong correlation with the reference 2f-model; iDNN2f
would not be a viable solution due to the missing reference target
signal, and rDNN2f showed significantly lower correlation.

3.2. Remixing gains prediction performance

A listening test was conducted with 11 expert listeners. The listen-
ers participated from home office using professional headphones.
After an initial training session, 40 items were presented one at a
time in random order. The listeners were asked to rate the absolute
sound quality in terms of presence of annoying artifacts or distor-
tions, without a reference. The discrete 5-point annoyance scale
was employed to quantify the perceived quality f(y(n)). The de-
teriorations could be rated as 1 = very annoying, 2 = annoying, 3 =
slightly annoying, 4 = audible but not annoying, 5 = inaudible [28].

The 40 items were generated starting from 10 mixtures input
to the unseen separation system. These were excerpts (9 to 15 sec
long) from mixes professionally produced for German TV and were
not present in the previous train or test sets. They consisted of fe-
male or male speech mixed with music and/or environmental noise.
Average input SNR was 6.1 £ 2.7 dB. From the separated compo-
nents, 4 remixing gains g were generated for each of the 10 initial
excerpts. These corresponded to k = —6,0,46,+12 as per the
initial rough mapping (Fig. 2).

Results are depicted in Fig. 3. The first subplot from the left
shows the average (over items and listeners) quality level for the 4
values of k together with 95% confidence intervals (using Student’s
t-distribution). The 4 values of k result in 4 distinct quality levels,
with non-overlapping confidence intervals. Considering k = 0, the
remixing gains range from 3 to 26 dB and correspond to an average
perceived quality f(y(n)) = 3.7. If better quality is required k =
—6 could be used resulting on average in f(y(n)) = 4.1. If more
quality degradation is acceptable, k = 46 or +12 can be selected
for more interferer reduction, with average f(y(n)) = 3.0 and 2.5.

The average quality for £ = 0 (f(y(n)) = 3.7 £ 0.77) can
be further improved by a refined mapping. The refined mapping
was obtained by considering only the items rated with average qual-
ity f(y(n)) > 3.5. A linear regression was performed between
the remixing gains for these items and the corresponding nDNN2f
scores, obtaining the mapping introduced in Sec. 2.4 and Fig. 2.

For each of the 10 initial excerpts, the remixing gains in the lis-
tening test are re-clustered based on the closest gain obtained with
the refined mapping and k = —6,0, +6, +12. The corresponding
quality scores are depicted in the second and third subplot of Fig. 3,

where different colors and symbols encode the belonging to the cat-
egories k = —6,0,+6,+12. The second subplot shows the av-
erage scores over items and listeners, while the third subplot shows
the average quality scores for the 40 individual items, averaged over
listeners only. Also with this refined mapping, the gains correspond-
ing to k = 0 range from 3 to 26 dB, but the average quality is higher
and the standard deviation smaller (f(y(n)) = 4.0£0.58) than with
the rough mapping. Moreover, no item is scored on average below
3 for k = 0, as can be observed in the third subplot (green circles).

The fourth subplot shows the scores from the listening test ag-
gregated by the absolute value of the remixing gains in steps of
6dB (e.g., 9 on the x-axis refers to the range (6, 12] dB). It can be
observed that only smaller gains (< 12 dB) guarantee good percep-
tual quality (average f(y(n)) > 4), while the confidence intervals
become bigger and overlap for g > 12, leaving uncertainty regard-
ing the final item-dependent quality for this upper range. A similar
average quality to k = 0 (refined mapping) could be selected by
considering only gains in the range (6, 12] dB. However, with the
nDNN2f-based selection, 4 gains (out of 10) are > 12 dB. More-
over, the controlled gains obtained with £k = 0 work as quality
anchors, i.e., they can be tuned with 6 dB steps, obtaining consis-
tent changes in the perceived quality, which is observed only to a
limited extent in the level-based selection. Hence, nDNN2f can be
mapped to select non-trivial item-dependent remixing gains with
desired output quality, even if the selected gains are very different
in absolute terms (up to 23 dB difference).

As a final note, the same linear regression done for the refined
mapping was performed by considering PEASS APS [29], which
was the core measure used in [5]. For k = 0, this gave lower aver-
age quality and higher standard deviation (f(y(n)) = 3.7 £ 0.79),
using the original APS, i.e., with the full reference signals and with-
out the DNN-based estimation. This shows that the 2f-model is a
better underlaying measure for this purpose than APS.

4. CONCLUSION

DNNs were investigated for predicting the quality of blindly sepa-
rated dialogue in a non-intrusive way. As underlying quality mea-
sure, an alternative operation mode of the 2f-model was proposed.
This quality prediction was mapped to select item-dependent remix-
ing gains so to obtain a final modified mix where the relative dia-
logue boost is maximized under a quality control constrain, e.g.,
that the distortions introduced by the source separation may be just
audible but not annoying. The mapping between the quality es-
timate provided by the DNN and the remixing gain can be easily
tuned, obtaining consistent changes in the perceived quality of the
final remixed signals, as verified by the conducted listening test.
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