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ABSTRACT

Convolutional beamformers integrate the multichannel linear pre-
diction model into beamformers, which provide good performance
and optimality for joint dereverberation and noise reduction tasks.
While longer filters are required to model long reverberation times,
the computational burden of current online solutions grows fast with
the filter length and number of microphones. In this work, we pro-
pose a low complexity convolutional beamformer using a Kalman
filter derived affine projection algorithm to solve the adaptive filter-
ing problem. The proposed solution is several orders of magnitude
less complex than comparable existing solutions while slightly out-
performing them on the REVERB challenge dataset.

Index Terms— Convolutional beamforming, dereverberation,
noise reduction, multichannel speech enhancement

1. INTRODUCTION

Increasing use of voice interfacing on mobile and wearable devices
in diverse acoustic scenarios to communicate with machines as well
as human-to-human telephony continues to pose more challenging
demands on speech enhancement algorithms. Especially increas-
ing distances between microphones and speech source degrade the
signal-to-noise ratio (SNR) and signal-to-reverberation ratio (SRR),
which affects listener fatigue and intelligibility for humans and per-
formance of automatic speech recognition (ASR) systems [1].

Multi-microphone processing enables use of spatial informa-
tion in addition to spectro-temporal information, typically enabling
improved enhanced speech quality and intelligibility. Multichan-
nel speech enhancement approaches are fixed coherence beamform-
ing [2], adaptive beamforming using parametric sound field mod-
els [3], direction-only constraints [4], eigenvalue decomposition [5],
or mask-based updates [6], additional post-filtering [7], and MIMO
processing [8, 9], and combinations thereof. Frequency-domain
multi-frame multiple-input multi-output (MIMO) filtering based on
the multichannel linear prediction (MCLP) model [8, 9, 10, 11] has
been proven very effective to reduce reverberation. The MCLP
model has recently been integrated into beamformers [12, 13, 14],
which results in less complex multi-input single-output (MISO) sys-
tems while ensuring optimality. These systems are also referred to
as convolutional beamformers, and are subject to this study. On-
line processing systems are more practical as they enable use of the
same system for both real-time communication and low-delay ASR.
While there exist several online processing convolutional beamform-
ers [15, 13, 14], computational complexity can be still high when
targeting implementation on resource-constrained devices.

In this work, we propose a low-complexity affine projection al-
gorithm (APA) solution to the convolutional beamformer, which is
derived from our previous Kalman filter solution [14]. The proposed

system is essentially an optimal integration of a minimum power dis-
tortionless response (MPDR) beamformer with a reverberation can-
celler. In contrast to generalized sidelobe canceller (GSC)-based so-
lutions [13, 15, 16], the proposed constrained filter suffers less from
signal cancellation, as it does not require a blocking matrix, whose
orthogonality assumption is often violated in practice.

We show that the proposed APA beamformer solution is by sev-
eral orders of magnitudes less complex than the related Recursive
Weighted Power minimization Distortionless response (R-WPD)
and recursive least-squares WPD (RLS-WPD) beamformers [15].
For the proposed convolutional APA beamformer, we propose a
zero-complexity integrated speech power spectral density (PSD) es-
timation and an optional deep neural network (DNN)-based PSD en-
hancement. We propose an additional simplification of the convo-
lutional APA beamformer assuming a fixed noise field coherence.
The proposed low-complexity solution achieves comparable ASR
results to the best online system in [15], which additionally relies
on complex MIMO pre-processing and a DNN for steering vector
estimation, while our steering vector is based on a low-complexity
localization system [17]. This paper distinguishes from our previous
work [14] by the reduced complexity adaptive filter, the fixed co-
herence convolutional beamformer, improved PSD estimators, com-
plexity and ASR analysis.

2. SIGNAL MODEL

We assume M microphones capturing the sound in a reverberant
and noisy environment. The mth microphone signal in the STFT
domain is denoted by Ym(k, n), where k and n are the frequency
and time indices, respectively. The vector of microphone signals
y(k, n) = [Y1(k, n), · · · , YM (k, n)]T is modeled by

y(k, n) = a(k, n)X(k, n) + r(k, n) + v(k, n), (1)

where X(k, n) is the desired speech signal at the reference micro-
phone, a(k, n) is the acoustic relative transfer function (RTF) vector,
and r(k, n) and v(k, n) denote reverberation and additive noise, re-
spectively.

The late reverberation can be modeled using the MCLP model
[8] as a by D delayed prediction from the past L frames in each
frequency band by

r(k, n) =

L∑
l=D

Cl(k, n)y(k, n− l), (2)

where the matrices Cl(k, n), l ∈ {D, . . . , L} denote the MCLP
coefficients, and L > D ≥ 1. Note that strictly speaking, the MCLP
model (2) is only valid when the noise contribution v(k, n) vanishes,
i.e. at higher SNR. The frequency index k is omitted in the rest of
the paper for better readability.
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3. JOINT MINIMUM POWER BEAMFORMING AND
MULTICHANNEL LINEAR PREDICTION

In this section, we propose a method for joint adaptive beamforming
and reverberation cancellation at the beamformer output. The de-
sired signal X(n) is estimated by obtaining the beamformer output
Xb(n) for the current frame, and subtracting the reverberation at the
beamformer output Xr(n) predicted from past L frames by

X̂(n) = wT
b (n)y(n)︸ ︷︷ ︸
Xb(n)

−
L∑
l=D

cTl (n) y(n− l)︸ ︷︷ ︸
Xr(n)

(3)

where wb are the beamformer coefficients, and cr,l(n), l ∈
{D, . . . , L} are the prediction filters of the reverberation at the
beamformer output, obtained from the MCLP model (2). To obtain
a compact vector notation, (3) is re-written as

X̂(n) = wT (n) ỹ(n) (4)

where ỹ(n) = [yT (n),yT (n−D), . . . ,yT (n−L)]T are stacked mi-
crophone signals, and w(n) = [wT

b (n),−cTD(n), . . . ,−cTL(n)]
T

are stacked beamformer and reverberation prediction coefficient vec-
tors of length Q =M(L−D+2), respectively.

3.1. Constrained Kalman filter beamformer

The joint convolutional beamformer weights w(n) are obtained by
minimizing the power of the output signal X̂(n) under the direc-
tional beam-steering constraint, generally known as MPDR beam-
former, i. e.,

argmin
w

E
{
|wT ỹ|2

}
s. t. wT ã + εa = 1, (5)

where ã = [aT , 01×M(L−D+1)]
T is the zero-padded RTF vector.

The directional constraint in (5) is relaxed by introducing the small
additive error εa(n), which can model inaccuracies between the es-
timated and true steering vector.

We reformulate the observation into a two-equation system [18,
4], where the first row is obtained by re-arranging (4), and the second
row is the directional constraint from (5), i. e.,[

0
1

]
︸︷︷︸
d

=

[
ỹT (n)
ãT (n)

]
︸ ︷︷ ︸

F(n)

w(n) +

[
−X̂(n)
εa(n)

]
︸ ︷︷ ︸

ε(n)

. (6)

By assuming X̂(n) and the directional error εa(n) to be independent
random variables, the observation error correlation matrix Φε(n) =
E
{
ε(n)εH(n)

}
is a diagonal matrix given by

Φε(n) = diag {φX(n), φa(n)} , (7)

where φX(n) and φa(n) are the PSDs of X̂(n) and εa(n), and
diag{} constructs a matrix with its arguments on the main diagonal
and zeros elsewhere. The unknown evolution of the time-varying
filter w(n) can be modeled as first-order Markov process

w(n) = w(n− 1) + q(n), (8)

where the independent random variable q(n) models the filter uncer-
tainty over time. The observation equation (6) and state model (8)

lead to the Kalman filter solution described in [14], which requires
estimation of the filter error covariance

Φw(n) = E
{
[w(n)− ŵ(n)] [w(n)− ŵ(n)]H

}
, (9)

where ŵ(n) is the estimated filter.

3.2. Low complexity adaptive filter solution

Since the full Kalman filter [14] requires computing expensive up-
dates of Φw(n), we assume Φw to be a fixed diagonal matrix, which
simplifies the Kalman filter to kind of a regularized APA. The recur-
sive filter update is then obtained by

K(n) = ΦwFH(n)
[
F(n)ΦwFH(n) + Φε(n)

]−1

(10)

ŵ(n) = ŵ(n−1) + K(n) [d− F(n)ŵ(n−1)] (11)

where K(n) is the Kalman gain, and d(n),K(n) are defined in (6).
Note that most matrix multiplications in (10) can be implemented by
simple element-wise operations due to the diagonality of Φw.

After the beamformer update, we obtain the final output signal
by adding more control to the reverb canceller in (3), avoiding mag-
nitude over-subtraction of the reverberation to avoid echo-artifacts,
and limiting the amount of reverb cancellation [9]

X̂(n) = Xb(n)− αr min{|X̂r(n)|, |Xb(n)|}
X̂r(n)

|X̂r(n)|
, (12)

where 0 ≤ αr ≤ 1 controls the amount of reverb reduction.
We propose to model the update of the beamformer wb(n) and

reverberation prediction coefficients c`(n) separately with the time-
invariant variances φb and φr, respectively. The filter error covari-
ance matrix is then given by

Φw = diag
{
φb, . . . , φb︸ ︷︷ ︸

M

, φr, . . . , φr︸ ︷︷ ︸
M(L−D+1)

}
. (13)

While the APA simplification has been proposed for the standard
MPDR beamformer in [4], here we use the convolutional MPDR,
keep the parameters Φw and φX(n) more general, and propose
novel estimators for the speech PSD φX(n) in the following.

3.3. Speech PSD estimation

In this section, a simple but effective estimation of the desired signal
PSD required in (7) is proposed, with an optional further enhance-
ment using a DNN, as shown in Fig. 1.

The desired signal PSD can be estimated at almost no additional
cost by applying the previously estimated filter coefficients to the
current frame, i. e.,

φ̂X(n) = |ŵT (n− 1) ỹ(n)|2. (14)

Note that the filtered signal term in (14) needs to be computed in the
filter update (11) as well, so it comes at almost no additional cost.
In contrast to [14], we found any temporal smoothing or decision-
directed estimation on (14) harmful to speech quality.

DNN-based PSD enhancement: As we found the PSD φ̂X(n)
to play an essential role on the beamformer performance, we pro-
pose an optional enhancement of the PSD using a DNN for speech
enhancement as shown in Fig. 1. We use the convolutional recurrent
network for speech enhancement (CRUSE) proposed in [19], which
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Fig. 1. Proposed convolutional beamformer system. The yellow
speech PSD estimation block can be replaced by a DNN. We also
explore using a fixed coherence beamformer, adapting only the green
reverb canceller branch.

was trained to predict a spectral suppression filter to enhance single-
channel recorded speech. Thus, the pre-estimated PSD is enhanced
by suppressing residual noise and reverberation by

φ̂DNN
X (n) = G2

DNN(k, n) φ̂X(k, n), (15)

where GDNN(k, n) is the enhancement filter predicted by the DNN.
The DNN consists of 4 causal convolutional encoder and decoder
layers with skip connections and a recurrent center layer. The net-
work runs in real-time with 4.2 M MACs per frame and uses only
current and past frame information.

To mitigate speech distortion, before the PSD estimate is in-
serted in (7), we apply the lower bound max

{
φ̂X(n), η‖y(n)‖2

}
depending on the mean input signal power scaled by η < 1.

4. FIXED COHERENCE BEAMFORMER WITH
REVERBERATION CANCELLER

If we replace the beamformer in Fig. 1 with a fixed coherence beam-
former, e.g. the superdirective minimum variance distortionless re-
sponse (MVDR) [2], we only need to adapt the reverb canceller
branch. Solving this system equivalently as in Sec. 3.2 with the APA,
the observation system (6) reduces to a single equation, as we don’t
need the directional constraint below the first row anymore. The
superdirective MVDR beamformer obeying these directional con-
straints is given by

wsd(n) = argmin
w

wHΓdw s. t. wHa = 1, (16)

where Γd(k) is the time-invariant diffuse coherence matrix that de-
pends only and the array geometry [20]. Note that the RTFs a(n) are
in general still time-varying. Consequently, the measurement equa-
tion for the adaptive filter becomes

wH
sd (n)y(n)︸ ︷︷ ︸
d(n)

= fT (n)wrc(n) + X̂(n) (17)

where f(n) = [yT (n −D), . . . ,yT (n − L)]T and wrc(n) =
[cTD(n), . . . , c

T
L(n)]

T . The beamformer output on the left-hand side
now becomes a time-frequency variant constraint d(k, n) for the
adaptive filter, while the matrix F(n) in (6) reduces to the vector
fT (n). The APA filter update is obtained analogous with (10), (11)
by replacing F, d with fT , d. The speech PSD estimation becomes
consequently

φ̂sd
X(n) = |wH

sd (n)y(n)− fT (n)wrc(n− 1)|2. (18)
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Fig. 2. Complexity of APA beamformer compared to recursive WPD
and RLS WPD [15]. Analysis involves beamformer only, excluding
steering vector and neural networks.

5. BEAMFORMER COMPLEXITY ANALYSIS

The complexity for all beamformers depends on the joint filter length
Q = M(L − D + 2), where L = 0 yields the non-convolutional
standard beamformer. Figure 2 shows the number of multiply-
accumulate (MAC) operations required to compute one beamformer
update per time-frequency bin for the proposed MPDR-APA beam-
former. When the standard MVDR (16) uses an adaptive, time-
variant noise coherence estimate, such as mask-based beamformers
[21], it requires a matrix inversion, which we compute using the ide-
ally fastest matrix inversion algorithm we could find with O(Q2.37)
[22]. The R-WPD and RLS-WPD algorithms [15] employ efficient
recursive matrix inversion.

We can observe that the complexity of the APA solution grows
only linearly, while the other solutions rise quadratically with Q,
as they have to handle large full-size Q × Q matrices. Note that
the fast matrix inversion MACs are theoretical, and an equivalent
speed-up might not be achieved in practical implementations, still
justifying preference of the recursive WPD solutions over standard
MVDR. The proposed APA beamformer is a computationally favor-
able choice for larger Q: While the standard MVDR solution re-
quires inversion of an Q×Q matrix, the MPDR-APA requires only
2 × 2 matrix inversion in (10). The computational advantage pays
off for setups with larger number of microphones M > 4, and espe-
cially when using a convolutional beamformer. For an M = 8 mic
setup, the total filter length Q can easily exceed 100 taps for typical
convolutional filter lengths in the range L = [6, 20].

6. EXPERIMENTAL VALIDATION

6.1. Evaluation setup

For public comparability, we show results on the REVERB chal-
lenge evaluation set [1], comprising simulated and real recordings
using a uniform circular 8 microphone array with radius 10 cm in
reverberant rooms and moderate background noise. The algorithms
are evaluated using cepstral distance (CD), frequency-weighted seg-
mental SNR (fwSNR), and word error rate (WER). The WER was
obtained using the Kaldi [23] REVERB challenge baseline speech
recognizer using a TDNN acoustic model trained using lattice-free
MMI and online i-vector extraction, and a tri-gram language model.
We also measured the runtime of the beamformers only (without
steering vector estimation) in NumPy as processing time per second
of audio for an 8-channel setup.

In addition to the proposed convolutional APA beamformer
(convMPDR-APA), we also evaluate the plain MPDR-APA beam-
former without reverb canceller, which is a special case of the pro-
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posed framework for L = 0. Both standard and convolutional
beamformers are used without and with DNN-based PSD enhance-
ment described in Sec. 3.3, where the acronym convMPDR-APA-
DNN represents the convolutional beamformer with DNN PSD en-
hancement. In addition, we show the superdirective (fixed co-
herence) beamformer with adaptive reverb canceller proposed in
Sec. 4. As baselines we have the unprocessed reference micro-
phone, delay&sum and superdirective MVDR beamformers, the
single-channel DNN (CRUSE) [19] applied on the reference mic,
mask-based MVDR beamformer using the DNN-mask to adaptively
update the noise covariance [21], and the competitive RLS-WPD [15]
as the state-of-the-art online convolutional beamformer.

The proposed methods are implemented with a short-time
Fourier transform (STFT) using 50% overlapping 32 ms square-
root Hann windows and a 512-point FFT on 16 kHz sampled sig-
nals. The convolutional filter lengths are L = {12, 8, 6} in three
frequency bands with transition frequencies {800, 2000} Hz. The
beamformer and reverb canceller filter variances are φb = −37 dB
and φr =−40 dB. The directional uncertainty is φa=−120 dB and
the speech PSD estimates are limited with η=−25 dB. The steering
vector a(k, n) is estimated using a spatial probability-based far-field
localization method [17] based on the simple plane wave sound prop-
agation model. CRUSE is trained on the data from [24] as described
in [19], only with adjusted STFT parameters. As the test signals are
very short, mostly below 10 s, all adaptive methods are initialized
with a prior pass to give the adaptive algorithms a chance to con-
verge. All parameters were tuned on the REVERB development set,
and results are shown on the evaluation set.

Note that RLS-WPD uses DNN mask-based RTF steering vec-
tors, while all other beamformers use the localization-based steering
vectors [17], and the results are directly obtained from [15]. The
steering vectors for RLS-WPD were either estimated from the mic
signals, or from MIMO-WPE pre-processed signals, which is a large
additional computational burden and time TWPE, exceeding several
times the cost of RLS-WPD itself due to MIMO design.

6.2. Results

The methods in Table 1 are categorized in three groups: i) the
single-channel references unprocessed microphone and DNN only,
ii) beamforming only, and iii) the proposed convolutional beamform-
ers compared to the methods proposed in [15].

While the DNN is able to greatly improve speech enhancement
metrics and WER in high reverberation conditions (RealData), the
single-channel distortion artifacts hurt WER in the low reverber-
ant conditions in SimData, leading to a slight overall degradation.
For non-convolutional beamformers, delay&sum and superdirective
MVDR outperform the adaptive MPDR-APA and DNN-mask MVDR,
because superdirectivity is close to an optimal solution for the ho-
mogenous ambient background noise and reverberation in the RE-
VERB dataset. In non-homogenous, time-varying noise fields, this
might however change in favor of adaptive beamformers. The DNN-
enhanced PSD improves the MPDR-APA significantly, achieving the
best WER for non-convolutional beamformers.

As ASR systems are very sensitive to reverberation, the reverb
cancellation of the convolutional beamformers provides a significant
performance gain in terms of WER over non-convolutional beam-
formers. The DNN-based PSD enhancement provides significant
gains to convMPDR-APA especially for the speech enhancement
metrics, attributed to improved noise reduction. Finally, the convolu-
tional superdirective beamformer conv-sdMVDR yields comparable
speech enhancement performance to MVDR-APA-DNN,with simi-

SimData RealData
method CD fwSNR WER WER time/s

single-channel

ref mic 3.96 3.62 5.21 19.15 0
DNN 2.94 8.94 5.74 16.40 0.024

beamforming (L=0)

delay & sum 3.11 6.37 4.00 13.11 0.003
superdirective MVDR 2.98 6.50 4.00 13.11 0.004
DNN-mask MVDR 3.14 6.42 4.18 13.99 0.035

MPDR-APA 3.99 3.84 4.18 13.99 0.005
MPDR-APA-DNN 3.25 5.98 3.88 11.56 0.029

convolutional beamforming

RLS-WPD† (no WPE) 3.29 6.08 4.37 12.80 0.934
RLS-WPD† (+ WPE) 3.21 6.26 4.14 11.88 0.934+TWPE

convMPDR-APA 3.79 4.85 4.79 12.00 0.009
convMPDR-APA-DNN 2.82 8.63 4.84 10.54 0.035
conv-sdMVDR 2.74 7.71 3.88 10.70 0.007

Table 1. Results on REVERB challenge evaluation dataset in terms
of speech enhancement metrics, WER, and processing time.
† are using DNN-based RTF steering vectors.

lar WER on RealData and better WER on SimData, at even lower
complexity. However, we would like to stress again that the fixed
noise field coherence of conv-sdMVDR is a well fitting solution for
the dataset at hand, but might not generalize as well to other noise
fields including time-variant and directional noise, where the adap-
tive convMPDR-APA can be advantageous.

The proposed convolutional beamformers perform comparable
or better in terms of speech enhancement metrics and WER com-
pared to the state-of-the-art RLS-WPD convolutional beamformer.
Furthermore, the complexity and computation time of the proposed
family of convolutional APA beamformers, even with DNN en-
hancement, is a fraction of the RLS-WPD beamformer. The DNN-
based steering vector estimation and MIMO-WPE preprocessing
adds an additional large computational burden, where the MIMO-
WPE processing time TWPE likely exceeds the RLS-WPD time itself.

7. CONCLUSION

We proposed a scalable system integrating joint adaptive MPDR
beamforming and reverberation cancellation using a Kalman filter-
derived affine projection algorithm. With its complexity rising only
linearly with the filter length, the proposed system is by several mag-
nitudes less complex than previously proposed online solutions for
this problem. We showed that speech PSD estimate is crucial, and
be enhanced using a neural network with significant performance
gains. Without any DNN, the proposed system achieves results close
to state-of-the-art systems that always rely on DNN-based param-
eter estimates, while when combining our approach with a DNN,
the state-of-the-art approaches are outperformed at still lower com-
plexity. Further improvements from end-to-end DNN training are
expected and subject to future work.
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