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ABSTRACT

In Psychology, actions are paramount for humans to identify sound
events. In Machine Learning (ML), action recognition achieves
high accuracy; however, it has not been asked whether identifying
actions can benefit Sound Event Classification (SEC), as opposed to
mapping the audio directly to a sound event. Therefore, we propose
a new Psychology-inspired approach for SEC that includes identi-
fication of actions via human listeners. To achieve this goal, we
used crowdsourcing to have listeners identify 20 actions that in iso-
lation or in combination may have produced any of the 50 sound
events in the well-studied dataset ESC-50. The resulting annota-
tions for each audio recording relate actions to a database of sound
events for the first time. The annotations were used to create seman-
tic representations called Action Vectors (AVs). We evaluated SEC
by comparing the AVs with two types of audio features — log-mel
spectrograms and state-of-the-art audio embeddings. Because audio
features and AVs capture different abstractions of the acoustic con-
tent, we combined them and achieved one of the highest reported
accuracies (88%).

Index Terms— Sound Event Classification, Psychology,
Crowdsourcing, Audio Signal Processing, Audio Tagging

1. INTRODUCTION

Sound Event Classification (or Audio Tagging) aims to assign a
sound event class label to an audio clip (e.g., dog, car horn). Typi-
cally, SEC consists of taking an input audio file, computing features
inspired by auditory perception, and using them to train ML classi-
fiers. Motivated by the success of understanding how humans hear
in order to build acoustic intelligence, we looked further into human
perception and identification of sound events.

Psychomechanics is the study of the perception of physical
properties of sound-sources [[1], which has found that actions dis-
tinguish sound events better than the source materials, size and
shape. Gaver [2] argued that listening to everyday sounds focuses
mainly on the physical aspects producing the sound. Lemaitre and
Heller [3] concluded that the listener’s ability to identify solid ma-
terials based on audio is in general not accurate, except for reso-
nant vs nonresonant impacts (e.g. glass vs. plastic). Moreover,
perception of size and shape are in general less reliable than mate-
rial [4}, 15,16l [7]]. In contrast, Lemaitre and Heller [8] showed that
actions are a robust property perceived in everyday sounds. They
also found that actions producing simple sound events were better
identified than the materials [3]. Verbs can describe actions and
interactions between objects and sometimes also the material the
objects are made of [9} 10} 11} 12} [13]. VanDerveer [14] found that
people who were asked to identify sounds made by common objects
would spontaneously describe the actions involved in generating the
sounds. Hence, it would be interesting to see if the importance of
actions to humans provides a cue for improving ML models.
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In fact, despite the scarce literature of ML models trained on
physical properties of sound-sources, models trained on audio la-
beled with actions and materials have achieved successful accuracy.
Owen et al [15] recorded videos of hitting a stick on surfaces of
different materials (e.g., grass, metal, water, wood) and achieved
audio-based classification of eleven materials with 45.8% accuracy.
Previously in [16], we collected audio labeled with 400 suffixed
nouns derived from verbs referring to the action generation (e.g.,
“clapping crowd”). Then, we evaluated binary classification for
each suffixed noun and achieved an overall 71% accuracy (chance
was 50%), with classes performing as high as “ringing alert” with
92%. In Psychology, identifying actions has been a successful in-
termediate step for recognizing sound events, yet in ML there is not
enough evidence that a similar approach would benefit SEC.

Identifying actions for SEC can potentially be used across dif-
ferent sound event datasets and categories. Typically, SEC pro-
cesses the audio signal and maps it to a sound event. Actions can
serve to bridge the audio with the sound event, providing an inter-
pretable step to explain SEC. This is important because some sound
event datasets have many categories named after sound-sources de-
spite the fact that the same object can produce different types of
sounds. Furthermore, the dataset of ESC-50 [17] demonstrated
that for listeners and ML models, classification of “airplane” and
“helicopter” were highly confused because they both share similar
sounds produced by the propeller and rotor engine respectively. In
this case, identifying the sound produced by the action of rotating
could serve to explain the acoustic confusion, because actions tend
to produce consistent acoustics that can cut across the semantics of
sound events labels. It would also help to determine if we can com-
bine audio examples of the same class from different datasets or
annotation processes for the purposes of training [18]]. This would
require a set of actions that could describe a set of sound events with
a larger number of classes in different contexts.

Therefore, we propose a new Psychology-inspired approach for
SEC that includes identification of actions. We used crowdsourc-
ing to identify 20 actions that in isolation or in combination pro-
duced any of the 50 sound events in the well-studied dataset ESC-
50. The resulting annotations for each audio recording relate ac-
tions to sound events for the first time (available online). Combin-
ing audio features and action identification improved our SEC. This
demonstrates a benefit of drawing from domain knowledge within
Psychology to design ML algorithms for SEC.

2. RELATING ACTIONS TO SOUND EVENTS

In order to relate actions to sound events, we chose a well-studied
sound event dataset named ESC-50 [17]. ESC-50 has 50 classes
from five broad categories: animals, natural soundscapes and water
sounds, human non-speech sounds, interior/domestic sounds, and
exterior sounds. Each class has 40 five-second-long sounds for a to-
tal of 2,000 audio files. The categories do not necessarily have intra-
class acoustic consistency. The sound events are generally exposed



2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

in the foreground with limited background noise. Field recordings
may exhibit overlap of competing sound sources in the background.
The audio comes from the Internet, hence the recording process is
unknown. Category-labels consist of one or two words; only about
14% are labeled with a specific action and most are labeled with
nouns. The next step was to select relevant actions.

Selecting actions that in isolation or combination produced all
of the ESC-50 sound events was challenging. The recording process
and definition of the sound event classes were unknown; thus, we
listened to audio recordings corresponding to each class and chose
actions that could have produced at least part of the audio con-
tent. In order to distinguish our approach from the existing labels,
we chose actions that did not result in simply relabelling a sound
event class with an action-oriented synonym for its existing object-
focused label. For example, choosing the action “sawing” would
have been a one-to-one relabelling of the sound event class “hand
sawing”. This approach allowed us to draw new insights from ac-
tion classes that might supplement existing ML systems. The num-
ber of actions determined the number of options that would be given
to the annotators; this number was kept moderate in order to keep
the task feasible and avoid fatigue for participants. Our 20 actions
were in line with prior listening studies for action identification [§]]
which also utilized about 20 category-options at a time.

The selection of actions was inspired by listening experiments
in the literature of Psychology and our own listening experiments
in our auditory lab. We drew actions from a previously collected
dataset by Heller [19] and two taxonomies of everyday sounds,
Gaver’s [2]] and Houix’s [20]. The taxonomies included different
varieties of actions, such as interactions (friction), specific actions
(scraping), manners of actions (scraping rapidly), and objects of ac-
tions (scraping a board). While actions can be described in general
terms (such as impact), Lemaitre and Heller [8] showed that the
most specific descriptors (such as tap) produce the highest accu-
racy and fastest identification response (analogous to superordinate
vs. subordinate categories of objects such as furniture vs. chair).
Thus, we constrained our study to 20 specific actions that were not
redundant, were not strictly associated with one class, and ensured
that each class was associated with at least one action. The actions
Table [Tl were used to annotate all 2000 audio files in ESC-50.

We did not distribute the action verbs to match exact propor-
tions of sound classes in ESC-50 in any possible way that they
could be divided up (e.g. by source material, source shape, liv-
ing/nonliving, etc.), but their distribution is not far from proportion-
ate. For example, we have 25% of actions related to voice for about
32% of vocalization-related sound events. We have 15% of actions
related to liquids (dripping, splashing, pouring) for about 16% of
liquid-related sound events.

dripping splashing | pouring breaking | calling

rolling scraping | exhaling vibrating | ringing
groaning gasping singing tapping wailing
crumpling | blowing exploding | rotating sizzling

Table 1: We selected 20 actions that in isolation or combination
could have produced at least part of the 50 sound events.

Due to the large number of audio files (2,000) in ESC-50
dataset, we identified actions using crowdsourcing (Mechanical
Turk). We designed an interface that included a playable audio clip
(without showing the sound event label), the prompt “For each ac-
tion below, judge how likely it is to have produced at least part of
the sound event.”, followed by the 20 actions to be scored. The

scores were inspired by a five-point Likert scale ranging from 0-4
where 0 meant that the action contribution was very unlikely and
4 that it was very likely. We asked for annotators to be fluent in
English, wear headphones, have no hearing impairments, and be
between 18 and 60 years old. We selected participants using the fil-
ters: Task (HIIT) Approval Rate greater than 95% and a number of
HIIT approved greater than 1000. Our rejection criteria discarded
all annotations from any individual who gave a 3 or 4 to the vast
majority of actions for the same sound. We had high-quality in-lab
annotated recordings on a subset of ESC-50 that helped to validate
our rejection criteria. We measured the inter-annotator agreement
between the lab and MTurk annotations using Fleiss Kappa score
resulting in Fair Agreement. Each audio file was annotated with
each of the 20 actions by three different participants for a total of
6,000 x 20 ratings in the entire datasel

3. EXPERIMENTS AND RESULTS

3.1. Creating Action Vectors

After collecting the annotations derived from identifying actions
in ESC-50, we created Action Vectors (AVs). An AV is a 20-
dimensional representation where each dimension (dim) is an ac-
tion and the score in each dimension determines how likely the ac-
tion was to have contributed to the sound event. One AV from one
rater has 20 dims each of which ranges from 0-4. To create an AV
for each audio file, we summed the scores across the three annota-
tors. Although we didn’t explicitly express time in the AVs in the
form of temporal frames, some temporal properties are implied by
actions; for example, intermittent vs continuous audio is implied
by tapping vs rolling actions. Although the AVs varied among ex-
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Figure 1: Rows: average AVs for airplane, cat, coughing, and sea
waves. Columns: action ratings. Brighter green = more likely.

emplars within a class, the average pattern for each class yields a
unique pattern of ratings (in a 50x20 matrix). For example, the
highest action ratings shown in Fig. [I] differed between airplanes
(blowing, rotating, and vibrating), cats (calling, groaning, and wail-
ing), coughing (exhaling and gasping), and sea waves (dripping,
pouring, and splashing)| Thus, the multidimensional AV for each
file does not equate to a single verb or class. Once we created 2,000
AVs for ESC-50, we used them for SEC.

3.2. Comparing Sound Event Classification using Audio Fea-
tures and Action Vectors

We study for the first time how identifying actions can benefit SEC,
as opposed to mapping the audio directly to a sound event. Whether
AVs could improve performance with a straightforward setup was
not obvious. Hence, we compared SEC utilizing AVs vs. two com-
mon audio features. The two SEC pipelines for our experiments are
in Fig. 2] On the left is the typical approach that takes the input

! GitHub: bmartin1/Identifying_Actions_for_Sound_Event_Classification
2Listed if at least 1 standard deviation above the mean.
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Figure 2: Typically, SEC processes the input audio and assigns a
class. We propose to add an intermediate step where listeners iden-
tify actions in the audio. The actions are transformed into Action
Vectors and are used for automatic SEC.

AE - 6144 x1
Log-mel -128 x1

AV -20x1

audio, computes features and assigns a class label. On the right, we
depict our addition of an intermediate step where listeners identify
actions in the audio.

For the input audio, we computed two commonly-used types
of audio features, log-mel spectrograms and state-of-the-art data-
driven audio embeddings (AEs). We computed spectrograms using
the librosa package [21] with default settings resulting in 128 mel-
filters summarized with their mean across time frames. We com-
puted AEs using a network called OpenL3 [22], which was pre-
trained with 600 videos. The parameters used were: content_type:
music, input_repr: mel256, embedding_size: 6144. The AEs were
summarized with their mean across time frames. The features and
the AVs were normalized (L2) by removing the means and scaling
to unit variance before being passed to the classifier (AEs+AVs did
not include the second step). We summarized our features over time
because it is still common in the literature [22] and it is not trivial
to combine unaveraged representations with unidimensional AVs.

The features and the AVs were used to train two types of ML
classifiers for SEC, a linear Support Vector Machine (SVM) and
a Deep Neural Network (DNN). The SVM classifier provides fast
computation and a basic model. We included a DNN as a non-linear
classifier alternative that often performs better than linear classi-
fiers. The hyper-parameters of the classifiers were tuned. For the
SVM we set the soft-margin to C' = 35, one-vs-rest multiclass al-
gorithm optimized with the primal approach (scikit-learn [23]]). The
DNN had 5 linear layers: the first is from number of features to 800,
then from 800 to 500, then from 500 to 200, and then from 200 to
number of classes. Each hidden layer had tanh activation. The
output layer had a softmax activation combined with a Categori-
cal Cross Entropy Loss. We used SGD optimizer (Ir = 0.008) and
100 epochs. As ESC-50 distributes the audio files into 5 folds, we
ran the pipeline using all combinations in which each fold was the
test set once. Overall accuracy was computed across the five folds
to evaluate SEC performance. The SVM produces the same accu-
racy in every run, but the DNN was run 10 times to compute the
mean and standard deviation (o).

SEC using AVs resulted in good performance, suggesting that
AVs carry useful information to bridge audio and sound events. Ta-
ble 2] shows SEC accuracy using AVs and both types of audio fea-
tures. SEC with AVs yielded 48.25% with the SVM and 51.81%
(0=0.4%) with the DNN. SEC with log-mel spectrograms yielded
30.70% with the SVM and 34.00% (0=0.3%) using the DNN, which

Input Features linear SVM DNN

log-mel spectrograms 30.70% 34.00%
AVs (Action Vectors) 48.25% 51.81%
AEs (Audio Embeddings) 80.90% 81.46%
AEs + log-mel 74.35% 78.77%
AVs + log-mel 55.05% 69.50%
AVs + AEs 86.60 % 88.00%
AVs + AEs + log-mel 78.35% 83.31%

Table 2: Classification accuracy with different inputs. AEs+AVs
achieved one of the highest accuracy reported in ESC-50.

is consistent with other papers that use log-mel-based features [17].
SEC with AEs yielded 80.9% with the SVM and 81.46% (0=0.3%)
with the DNN, which is consistent with the OpenL.3 paper [22].
The AVs outperformed log-mel spectrograms by an absolute 15%
to 17% accuracy, but AVs under performed AEs by an absolute 30
to 28% accuracy.

We combined AVs and audio features independently to evalu-
ate how they complement one another for SEC. We used an SEC
pipeline similar to the one used in the first set of experiments and
tried four combinations: AVs with log-mel spectrograms, AVs with
AEs, log-mel spectrograms with AEs, and all together.

SEC combining identification of actions and audio features re-
sulted in one of the highest accuracies reported in ESC-50. Ta-
ble [2] shows SEC using the four concatenated combinations. SEC
with AVs+AEs yielded 86.6% accuracy with SVM and 88.00%
(0=0.4%) with DNN. In the literature, only a few approaches sur-
pass human performance of 81.3% [17].

Our SEC approach with AVs+log-mel spectrograms yielded
55.05% with SVM and 69.50% (0=0.3%) with DNN. In both cases
the combination resulted in better performance than in isolation. On
the other hand, stacking features does not always translate to better
performance, as exemplified by log-mel spectrograms in our study
(although they may still show benefits in other implementations):
SEC with stacked AEs+log-mel spectrograms yielded 74.35% with
SVM and 78.77% (0=0.5%) with DNN and AVs+AEs+log-mel
yielded 78.35% accuracy with SVM and 83.31% (0=0.2%).

While it is not surprising if adding more feature types and di-
mensions improves performance, it is remarkable that by adding
0.3% dims (20/6144) to the AEs we can improve SEC performance
by almost an absolute 7%. It is also interesting to see that with a
vocabulary of 20 actions we can express the diversity of a set of 50
sounds from different types (e.g. human, animals, environments,
machines, etc). The finding that the information was complemen-
tary was not known at the start of this project and we feel that this is
a primary contribution. While it seemed logical that AVs would cap-
ture information relevant to identify sound events, we didn’t know
if it was going to be redundant with an already strong audio repre-
sentation such as the AEs.

4. DISCUSSION

The use of actions represented by AVs has benefits, such as: pro-
viding novel information via the graded combination of multiple
actions per sound, providing a basis for understanding the confus-
ability and heterogeneity of certain sound classes, providing an in-
terpretable semantic representation, and providing a new way to re-
late sounds. We investigated whether the main reason why AVs
provide a benefit is because multiple actions are combined to char-
acterize a sound event instead of labelling sound events with one
dominant action. To test this idea, we scaled the scores of the AVs
to be from O to 1 (instead of O to 12) and then quantized them with
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a threshold of 0.5. Scores under the threshold were set to 0, and
greater or equal than the threshold were set to 1. Then, we ran SEC
concatenating AEs and the new quantized AVs and achieved 82%
instead of 86.75% (DNN). This means that there is information in
the graded ratings of multiple actions per sound. On average, AVs
have non-zero scores in 6 out of 20 dims. Hence, our approach of-
fers more nuanced information than would a simple replacement of
object-based class labels with equivalent action-based verb labels.

We have not attempted to equate dimensions across different
features because our goal is not to put these methods head to head,
but rather to see if collectively they can improve performance when
put together. Although we didn’t do a formal analysis of the dimen-
sionality, if anything we are underestimating the power of our AVs
because we are comparing them against features with one and two
orders of magnitude greater dimensionality and more information.
We were interested in the low dimensional AVs to see if they have
any representational power, and we showed that they do. Nonethe-
less, here we compare dims for reference. AVs with only 20 dims
can be helpful to classify 50 sounds, whereas the log-mel spectro-
grams have 128 dims and the AEs have 6144. As an illustration of
the effect of reducing dims for a given feature, when extracting the
AEs with only 512 dims (a parameter option in OpenL3) SEC accu-
racy dropped from 79.75% to about 40%. Holding the hyperparam-
eters constant in the DNN, the AEs with 512 dims underperformed
the AVs with 20 dims (51.81%). Depending on the application, it
is potentially useful that each dim in the AVs is semantically inter-
pretable as opposed to the latent meaning in AEs.

Whether AVs are part of an SEC pipeline or not, they can
help to explain inter- and intra-class confusion. For instance, the
high confusion occurring between “airplane” and “helicopter” can
be explained by a subset of “airplane” recordings having sounds
produced by a propeller-powered engine, which are similar to the
sounds produced by the rotor engine of a helicopter. These record-
ings scored high for the action “rotating”. Actions tend to pro-
duce consistent acoustics that can cut across the semantics of sound
events. A set of actions can describe sound events with similar
acoustic content, but with different labels and in different contexts.
We could also use “rotating” for the sound event of “washing ma-
chine” in domestic sounds.

We expect that our selection of actions should work with other
relevant sound event datasets. The selected actions are inspired by
ESC-50, which has a large diversity of sounds. We stayed away
from using actions that were essentially identifications of the sound
sources (e.g. “mooing” for “cow”) and aimed to use verbs that
could apply more broadly. We did not include verbs that did not
apply to ESC-50 so as to reduce the amount of hand-labelling re-
quired. Hence, we did not have any words specifically designed
to lump together objects that produced intra-class variability, such
as “flying” or “airplane”, so the intra-class variability wouldn’t be
unique to ESC-50. For example, the same variability pointed out
in the previous paragraph happens in Google’s AudioSet (over 500
classes and over a million recordings), where from 66 “fixed-wing
aircraft” || recordings, some are produced by the jet engines and
some by propeller-powered engines. We expect that our selection
of actions could work with a subset of AudioSet, but a complete
study was out of the scope of this paper. To increase the SEC ac-
curacy and interpretable capabilities of AVs we should increase the
number of actions.

SEC accuracy using AV depends on the selection and number

dresearch.google.com/audioset//eval/fixedwing_

aircraft_airplane.html

of actions. Not all of the actions affect SEC equally. This is de-
termined by how a combination of actions can distinguish sound
events. For example, one of the actions was “calling”, which scored
high in 11 sounds produced by vocal tracts, such as “frog”, “dog”,
“crow”, resulting in inter-class confusion. When removing those 11
classes from the dataset, SEC accuracy with AEs remained around
80%, but with AVs increased from 51% to 57%. By adding more ac-
tions that distinguish vocalizations, the better AVs can discriminate
between such sounds events. The selection of actions also affects
how we organize sound events.

® scraping
X calling
rotating, vibrating
ringing
tapping
pour, drip, splash
» breaking, exploding
+ exhaling, gasping

Figure 3: AVs provide a new way to relate ESC-50 (or any other)
sound events based on shared actions.

AVs provide a new way to relate sound events based on shared
actions. We grouped the 2,000 AVs of ESC-50 using K-means
(k=8) and plot them (tsne, perplexity=50) in Fig. 3] Each of the
8 groups was assigned a label corresponding to its dominant ac-
tion(s): scraping, calling, rotating and vibrating, ringing, tapping,
pouring and dripping and splashing, breaking and exploding, exhal-
ing and gasping. Varying the number of clusters created groups with
different dominant actions. Actions and physical properties can be
used to build knowledge of sound events [24}[25] and automatic de-
scription of both could help label audio samples without having to
force them into a single class, which is particularly helpful when
processing unlabeled audio in the large-scale [25].

To improve SEC accuracy, usability of actions for different
datasets, and description of sounds, scaling the number of actions is
a logical direction, but it poses some challenges. Our action annota-
tions could be used to train ML models that take an audio recording
and generate the AV automatically. The challenging part is to de-
sign an ML model that can generate AV's with graded ratings similar
to the hand-labeled AVs. Another potential scaling approach is to
train independent action recognition models and then construct the
AVs. We hope our findings in this paper can inspire the commu-
nity to explore action recognition for SEC and description of sound
events via physical properties.

5. CONCLUSIONS

We demonstrated that our proposed Psychology-inspired approach
of identifying actions improved SEC. AVs were derived from hu-
mans identifying actions, but we are in the process of using our
annotations to train models that can automatically generate the AVs
given an audio file. We found a benefit from using human expertise
to describe sound events with a suite of actions rather than forcing
each sound to be represented by only one action.
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