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ABSTRACT

Human subjective evaluation is optimal to assess speech quality
for human perception. The recently introduced deep noise sup-
pression mean opinion score (DNSMOS) metric was shown to es-
timate human ratings with great accuracy. The signal-to-distortion
ratio (SDR) metric is widely used to evaluate residual-echo suppres-
sion (RES) systems by estimating speech quality during double-
talk. However, since the SDR is affected by both speech distor-
tion and residual-echo presence, it does not correlate well with hu-
man ratings according to the DNSMOS. To address that, we in-
troduce two objective metrics to separately quantify the desired-
speech maintained level (DSML) and residual-echo suppression
level (RESL) during double-talk. These metrics are evaluated using
a deep learning-based RES-system with a tunable design parameter.
Using 280 hours of real and simulated recordings, we show that the
DSML and RESL correlate well with the DNSMOS with high gen-
eralization to various setups. Also, we empirically investigate the
relation between tuning the RES-system design parameter and the
DSML-RESL tradeoff it creates and offer a practical design scheme
for dynamic system requirements.

Index Terms— Residual-echo suppression, echo cancellation,
objective metrics, perceptual speech quality, deep learning.

1. INTRODUCTION

Hands-free communication often involves a conversation between
two speakers located at near-end and far-end points. The near-end
microphone can capture the desired-speech signal and two interfer-
ing signals: nonlinear echo produced by a loudspeaker playing the
far-end signal, and background noises [1, 2]. The acoustic coupling
between the loudspeaker output and the microphone may lead to de-
graded speech intelligibility in the far-end due to echo presence [3].
The most challenging scenarios are double-talk periods, when the
desired speech and echo are captured by the microphone at the same
time. To combat that, numerous nonlinear acoustic echo cancella-
tion (NLAEC) systems were proposed to remove the nonlinear echo
and to preserve the near-end speech [4–8]. However, often there is
still a mismatch between true and estimated echo paths, especially
during the NLAEC convergence and re-convergence [9, 10]. As a
result, the echo is not eliminated and the NLAEC should be fol-
lowed by a residual-echo suppression (RES) system.

Human perception of speech quality is optimally evaluated us-
ing human subjective evaluation [11]. Lately, the objective deep
noise suppression mean opinion score (DNSMOS) metric has been
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proposed to estimate human ratings and has shown great accuracy
[12]. Regarding the task of RES, speech quality during double-talk
is traditionally evaluated using the objective signal-to-distortion ra-
tio (SDR) metric [13], e.g., in [14–19]. Unfortunately, the SDR is
affected by both desired-speech distortion and residual-echo pres-
ence, which renders it unreliable in predicting the DNSMOS and
unreliable in predicting human perception of speech quality [12].

This paper introduces two objective metrics that separately
evaluate the desired-speech maintained level (DSML) and the
residual-echo suppression level (RESL) during double-talk. Con-
sidering the RES system as a time-varying gain, the DSML is ob-
tained by applying that gain to the desired speech and substituting
the outcome in the definition of the SDR. The RESL is obtained
by subtracting the desired speech from the double-talk segment
and calculating the ratio of the noisy residual-echo before and af-
ter the gain is applied to it. To evaluate these metrics, we employ a
deep learning-based RES system that also embeds a design param-
eter [20]. Experiments are done with 280 h of real and simulated
recordings in various scenarios and in high and low levels of echo
and noise. Results show that the DSML and RESL have high corre-
lation with human perception according to the DNSMOS, and high
generalization to various setups, which renders them more suitable
for speech quality evaluation than the SDR. We further investigate
the empirical relation between tuning the design parameter and the
DSML-RESL tradeoff it creates. Based on this relation, we offer a
practical scheme for tuning the design parameter during training to
optimally cope with dynamic system requirements.

The remainder of this paper is organized as follows. In Sec-
tion 2, we formulate the problem. In Section 3, we introduce the
DSML and RESL metrics. Section 4 covers the employed RES
system and its tunable design parameter. Section 5 describes the
database and additional performance metrics, and experimental re-
sults are presented in Section 6. Section 7 concludes this study.

2. PROBLEM FORMULATION

Figure 1 depicts the RES scenario. Let s (n) be the desired near-
end speech signal and let x (n) be the far-end speech signal. The
near-end microphone signal m (n) is given by

m (n) = s (n) + y (n) + w (n) , (1)

where w (n) represents additive environmental and system noises
and y (n) is a reverberant echo that is nonlinearly generated from
x (n). Before applying RES, the NLAEC system introduced in [8]
is applied to reduce nonlinear echo. The NLAEC receives m (n) as
input and x (n) as reference, and generates two signals: the echo
estimate ŷ (n), and the desired-speech estimate e (n), given by

e (n) = m (n)− ŷ (n) = s (n) + [y (n)− ŷ (n)] + w (n) . (2)
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Figure 1: Residual-echo suppression scenario.

The goal of the RES system is to suppress the residual echo
y (n)− ŷ (n) without distorting the desired-speech signal s (n).

3. DSML AND RESL

To derive the DSML and RESL, a deep learning-based RES system
is considered as a time-varying gain. During double-talk, e (n) 6= 0
and the gain is given by

g (n) =
ŝ (n)

e (n)

∣∣∣∣
Double-talk

. (3)

Before introducing the DSML and RESL metrics, the SDR and its
drawbacks are examined. According to [13], the SDR is defined as

SDR = 10 log10
‖s (n) ‖22

‖s (n)− ŝ (n) ‖22

∣∣∣∣
Double-talk

= 10 log10
‖s (n) ‖22

‖s (n)− g (n) e (n) ‖22

∣∣∣∣
Double-talk

.

(4)

The SDR is affected by both the desired-speech distortion and
residual-echo presence, and makes no distinction between cases in
which g (n) e (n) comprises distortion-free speech and echo, or dis-
torted speech without echo. Thus, the SDR does not correlate well
with human ratings [12], since these scenarios clearly exhibit differ-
ent human perception ratings and different DNSMOS values. A dis-
tinction between desired-speech distortion and residual-echo sup-
pression is extremely valuable for evaluating RES during double-
talk. Hence, we propose two objective metrics by applying g (n)
separately to the desired speech and noisy residual-echo estimate.

Formally, the DSML is calculated similarly to the SDR, but
g (n) is applied only to the desired speech s (n):

DSML = 10 log10
‖s̃ (n) ‖22

‖s̃ (n)− g (n) s (n) ‖22

∣∣∣∣
Double-talk

. (5)

The RESL is derived by estimating the noisy residual-echo as
r (n) = e (n)− s (n), and evaluating the following ratio:

RESL = 10 log10
‖r (n) ‖22

‖g (n) r (n) ‖22

∣∣∣∣
Double-talk

. (6)

Note that the RES system may introduce a constant attenuation that
leads to an artificial desired-speech distortion in the DSML. To en-
sure the DSML is invariant to that attenuation, it is compensated as
in [14]. Explicitly, s̃ (n) = ĝ (n) s (n), where:

ĝ (n) =

〈
g (n) s (n) , s (n)

〉
‖s (n) ‖22

. (7)

4. RES SYSTEM WITH A DESIGN PARAMETER

To evaluate the performances of the DSML and RESL, we employ
a deep learning-based RES system that embeds a tunable design
parameter [20]. This system comprises a UNet neural network [21]
with two input channels and one output channel. The network is
fed with the short-time Fourier transform (STFT) [22] amplitude
of the NLAEC outputs and aims to recover the STFT amplitude of
the desired speech. The design parameter α ≥ 0 is embedded in a
custom loss function J(α) that is minimized during training:

J(α) = ‖Ŝ (f)− S (f) ‖22 + α‖Ŝ (f) ‖22 + 0.1σ2
Ŝ(f)

Iα>0 , (8)

where Ŝ (f) and S (f), respectively, represent the desired-speech
prediction and ground truth spectra amplitudes, σ2

Ŝ(f)
denotes the

variance of Ŝ (f), and Iα>0 equals 1 when α > 0 and 0 other-
wise. During the training stage, J(α) is minimized while α pe-
nalizes ‖Ŝ (f) ‖22, which allows a dynamic tradeoff between the
desired-speech distortion and residual-echo suppression of the sys-
tem, namely between the DSML and RESL. When α = 0, the er-
ror between the desired-speech prediction and ground truth is min-
imized. However, when α > 0, smaller prediction values are gen-
erated. This reduces the level of residual echo but compromises the
level of desired-speech distortion. σ2

Ŝ(f)
mitigates sub-band nulli-

fication that may occur when α > 0. Note that α and the DSML-
RESL tradeoff it creates can be tuned during the training process.

5. EXPERIMENTAL SETUP

5.1. Database

Two data corpora were employed in this study; the AEC-challenge
database [23], and a database recorded in our lab, both sampled at
16 kHz. These corpora consider single-talk and double-talk periods
both without and with echo-path change. In the former there is no
movement during the recording, and in the latter either the near-end
speaker or device are moving during the recording. In [23], two
open sources of synthetic and real recordings are introduced. The
synthetic data includes 100 h, and the real data contains 140 h of
audio clips, generated from 5, 000 hands-free devices that are used
in various acoustic environments. In both real and synthetic cases,
signal-to-echo ratio (SER) and signal-to-noise ratio (SNR) levels
were distributed on [−10, 10] dB and [0, 40] dB, respectively. Ad-
ditional real recordings were conducted in our lab to test the gen-
eralization of the DSML and RESL to unseen setups and their ro-
bustness to extremely low levels of SERs. This database is fully
described in [20]. For completion, it contains 40 h of recordings
from the TIMIT [24] and LibriSpeech [25] corpora with SNR lev-
els of 32± 5 dB and SER levels distributed on [−20,−10] dB.

The SER is defined as SER=10 log10
[
‖s (n) ‖22/‖y (n) ‖22

]
and the SNR is defined as SNR=10 log10

[
‖s (n) ‖22/‖w (n) ‖22

]
in

dB, each is calculated with 50% overlapping time frames of 20 ms.

5.2. Data Processing, Training, and Testing

The real and synthetic data from [23] was randomly split to cre-
ate 185 h of training set and 45 h of validation set. The test set
contains only real data that includes the remaining 10 h from [23]
and all 40 h from [20]. Each set was divided into 10 s segments
that contain recordings in different setups. This leads to frequent
re-convergence during transitions between segments, both with and
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Figure 2: Correlation of DNSMOS with the proposed DSML and
RESL metrics, and the widely-used SDR.

without echo-path change. These sets are balanced to prevent bias
in the results, as detailed in [20]. The NLAEC system, which is
also deep learning-based [8], and the succeeding RES system [20],
were trained separately. During testing, in accordance with Section
3, the artificial gain that may be introduced by the RES system is
compensated as in [13, 14] before deriving the DSML and RESL.

5.3. Additional Performance Metrics

We employ additional metrics to evaluate RES. The echo return loss
enhancement (ERLE) [26] measures echo reduction between the de-
graded and enhanced signals when only echo and noise are present:

ERLE = 10 log10
‖e (n) ‖22
‖ŝ (n) ‖22

∣∣∣∣
Far-end single-talk

. (9)

The signal-to-artifacts ratio (SAR) [13] measures the desired-
speech distortion during near-end single-talk periods:

SAR = 10 log10
‖s (n) ‖22

‖s (n)− ŝ (n) ‖22

∣∣∣∣
Near-end single-talk

. (10)

The perceptual evaluation of speech quality (PESQ) [27] metric,
which correlates well with the DNSMOS [12], is used in double-
talk. The SAR and SDR are compensated as in Section 3.

6. EXPERIMENTAL RESULTS

The performance metrics are evaluated using the RES system and
are calculated with 50% overlapping frames of 20 ms. The metrics
are reported by their mean and standard deviation (std) values in
Table 1, and by their mean only in Figures 4 and 5, with respect
to the test set specified in each experiment. For all metrics, higher
mean and lower std indicate a better performance. In our study, the
convergence of the NLAEC follows the definitions in [8,28], and the
DNSMOS is calculated using the API provided by Microsoft [12].

First, we explore the correlation of the DSML and RESL with
the DNSMOS using Pearson correlation coefficient (PCC) [29] and
Spearman’s rank correlation coefficient (SRCC) [30], as done in
[12, 31]. This experiment includes segments without echo-path
change after NLAEC convergence for α = [0, 0.25, 0.5, 0.75, 1],
and the results are shown in Figure 2. The conclusion drawn in [12]
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Figure 3: Scatter plots of DNSMOS versus the proposed DSML and
RESL metrics, and the widely-used SDR.

is reaffirmed in this study, i.e., the SDR does not correlate well with
the DNSMOS, as the PCC and SRCC mean values are below 0.26
for all α. On the contrary, the DSML and RESL are highly cor-
related with the DNSMOS, with mean correlation scores between
0.78 and 0.85 for all α. Also, compared to the SDR, the DSML and
RESL correlations are relatively more consistent across α values,
as inferred from their lower std values. To visualize these corre-
lations, Figure 3 depicts scatter plots of the DNSMOS versus the
DSML, RESL, and SDR metrics for random sample values with
α = 0. These plots validate the poor correlation between the DNS-
MOS and SDR, and the high correlation between the DNSMOS and
the DSML and RESL. Conclusively, the DSML and RESL are bet-
ter correlated with human perception and speech quality evaluation.

All performance metrics are evaluated in Table 1 with α = 0.
Separate results are shown for segments without and with echo-path
change after NLAEC convergence, and for segments before conver-
gence. The DSML and RESL are consistent with all other metrics,
which degrade when shifting from no echo-path change to echo-
path change scenarios, and further degrade when considering seg-
ments before convergence. This also implies high generalization
of the DSML and RESL to various setups. The DSML is consis-
tently higher than the SDR, as expected, since the definition in (4)
also considers echo and noise in the denominator. Also, the DSML
is lower than the SAR, which is applicable to single-talk segments
where speech is less distorted by the RES system. The RESL is al-
ways lower than the ERLE, which is relevant to segments without
desired speech where echo is more suppressed. These observations
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Table 1: Performance metrics in various scenarios with α = 0.

No echo-path
change

Echo-path
change

Before
convergence

DNSMOS 3.12 ± 0.2 2.91 ± 0.3 2.56 ± 0.6

DSML 8.73 ± 0.4 8.34 ± 0.5 6.97 ± 0.7

RESL 29.1 ± 3.7 25.9 ± 4.4 22.1 ± 5.6

SDR 6.13 ± 0.4 5.94 ± 0.6 5.57 ± 0.8

PESQ 3.58 ± 0.2 3.35 ± 0.5 3.18 ± 0.6

SAR 9.88 ± 0.4 9.69 ± 0.5 9.51 ± 0.6

ERLE 33.2 ± 3.1 29.1 ± 4.2 26.4 ± 5.1

highlight the reliability of the DSML and RESL metrics.
Next, the relation between tuning α and the DSML-RESL

tradeoff it creates is investigated. Figure 4 considers segments with-
out and with echo-path change after convergence, and segments be-
fore convergence, for α = [0, 0.25, 0.5, 0.75, 1]. As α increases,
speech is more distorted and the DSML decreases, while residual
echo is more suppressed and the RESL increases. This tradeoff oc-
curs across all scenarios and is empirically consistent for all α val-
ues. This tradeoff is also analyzed in various SER and SNR levels
that occur in real-life setups. In this experiment, segments without
echo-path change are considered and results are given in Figure 5. It
can be observed that both the DSML and RESL are impaired when
acoustic conditions deteriorate, as expected. Also, the relation be-
tween α and the metrics is retained, i.e., for all levels of echo and
noise, increasing α degrades the DSML and enhances the RESL.

Finally, we offer a practical design scheme for possible dy-
namic user requirements. Assume an environment without echo-
path change after convergence, which can be inferred by the user
using the definitions in [8,28]. At first, the user requires an average
RESL higher than 30 dB and DSML higher than 8.4 dB. According
to Figure 4(a), α = 0.5 is selected. Next, the user evaluates that
SER = 0 dB and SNR = 20 dB, e.g., by respectively analyzing
double-talk and near-end single-talk periods, and accordingly de-
cides to suppress the maximal amount of echo that maintains DSML
no lower than 8.3 dB. Then, according to Figure 5, the user shifts
α = 0.5 to α = 0.75 during training, which decreases the average
DSML to 8.3 dB and increases the average RESL to above 31 dB.

7. CONCLUSION

We introduced two objective metrics to separately assess the
desired-speech maintained level (DSML) and the residual-echo sup-
pression level (RESL) during double-talk. The performances of
these metrics are evaluated using a deep learning-based RES system
with a tunable design parameter α, with 280 h of real and synthetic
recordings. We showed that the DSML and RESL correlate well
with human perception compared to the popular SDR metric, which
may suggest they are more suitable for speech quality evaluation.
Also, we empirically learned the relation between tuning α and
the resulting DSML-RESL tradeoff and offered a practical design
scheme that benefits dynamic user preferences. Future work will
analyze the DNSMOS as an appropriate evaluation for RES subjec-
tive quality in double-talk, and explore the DSML-RESL tradeoff
to yield a practical design scheme for optimal speech quality.
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Figure 4: DSML-RESL tradeoff for various values of α.
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