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ABSTRACT

Speech restoration (SR) is a task of converting degraded speech
signals into high-quality ones. In this study, we propose a robust
SR model called Miipher, and apply Miipher to a new SR ap-
plication: increasing the amount of high-quality training data for
speech generation by converting speech samples collected from the
Web to studio-quality. To make our SR model robust against vari-
ous degradation, we use (i) a speech representation extracted from
w2v-BERT for the input feature, and (ii) a text representation ex-
tracted from transcripts via PnG-BERT as a linguistic condition-
ing feature. Experiments show that Miipher (i) is robust against
various audio degradation and (ii) enable us to train a high-quality
text-to-speech (TTS) model from restored speech samples collected
from the Web. Audio samples are available at our demo page:
google.github.io/df-conformer/miipher/.

Index Terms— Speech restoration, speech enhancement, text-
to-speech, self-supervised learning

1. INTRODUCTION

Speech restoration (SR) is a task of converting degraded speech
signals into high-quality speech signals [[1-5]]. It is a comprehen-
sive task including enhancement [|6]], dereverberation [7H9]], declip-
ping [10], and super-resolution [11L[12]]. SR has been addressed to
improve speech intelligibility for helping human listening, and its
quality has evolved over the past few years with the evolution of
the speech generative models [[13H15]]. Parametric resynthesis [[1]-
based methods [2-4] and diffusion model-based methods [5] have
been proposed. They can convert lecture and historical speech into
high-quality speech as if these were recorded in a studio.

By converting speech samples in-the-wild to studio-quality us-
ing advanced SR methods, we are trying to increase the amount of
high-quality training data for speech generation. The performance
of deep learning depends on both size and quality of the training
dataset [16H18]. As the cost for collecting studio-recorded samples
is expensive, recent research has tried to alleviate the requirement
for dataset by developing specific schemes, such as self-supervised
learning (SSL) [[19-21]], and using (low-quality) speech samples
from the Web [22/23|]. However, unlike automatic speech recogni-
tion (ASR), training of text-to-speech (TTS) models using samples
in-the-wild is still a challenging problem [24}25]] because the qual-
ity of speech generation is directly affected by that of the training
samples.

The main challenge for the application of SR in this study is
the robustness aspect. If SR fails to restore speech samples and pro-
duces artifacts, they will negatively affect the subsequent training
of speech generative models. Thus, we must reduce the number of
restoration failed samples as much as possible.
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In this study, we propose Miipherﬂ a robust parametric re-
synthesis SR model for restoring speech samples in-the-wild. Based
on our preliminary investigation, we especially focus on the follow-
ing two difficult degradations where SR frequently fails:

Phoneme masking: Speech signals are sometimes masked by
noise and/or reverberation. It is difficult to discriminate
speech and noise without having additional information.

Phoneme deletion: Important frequency components of some
phonemes could be missing from the signal due to codecs
and/or down-sampling. If a noisy sample lacks a phoneme,
it introduces an unrecoverable error.

To solve these issues, we introduce the following two techniques:

SSL features domain cleaning: For the input feature, instead of a
log-mel spectrogram used in conventional methods [|1,4]], we
use a speech representation extracted from w2v-BERT [20]],
an SSL model trained on degraded speech samples. As it
improves ASR performance, we expect its effectiveness on
making SR models robust against speech degradation.

Transcript conditioning: We consider the deleted phoneme re-
construction problem as a text-conditioned speech inpaint-
ing [26]]. As a linguistic conditioning feature, we use a text
representation extracted from PnG-BERT [27], a text SSL
model for TTS use.

Through experiments, we show that (i) Miipher is robust against
various audio degradations, and (ii) applying Miipher on a large
scale speech dataset collected from the Web enables us to train a
TTS model whose quality is on par with one that is trained on a
dataset designed for TTS training. Audio samples of the restored
and TTS generated samples are available at our demo pag

2. SPEECH RESTORATION MODEL

2.1. Model overview

Let the T-sample time-domain signal & € R” be a degraded sig-
nal of an original signal s € R”. The goal of SR is to recover s
from x as y € R”. In this study, the sampling rate of s and vy is
24 kHz, because 24 kHz sampling signals are often used in speech
generation tasks such as TTS [14].

To achieve this goal, we use a parametric re-synthesis frame-
work [[1]] as shown in Fig. E] (a): a noisy feature is cleaned by a
feature cleaner network, then the restored wavefrom is synthesized
using a neural vocoder. To make our SR model robust against var-
ious speech degradation, we used a speech representation extracted
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Figure 1: (a) Overview of Miipher. (b) w2v-BERT and PnG-BERT
are used as feature extractors, and a DF-Conformer-based feature
cleaner predicts clean w2v-BERT features. Then, (c) a WaveFit
synthesizes a restored waveform from cleaned w2v-BERT features.

from w2v-BERT [20] for the input feature of SR, and linguistic fea-
tures conditioning extracted by PnG-BERT [27] from the transcript.

2.2. Feature cleaner

The overview of the feature cleaner is shown in Fig. E] (b). Our fea-
ture cleaner predicts w2v-BERT features of the clean speech S €
RX*P from that of degraded speech X € R¥*P as § € RE*P,
Here, K is the number of time-frames and D is the dimension of
w2v-BERT feature. As a conditioning of SR, we use linguistic fea-
tures extracted from a transcript via PnG-BERT E € RM*W where
M 1is the number of tokens and W is the dimension of PnG-BERT
features. In addition, since SSL features often lose speaker informa-
tion [28]], we use a speaker embedding d € R® extracted from
as speaker conditioning. Note that since w2v-BERT is trained from
16 kHz audio, we resample @ at 16 kHz for extracting X.

First, the feature dimension of X, d and E are aligned
to Dy by linear layers, where D; is the input dimension of
the DF-Conformer block. Then, d is combined to E us-
ing a CNN-based simple feature-wise linear modulation (FiLM)
layer [29]. Here a FiLM layer is defined as FiLM(A,b) =
CNN; (LeakyReLU(CNN;(A)) 4+ b) where A € R¥*P and
b € RY. CNN; changes A’s 2nd dimension D to Q. Then, b
is added to the CNN; output while broadcasting the 1st dimension.
Here, the slope parameter of LeakyReLU is 0.1. Finally, CNN3
returns the 2nd dimension to D. Both CNNs are 1D-CNN layer
with a kernel-size 3 and stride 1.

Next, S is predicted from X by using a DF-Conformer [30]-
based network. We build our feature cleaner by stacking IV blocks,
each consisting of a cross attention, a layer norm and a DF-
Conformer-block. In each block, the combined conditioning feature
is combined to the input w2v-BERT features using a cross attention
layer. Then, layer norm is applied to the output, and finally, a DF-
Conformer block [30] with mod (n,2) dilation factor is applied
where n € {0,1,...,N — 1} is the block number. After refining
the input w2v-BERT features, we applied the 5-layer convolutional

Post-Net proposed in Tacotron2 [14] which predicts a residual to
add to the prediction to improve the overall reconstruction.

We adopt the iterative feature refinement into our feature
cleaner since a fixed-point iteration-like processing achieved high-
fidelity waveform generation [18]. Specifically, we iterate twice the
entire feature cleaning process consisting of the feature cleaner and
the Post-Net, where the parameters of the layers are shared. As
with WaveGrad [31]] and WaveFit [|18]], the number of iterations is
embedded using a positional embedding layer, and the embedded
iteration count is mixed into text and speaker embedding using a
FiLM layer. Note that it is not strictly fixed-point iteration since the
function being applied is slightly different at each iteration.

We used a combined loss function of the mean-absolute-error,
the mean-squared-error, and a spectral convergence loss [32]-like
lossas £ = ||S — 8|1 + IS — S|Z + IS — S|3//|S||3, where
||| is the vector p-norm given by || S|, = (3, 3, |Sk.al?)*?.
This loss value is calculated before and after the Post-Net like in
Tacotron2 [[14], and calculated for all iterations like in WaveFit [18]].

2.3. Neural vocoder

As shown in Fig. E] (c), we use a WaveFit neural vocoder [18]] to
synthesize y from S € RE*P The original WaveFit synthesizes
waveforms from log-Mel spectrograms; here we adopt WaveFit to
synthesize waveforms from w2v-BERT features.

First, the frame rate of w2v-BERT feature and log-mel spec-
trogram does not match, hence S is 4x upsampled along the time
axis. Since the network architecture of WaveFit consists of a CNN-
based U-Net [31], a deep upsampling network is required to syn-
thesize a waveform from low frame-rate features. To keep the core
network size close to the original one, we applied two upsampling
CNN layers: each layer consists of a transposed convolution with
ReLU, channel size 1 where the kernel- and stride-sizes are 4 and 2,
respectively. Then, the conditioning speaker embedding d is com-
bined with the upsampled w2v-BERT feature S’ e RYEXD using
a FiLM layer as FiILM(S’, d).

Finally, the speech waveform is synthesized by WaveFit. Note
that we used white noise as the initial noise waveform instead of the
SpecGrad noise [33]] used in the original WaveFit [18] because we
cannot know the spectral envelope of s from w2v-BERT features.
In addition, since the maximum amplitude of s cannot be known
from w2v-BERT features, the gain normalization of WaveFit is re-
placed to G(y) = A - y/ max(abs(y)) where A = 0.9 and abs(-)
returns element-wise absolute values of the input vector.

For the loss function, in addition to the original adversarial loss
function proposed in WaveFit [|18], we used the multi-period dis-
criminator (MPD) [34]]. We used the same MPD hyper-parameters
used in [34] except for additionally using three more prime-number
periods (13, 17, 19) because the sampling rate of y is 24 kHz. In
addition, the parameters of the STFT loss was changed to the same
as those of Parallel WaveGAN settings [32].

2.4. Model training

Frozen feature extraction models: We used the “w2v-BERT XL~
model, where D = 1024, trained on 60k hours of English speech
samples from the LibriVox repository. We used the 8th layer Con-
former outputs without quantization as w2v-BERT features. For
the PnG-BERT model, we used a W = 512 PnG-BERT model [27]]
pre-trained on a plain text corpus mined from Wikipedia, contain-
ing 131M English sentences. To extract speaker embedding, we
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Table 1: Random codec parameters. Codec was randomly selected
based on the probability listed in the “Prob.” column. Codec bitrate
was randomly selected from those listed in the “Bit rate” column.

Codec | Prob. | Bit rate

MP3 0.5 16k, 32k, 64k, 128k
Vorbis 0.075 32k, 48k, 64k
A-law 0.025 64k

6.6k, 8.85k, 12.65k, 14.25k, 15.85k
18.25k, 19.85k, 23.05k, 23.85k
8k, 16k, 32k, 64k, 128k

AMR-WB | 0.025
OPUS 0.375

used a streaming Conformer-based speaker encoding model con-
sists of 12 Conformer [35] layers each of Q = 256, followed by
an attentive temporal pooling module [36]]. The model was trained
on the dataset described in [37] while minimizing the generalized
end-to-end extended-set softmax (GE2E-XS) loss [38]].

Trainable model parameters: We stacked N = 4 DF-Conformer
blocks [30] where the input and hidden dimensions of the multi-
head attention are D, = 128 and 512, respectively. Other hyper-
parameters were the same as those of the original paper [30]. For
the cross-attention layer before the DF-Conformer block, the input
and hidden dimensions were 128 and 512, respectively. The hyper-
parameters of the Post-Net are the same as those of Tacotron2 [[14].
For the neural vocoder, we used WaveFit-5 with the same hyper-
parameters described in [18]] except for the upsampling factors of
the five upsampling blocks (UBlock) are (5, 4, 2, 2, 2) because the
frame rate of the upsampled w2v-BERT feature is 100 [frame/sec].
To accelerate training, we randomly picked up 15 frames (0.6 sec-
onds) from X as input.

Training dataset: We trained the proposed model with a propri-
etary dataset that contains 2,680 hours of noisy and studio-quality
speech pairs. The target speech dataset contains 670 hours of
studio-recorded Australia, United Kingdom, India, Nigeria, and
United States English at 24 kHz sampling. For the noise dataset,
we used the TAU Urban Audio-Visual Scenes 2021 dataset [39], in-
ternally collected noise snippets that simulate conditions like cafe,
kitchen, and cars, and noise and music sources. The noisy ut-
terances were generated by mixing randomly selected speech and
noise samples from these datasets with signal-to-noise ratio (SNR)
from 5dB to 30dB. In addition, we augmented the noisy dataset
with 4 patterns depending on the presence or absence of reverbera-
tion and codec artifacts. A room impulse response (RIR) for each
sample was generated by a stochastic RIR generator using the im-
age method [40]. Its parameters were drawn from the following uni-
form distributions {/: the reverberation times (RT60) ranging from
U(0.2,0.5) [sec], the length of one side for x- and y-axis (width)
room was U/(2.0, 10.0) [m], and that for z-axis (height) ¢/ (2.0, 5.0)
[m]. For simulating codec artifacts, we randomly applied one of
MP3, Vorbis, A-law, Adaptive Multi-Rate Wideband (AMR-WB),
and OPUS with a random bit-rate. The codec parameters were
shown in Table[[]which were decided with reference to [3]].

3. EXPERIMENTS

3.1. Experimental setup

We evaluated the effectiveness of w2v-BERT and PnG-BERT while
comparing the sound quality between the studio-recorded original
speech and restored samples from artificially contaminated samples.

Table 2: Results on the synthesized test dataset with their 95%
confidence intervals. “L”, “W” “T” and “S” means log-mel, w2v-
BERT, transcript and speaker embedding conditioning, respectively.

Feat. Method | MOS(f)  WER(])) SPK (1)
- Clean 4.69 + 0.06 13.7 N/A
- Noisy 3.28 £0.13 15.1 0.703

Full 3.08 +0.12 19.4 0.767
L WoT 2.16 +0.13 39.6 0.698
wlo S 3.17£0.08 19.5 0.711
wloT&S | 1.40+0.09 61.4 0.496
Full (ours) | 4.54+0.08  13.5 0.727
w  WoT 4.48 £0.08 16.4 0.735
wlo S 4.39 4 0.08 14.0 0.646
wloT&S | 4.26+0.09 17.2 0.637

Test dataset: Test dataset was generated by contaminating the
clean data with the same way for generating the training dataset de-
scribed in Sec.[2.4] The clean speech samples were studio-recorded
US-English containing 534 utterances spoken by 1 female and 1
male. There was no overlap of this data with the training set in terms
of the utterances themselves or the speakers. The additive noise dat-
set was the DEMAND noise dataset [41]]. We applied reverberation
to all clean speech samples using the same stochastic RIR genera-
tor with the same parameters as the training dataset. After that, the
noisy samples were generated by mixing randomly selected rever-
berant speech and noise samples from these datasets with SNR from
5dB to 30dB. Finally, we simulated codec artifacts to the noisy
samples with the same parameters with the training dataset.

Comparison methods: The main novelties of the proposed method
are to use (i) w2v-BERT features instead of log-mel spectrogram,
(i) PnG-BERT for text conditioning, and (iii) a speaker embed-
ding for speaker conditioning. Therefore, we compared eight mod-
els with and without these three patterns: i.e. {w2v-BERT, log-
mel} x {full, w/o PnG-BERT, w/o speaker embedding, w/o PnG-
BERT & speaker embedding}. For log-mel models, we used 128-
dimensional log-mel spectrograms (50 ms Hann window, 12.5 ms
frame shift, 2048-point FFT, and 20 Hz and 12kHz lower and up-
per frequency cutoffs, respectively). As the neural vocoder for the
log-mel models, we used the original WaveFit-5 [18]] except for us-
ing the MPD [34] with the same parameters as w2v-BERT models.
Other parameters were the same among the all comparison models.
We trained the feature-cleaner 400k steps. Individually, we pre-
trained the WaveFit 200k steps to reconstruct waveform from clean
features, after that, we fine-tuned the WaveFit 100k steps to synthe-
size the clean waveform from the predicted features by the trained
feature cleaner.

3.2. Results

To evaluate subjective quality, we rated speech quality through
mean-opinion-score (MOS). The scale of MOS was a 5-point scale
(1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent) with rating incre-
ments of 0.5. Test stimuli were randomly chosen and each stimulus
was evaluated by one subject. Each subject was allowed to evaluate
up to six stimuli, that is, 89 subjects participated in this experiment
to evaluate 534 samples in each condition. The subjects were paid
native English speakers in the United States. They were requested
to use headphones in a quiet room. In addition, in order to confirm
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Table 3: MOS scores with their 95% confidence intervals of TTS
outputs trained on each restored dataset.

Training dataset | Speaker ID  MOS (1)
Common Voice | - 3.63+0.21
4788 4.38 +£0.15
o 10801 4.154+0.17
LibriVox 5968 4.1140.19
8138 4.05+0.18

whether the text-content and speaker identity in the restored speech
samples are retained, we evaluated the word error rate (WER) of an
ASR experiment and computed a speaker similarity measure. The
WER was computed between the reference transcripts and the out-
put of the “Pre-trained Conformer XXL” ASR model [42]. Note that
the ASR model was trained on noisy speech and transcripts normal-
ized by a different text-normalizer. Therefore, we only check trends
in WER differences since absolute value of WER for our evaluation
dataset will be high. To evaluate speaker similarity, we computed a
cosine similarity (SPK) of the speaker embedding between the clean
and restored samples [43[44].

Table 2] shows the results. The proposed method (w2v-BERT,
full) achieved the best MOS among all SR comparison models. In
addition, the MOS of the proposed model was only 0.15 points be-
hind that of the studio-recorded clean signals. By comparing MOS
of w2v-BERT models and log-mel models, the scores of w2v-BERT
models were significantly higher. This result indicates that the use
of w2v-BERT features has a significant effect on improving SR per-
formance. The WER of “W w/o T” was 2.9 point behind of the
proposed method, and the WER of the proposed method was com-
parable to that of the clean signal. This shows that the use of PnG-
BERT features extracted from a transcript is effective in preserving
text content of the restored speech. The SPK score of “W w/o S”
model was significantly lower than that of the proposed method.
This result indicates the use of a speaker embedding is effective for
keeping speaker characteristics. Audio samples are available at our
demo pag

4. TTS MODEL TRAINING WITH NON-TTS DATASET

Thanks to crowd-sourcing projects for creating license-free speech
corpus, a huge amount of English text-speech pair data is publicly
available. However, since these samples are not studio-recorded
quality, their use-cases are mainly limited to ASR. To increase the
value of such public speech samples, we restored the samples in
Common Voice [22] and LibriVox datasets using Miipher. Then,
we trained TTS models using the restored datasets. The details of
this experiment is as follows.

TTS model: The TTS model consisted of an unsupervised Non-
Attentive Tacotron (UNAT) with a fine-grained variational auto-
encoder [45] and a WaveRNN neural vocoder [46]]. For UNAT, we
used the same hyper-parameters and training parameters listed in
the original paper [45]. The WaveRNN [46] consisted of a single
long short-term memory layer with 512 hidden units, 5 convolu-
tional layers with 512 channels as the conditioning stack to process
the mel-spectrogram features, and a 10-component mixture of lo-
gistic distributions as its output layer. We trained UNAT and Wa-
veRNN for 100k and 400k steps and concatenated them without
fine-tuning.

Common Voice: We restored samples in the version 5.1 (June
22, 2020) snapshot with approximately 1,500 hours. We removed
speech samples of less than 2 seconds or more than 15 seconds. The
training dataset consisted of 685 hours speech samples. Note that
since Common Voice is prohibited from identifying the speaker, the
TTS model was trained without using speaker IDs and trained as a
single-speaker TTS model.

LibriVox: We collected over 25,000 hours of speech samples
(Jan. 7, 2020). There was no overlap of this data with Lib-
riTTS [47]. We aligned the long-form audio recordings with the
corresponding texts, and split them into sentence-level segments as
the same way of building LibriTTS [47]]. We removed speech sam-
ples of less than 2 seconds or more than 15 seconds. The training
dataset consisted of 13,270 hours speech samples spoken by 4,000
speakers. We trained a multi-speaker TTS model.

We synthesized waveforms with the sentences from the
LJspeech [48] test split. For the LibriVox multi-speaker model, we
used 4 speakers (two female and two male) where the female and
male reader IDs were (14788, 10801) and (5968, 8168), respec-
tively.

We evaluated the subjective sound quality using MOS. To give
baseline MOS on Llspeech test split sentences, we also trained the
same TTS model using Miipher applied LIspeech [48]. The MOS
of human spoken and TTS generated speech samples of LIspeech
were 4.33 and 4.36 respectively

Table [3] shows the MOS of each model. Even though the Lib-
riVox are not datasets designed for TTS like LJspeech, and the train-
ing of multi-speaker TTS is difficult compared with single-speaker
TTS, TTS models trained using restored LibriVox achieved MOS
that were almost equal to those using restored LJspeech. Further-
more, in Common Voice, despite we trained a single-speaker TTS
model using multiple speakers samples, the MOS of the TTS gener-
ated samples was 3.63. We complement that we could not train the
same WaveRNN neural vocoder using the original Common Voice
dataset: the training failed to converge due to the noise in the tar-
get speech. These results indicate that applying Miipher on a large
scale speech dataset collected from the Web enables us to train high-
quality TTS models. Audio samples of the restored and TTS gener-
ated samples are available at our demo pag

5. CONCLUSIONS

In this study, we proposed Miipher, a robust SR model based on
the parametric re-synthesis framework for restoring speech sam-
ples in-the-wild. Based on our preliminary investigation, we es-
pecially focused on two difficult degradation where SR frequently
fails: phoneme masking and deletion. To solve these issues, for the
input features, we used speech and text representations extracted
from w2v-BERT [20] and PnG-BERT [27], respectively. Through
experiments, we show that Miipher was robust against various au-
dio degradation, could restore public speech samples from the Web,
and enabled us to train high-quality TTS models form the restored
samples. From these results, we conclude that Miipher can increase
the value of speech samples in-the-wild by improving the speech
quality as the training data for speech generation tasks.

In the future, we will investigate the use of transcripts predicted
using ASR to extract linguistic features and restore speech sam-
ples for which transcriptions do not exist. Also, we will develop
multilingual Miipher in order to train high-quality TTS models for
low-resource languages. Training of SSL models to obtain speech
representation from 24 kHz sampling signals is also a future work.
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