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ABSTRACT

Audio classification and restoration are among major downstream

tasks in audio signal processing. However, restoration derives less of

a benefit from pretrained models compared to the overwhelming suc-

cess of pretrained models in classification tasks. Due to such unbal-

anced benefits, there has been rising interest in how to improve the

performance of pretrained models for restoration tasks, e.g., speech

enhancement (SE). Previous works have shown that the features ex-

tracted by pretrained audio encoders are effective for SE tasks, but

these speech-specialized encoder-only models usually require extra

decoders to become compatible with SE, and involve complicated

pretraining procedures or complex data augmentation. Therefore, in

pursuit of a universal audio model, the audio masked autoencoder

(MAE) whose backbone is the autoencoder of Vision Transformers

(ViT-AE), is extended from audio classification to SE, a representa-

tive restoration task with well-established evaluation standards. ViT-

AE learns to restore masked audio signal via a mel-to-mel mapping

during pretraining, which is similar to restoration tasks like SE. We

propose variations of ViT-AE for a better SE performance, where the

mel-to-mel variations yield high scores in non-intrusive metrics and

the STFT-oriented variation is effective at intrusive metrics such as

PESQ. Different variations can be used in accordance with the sce-

narios. Comprehensive evaluations reveal that MAE pretraining is

beneficial to SE tasks and help the ViT-AE to better generalize to

out-of-domain distortions. We further found that large-scale noisy

data of general audio sources, rather than clean speech, is sufficiently

effective for pretraining.

Index Terms— Audio classification, audio restoration, speech

enhancement, masked autoencoder, vision transformer

1. INTRODUCTION

Various methods have been proposed to pretrain models that can

extract generally useful features from audio, with the expectation

that these features will benefit multiple downstream tasks. Audio

classification and restoration are two major downstream tasks in au-

dio signal processing, but restoration tasks have typically derived

less benefit from pretrained models. For example, application of

pretrained models to audio classification tasks such as audio scene

classification, keyword spotting, and music instrument classification

has shown great success [1, 2, 3, 4, 5]. However, audio restoration

tasks are often tackled by training models from scratch, as in the case

of speech enhancement (SE) or bandwidth extension (BWE) [6, 7].

Due to the unbalanced benefit, there is rising interest in how to im-

prove the performance of pretrained models for restoration tasks. In

this work, SE is chosen as a representative of numerous restoration

tasks due to its well-established objective metrics and test data [7].

While [8] tried to apply a pretrained audio classifier to create paired

data for the conditional source separation task, the separation model

did not work well in SE tasks.

Some methods exploit models that are pretrained via self-

supervised learning (SSL) for SE tasks. Inspired by BERT [9], var-

ious SSL models for speech have been proposed, such as HuBERT

[10] and WavLM [11]. These models are pretrained with the mask

prediction task, in which the masked tokens are predicted from visi-

ble tokens. While the features extracted by these models can be used

for SE tasks [12, 13], there are some drawbacks. First, these models

have no decoder, which makes it necessary to select an extra decoder

to become compatible with SE tasks [12, 13]. Moreover, the mod-

els have been pretrained with only speech data, which limits their

extension to tasks other than speech. In addition, the pretraining

involves complicated procedures such as the estimation of pseudo

labels [10, 11] or complex data augmentations such as speech over-

lapping or noise simulation [11, 12].

A framework that is directly compatible with restoration tasks

like SE, easy to pretrain and less demanding in data augmentation

has yet to be explored. Audio masked autoencoders (MAE) [2, 3,

4] are SSL methods that have been reported to have state-of-the-art

(SOTA) performance in audio classification tasks [2, 3, 4]. Audio

MAE can be simply pretrained by ground truth labels, and is able

to reduce resource consumption by not inputting masked tokens to

the model [14]. The backbone of MAE is the autoencoder of Vision

Transformers [15] (ViT-AE), which learns to restore audio signal

via a mel-to-mel mapping during pretraining. However, excluding

qualitative experiments on packet loss concealment [4], audio MAE

has not been considered for SE or other restoration tasks.

To address the above issues, first, we extend audio MAE to

speech enhancement and explore the framework’s potential for

solving multiple tasks such as audio classification and SE. The ViT-

AE backbone negates the needs for pseudo labels and naturally

learns a mel-to-mel mapping that is compatible with SE tasks dur-

ing MAE pretraining. Second, we propose variations of ViT-AE to

improve the performance on SE tasks, where the mel-to-mel vari-

ations have advantages in terms of non-intrusive metrics and the

STFT-oriented variation is effective for standard intrusive metrics

such as PESQ. The aforementioned variations can be utilized in ac-

cordance with the scenarios. Finally, we carried out comprehensive

evaluations and ablation studies, in which we found that large-scale

noisy data of general audio sources, rather than clean speech, is

sufficiently effective for pretraining. Pretraining with general audio

data also allows us to further explore tasks other than speech (e.g.,

music) in the future. We encourage our readers to visit the webpage

for audio samples and an appendix about music BWE 1.

2. RELATED WORK

A number of prior studies have explored the application of speech-

specialized BERT-like SSL models to SE tasks. Song et al. com-

1https://zzaudio.github.io/Demo_Extend_AudioMAE_

toward_Restoration/demo_page.html

http://arxiv.org/abs/2305.06701v2
https://zzaudio.github.io/Demo_Extend_AudioMAE_toward_Restoration/demo_page.html
https://zzaudio.github.io/Demo_Extend_AudioMAE_toward_Restoration/demo_page.html
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Fig. 1. Audio MAE pretraining. Each patch includes 16-by-16 time-

mel bins. Masked patches are deleted from the input sequence and

dummy tokens are used in the decoder to reconstruct the input. The

cls (“c” in orange) token is used for classification tasks.

bined noisy short-time Fourier transform (STFT) magnitude with

features extracted by WavLM-base+ as the input to the backend

speech enhancers and found the extracted features useful for SE

tasks [12]. Huang et al. compare features extracted by pretrained

encoders with standard STFT and log-mel spectrograms in [13], and

found that pretraining models on clean speech may result in domain

mismatch in SE tasks, as these models have to process noisy rather

than clean speech in such cases. Hung et al. [16] showed that the SE

performance of pretrained encoders could be boosted by combining

multiple techniques with a careful fine-tuning strategy. However, as

mentioned in Sec.1, the above speech-specialized pretrained models

are not naturally compatible with SE tasks, which also suffer from

complicated pretraining procedures, complex data augmentation and

heavy computation during pretraining.

Audio MAE pretraining is often conducted with log-mel spec-

trogram, hence ViT-AE naturally learns the mel-to-mel mapping.

Huang et al. [4] qualitatively confirmed that the pretrained ViT-AE

can achieve packet loss concealment without fine-tuning, but did not

perform any in-depth study for such restoration tasks. For speech

enhancement via mel-to-mel mapping, it is common to use a pre-

trained neural vocoder to convert the processed log-mel spectrogram

back into raw waves [6, 17].

3. APPROACH

3.1. Audio MAE for Audio Classification

Audio MAE methods [2, 3, 4] originate from image MAE [14] and

typically take the log-mel spectrogram as input. Unlike conventional

Transformer methods in speech processing, which consider the time

axis in raw waves or spectrograms as the direction of input sequences

[10, 11, 18], ViT divides log-mel into patches (each patch contains

16-by-16 time-mel bins following [3, 4, 14, 15]), and conducts se-

quential modelling in accordance with the patch’s position in the

original log-mel spectrogram, as shown in Fig. 1. A large portion

(around 75%) of the input patches are masked to create the mask pre-

diction task. In contrast to [10, 11], the ViT encoder is followed by

a decoder in audio MAE, and hence the backbone is called ViT-AE.

Thanks to the decoder, pseudo labels are not needed for pretraining.

The decoder also allows masked patches to be exempted from the

input, thereby greatly reducing the computational cost. We insert a

cls token as the feature vector for downstream classification tasks, as

it will automatically aggregate the features from other tokens when

fine-tuned [1, 14].

3.2. ViT-AE Framework for Multiple Tasks

The vanilla ViT-AE learns mel-to-mel mapping via mean square er-

ror (MSE) loss in Fig. 1. Although the vanilla ViT-AE architechture

is directly applicable to downstream restoration tasks, we will show

in Sec.5.2 that the speech enhancement quality of vanilla ViT-AE is
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Fig. 2. Mel-to-mel ViT-AE with residual connection.
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Fig. 3. ViT-AE-iSTFT, where the decoder takes the concatenation of

STFT magnitude and ViT encoder features as input.

not sufficient. Some works try to improve the reconstruction quality

of MAE-based frameworks by modifying the loss function in pre-

training [12] or modifying the model structure [19]. Unfortunately,

modification during pretraining will largely affect the classification

performance of MAE-based methods [19]. We therefore introduce

new training losses and variations of ViT-AE, which we use only

for fine-tuning ViT-AE on SE tasks. This should bring no change to

pretraining procedures hence no harm to other tasks such as classifi-

cation, while simultaneously offering apparent benefits to SE.

Mel-to-mel ViT-AE with residual connection. We introduce a

residual connection outside the vanilla ViT-AE to better enhance the

log-mel spectrogram, which results in two variations shown in Fig.

2: additive and multiplicative ViT-AE, both of which originate from

the domain knowledge of audio signal processing. Modelling the

input noisy speech as the addition of clean signal and background

noises, the additive ViT-AE learns to enhance signals by subtracting

background noises from the noisy input. The multiplicative ViT-AE

estimates time-frequency (TF) masks for mel-spectrograms. Masks

are limited to the range of [0, 1] by a sigmoid function to indicate

how much energy the clean speech occupies in each bin of the noisy

mel-spectrogram. Masks are then multiplied with noisy input. We

do not directly apply masks to the log-mel, as log-scale power com-

pression results in negative values, making the physical meaning of

a non-negative mask unclear. Log-mel spectrograms are converted

into raw waves via a pretrained frozen vocoder (Fig. 2).

To better capture details of spectrograms from both log- and

linear-scale, the proposed loss for SE fine-tuning is the summation

of MSE losses in both scales of mel-spectrogram, i.e.,

LSE = MSE(Ŷ , Y ) + λ ·MSE(exp(Ŷ ), exp(Y )), (1)

where Y is the ground truth log-mel spectrogram of clean speech, Ŷ

is the estimated one by ViT-AE, and the exponential function recov-

ers the linear mel-spectrogram from log-scale power compression.

The coefficient of λ = 100 is determined empirically to balance

losses from both scales.

STFT-oriented ViT-AE. Mel-to-mel ViT-AE’s objective scores

(such as PESQ) are limited and upper bounded by the vocoder [6].

To improve the objective scores of ViT-AE, we propose a variation to

generate enhanced waves via inverse STFT (iSTFT) (ViT-AE-iSTFT

in Fig. 3). Inspired by [12], the ViT decoder (different from the one

used in pretraining) takes the concatenation of noisy STFT magni-

tude and ViT encoder features as the input, in which the ViT encoder

features are expected to provide auxiliary information to improve the

SE performance of the decoder. Following the common practice in

[12, 13, 16], STFT magnitude is enhanced by an STFT mask (similar

to the mel-to-mel multiplicative ViT-AE). To fine-tune this variation,

unlike equation (1), L1 loss is empirically found more suitable for



the linear scale STFT.

While usages similar to Fig. 3 have been explored for HuBERT-

and WavLM-based methods [12, 13, 16], it is non-trivial to evalu-

ate such usages for ViT-AE. In contrast to HuBERT or WavLM, the

ViT-AE takes time-mel patches as input, which means the direction

of input sequences is not aligned with the time axis in STFT spec-

trograms (Sec.3.1). To concatenate the ViT encoder features with

STFT, we have to extend the length of ViT encoder features by du-

plicating them twice under our current setting, which makes it even

more difficult to extract information about the time axis. Moreover,

there is a domain mismatch for ViT-AE, because it is pretrained to

learn mel-to-mel mapping, not the STFT mapping. Nonetheless, in

Sec.5.2 we will show that this ViT-AE-iSTFT achieves high objec-

tive scores, which means the ViT encoder can provide valuable aux-

iliary information under the above limitations.

4. EXPERIMENTS

We evaluate the ViT-AE and MAE pretraining on both audio classi-

fication and speech enhancement tasks.

4.1. MAE Pretraining

We carried out MAE pretraining with 75% mask ratio for the ViT-

AE on either AudioSet (noisy but general) or LibriTTS (clean and

speech-specialized) to examine the influence of the pretraining data.

AudioSet [20] contains around 2 million 10-second audio segments

taken from YouTube and annotated with 527 diverse classes. Au-

dioSet has been widely used in general audio representation learning

[1, 2, 3, 4, 21]. The unbalanced set of AudioSet is used for pretrain-

ing. LibriTTS [22] is a large-scale corpus of English audiobooks

presented at sentence break. We merge all three train subsets and

two dev subsets of the LibriTTS for pretraining.

The ViT and the masking strategy are implemented based on the

open-source project in [1, 23]. Hyperparameters of the ViT-AE are

based on [2], where the ViT encoder is a ViT-base model, containing

12 Transformer blocks, whose attention layer has 768 dimensions,

and the number of attention heads is 12. The decoder is a smaller

ViT, with four layers of 384 dimensions and eight attention heads.

The dimension of the feedforward networks is four times the atten-

tion layer dimension across the whole ViT-AE.

Following [2], audio data is cropped or padded to 5-second

chunks (448 frames) during pretraining. ViT-AE is pretrained for

60 epochs with the batch size of 128 and learning rate (LR) of 1e-4.

The LR linearly increases to 1e-4 in the first five epochs (warmup),

and then decreases to 1e-6 by the cosine annealing scheduler [3, 4].

Instead of audio overlapping or noise simulation, we apply only ran-

dom gain (–6 dB to +3 dB) and cyclic cropping [1] as data augmenta-

tion. To alleviate the affect of different audio loudness, all input log-

mel spectrograms are normalized by the train set mean and standard

deviation that are collected in advance [4]. The AdamW optimizer

is used with a weight decay of 1e-4 [4].

The 80-bin log-mel is generated to be compatible with the

vocoder’s settings [24]: raw waves at a sampling rate of 22.05 kHz

are processed by STFT with a 1024-point Hann window and 256-

point hop size, followed by a mel filterbank. Throughout experi-

ments, audio files are resampled to 22.05 kHz if needed.

4.2. Downstream: Audio Classification

The cls token of the pretrained ViT encoder is followed by a sin-

gle linear layer during the fine-tuning for classification tasks. The

speech classification accuracy of ViT-AE is evaluated by Speech

Command V2 (SPCv2) [25], a dataset that presents a 35-class single-

label speech command recognition task. When ViT-AE is pretrained

Table 1. Results of audio classification. AudioSet: Mean average

precision (%). SPCv2: Top-1 accuracy (%). For SPCv2, either Au-

dioSet or LibriTTS pretraining yields the same score for our model.

ViT-AE/Audio MAE (ours) PANN [21] MaskSpec [3]

AS-2M 43.4 43.1 47.1

AS-20k 31.7 27.8 32.3

SPCv2 97.8 – 97.7

with AudioSet (as in [2, 3, 4]), its ability in general audio classifica-

tion is measured by the 527-class multi-label task on AudioSet-2M

(summation of unbalanced and balanced subsets) and AudioSet-20k

(the balance subset alone).

4.3. Downstream: Speech Enhancement

We fine-tune ViT-AE and its variations on the standard Valentini’s

dataset [26], whose test set has 824 noisy speeches without reverber-

ation. Generalization ability is measured by a subset of the DAPS

dataset [27] under a zero-shot condition. By playing back pre-

recorded clean speeches in noisy and reverberate environments, dis-

torted speeches from 20 speakers under 12 scenarios are created by

consumer-grade devices. We constructed the out-of-domain subset

using all recordings of the last female and male speakers.

During the finetuning, the batch size is 16, the LR increases to

1e-4 within the 10 epochs of warmup and decreases to 1e-6 by 90

epochs of cosine annealing. To convert log-mel spectrograms into

raw waves, we use the HiFi-GAN vocoder [24]. The mel-to-mel

ViT-AE keeps the same settings as in pretraining, while the ViT-AE-

iSTFT extends the decoder’s attention layer dimensions to 512 to

predict the one-side STFT (rather than mel-spectrogram) masks.

5. EVALUATION

5.1. Audio Classification

The results presented in Tab. 1 demonstrate that we have suc-

cessfully reproduced audio MAE. Our AudioSet model outperforms

PANN in general audio classification tasks, showing its ability to

tasks other than speech. Both the AudioSet and LibriTTS models

achieve 97.8% accuracy in SPCv2, outperforming MaskSpec [3] (an

audio MAE model) in the speech classification task. MaskSpec ob-

tained higher scores at AudioSet, which can be explained by differ-

ences in hyperparameters (we followed [2], but no AudioSet scores

were reported there) and loss in the training data (downloadable seg-

ments from YouTube differ by region, and decrease over time).

5.2. Speech Enhancement

We evaluate the importance of pretraining by standard intrusive met-

rics (PESQ, Csig, Cbak and Covrl [28]) and a non-intrusive met-

ric called NISQA [29] in Valentini’s dataset. First, the additive and

multiplicative ViT-AE stably outperform the vanilla version in every

pretraining condition as shown in Tab. 2. Next, pretrained ViT-

AE outperforms the from-scratch one for all variations of ViT-AE

Table 2. SE: From-scratch vs. pretrained (Bold: Top-2 scores)

Pretrain Method PESQ Csig Cbak Covrl NISQA

Noisy 1.97 3.35 2.44 2.63 3.34

Vanilla ViT-AE 2.22 3.80 2.36 3.00 3.98

Scratch Additive (Fig. 2) 2.34 3.88 2.38 3.10 4.18

Multiplicative (Fig. 2) 2.35 3.90 2.38 3.11 4.18

Vanilla ViT-AE 2.23 3.83 2.37 3.02 4.05

LibriTTS Additive 2.39 3.95 2.41 3.16 4.27

Multiplicative 2.42 3.97 2.42 3.18 4.29

Vanilla ViT-AE 2.23 3.83 2.37 3.01 4.06

AudioSet Additive 2.40 3.96 2.41 3.17 4.25

Multiplicative 2.42 3.98 2.42 3.19 4.29

Vocoder Oracle 3.01 4.68 2.81 3.87 4.57

Clean 4.50 5.00 5.00 5.00 4.62



in all metrics, though the difference brought by different pretrain-

ing data was trivial. Last but not least, the additive and multiplica-

tive variations reflect more benefits of pretraining compared to the

vanilla one, revealing that the proposed variations are important

to unleash the power of MAE pretraining in SE tasks.

Table 3. SE: ViT-AE-iSTFT vs Mel-to-mel ViT-AE (Bold: Top 1)
Pretrain Method PESQ Csig Cbak Covrl NISQA

noisy 1.97 3.35 2.44 2.63 3.34

Scratch ViT decoder with STFT input 2.71 3.96 2.59 3.33 3.95

ViT-AE-iSTFT (Fig. 3) 2.75 3.99 2.61 3.37 4.00

LibriTTS ViT-AE-iSTFT 2.80 4.06 2.64 3.43 4.03

AudioSet ViT-AE-iSTFT 2.85 4.12 2.67 3.48 4.05

Multiplicative ViT-AE (Fig. 2) 2.42 3.98 2.42 3.19 4.29

Clean 4.50 5.00 5.00 5.00 4.62

The multiplicative ViT-AE is compared with ViT-AE-iSTFT in

Tab. 3. First, ViT-AE-iSTFT successfully improves objective scores

of the decoder-only baseline, which implies that the ViT encoder can

provide auxiliary information to improve the SE performance of the

decoder despite the limitations mentioned in Sec.3.2. The AudioSet

pretraining is slightly more beneficial than LibriTTS for ViT-AE-

iSTFT. Next, our goal to further improve the objective scores of mel-

to-mel variations by ViT-AE-iSTFT is partly realized, as ViT-AE-

iSTFT outperforms the multiplicative one in every intrusive metric

especially in PESQ (2.85 vs 2.42). Meanwhile, the merit of using

mel-to-mel mapping with a vocoder is revealed by the higher NISQA

score of the multiplicative version. NISQA helps us to further clar-

ify the differences among the proposed ViT-AE variations, because

standard intrusive metrics may contrast with human perception when

evaluating vocoder-based methods [6]. We therefore conclude that

mel-to-mel ViT-AE should be utilized for cases requiring perceptual

quality (NISQA) and that ViT-AE-iSTFT is better for scenarios re-

quiring high intrusive scores (PESQ).

We compare the ViT-AE pretrained on AudioSet with other

methods in Tab. 4. The multiplicative version obtained a similar

PESQ score as Voicefixer[6] which also uses a vocoder, and a higher

PESQ score than SEGAN [30]. Although ViT-AE-iSTFT has lower

metrics than SOTA discriminative models like [33], it achieves com-

parable intrusive metrics to SOTA diffusion models such as UNI-

VERSE, SGMSE+ and its variation GP-Unified [7, 31, 32], except

in Cbak. These diffusion models achieved NISQA scores compara-

ble to the oracle results of vocoder, revealing the limited potential of

vocoder-based methods. Note that the methods compared above are

not capable of classification.

For methods compatible with classification, we exempt results

from HuBERT-large and WavLM-large for fair comparison. Vari-

ations of ViT-AE outperform PANN + UNet [8] and Huang et al.

[13] in all metrics except Cbak. Hung et al. [16] utilized multiple

techniques with a careful fine-tuning strategy in which the model

is partially frozen, and as a result, their method even outperforms

Table 4. SE: Comparison with existing methods (Bold: Ours).
∗UNIVERSE: Unofficial implementation by the authors.

Comment Method PESQ Csig Cbak Covrl NISQA

- Noisy 1.97 3.35 2.44 2.63 3.34

Pretrained & Multiplicative ViT-AE 2.42 3.98 2.42 3.19 4.29

GAN (vocoder) Vocoder Oracle 3.01 4.68 2.81 3.87 4.57

GAN SEGAN [30] 2.16 3.48 2.84 2.80 -

Voicefixer [6] 2.43 - - - -

ViT-AE-iSTFT 2.85 4.12 2.67 3.48 4.05

Pretrained & PANN + UNet [8] 2.28 2.43 2.96 2.30 -

Discriminative Huang et al. [13] 2.68 - - - -

Hung et al. [16] 3.16 4.50 3.57 3.86 -

UNIVERSE∗ [7] 2.90 4.03 3.11 3.46 4.61

Diffusion SGMSE+ [31] 2.94 4.25 3.40 3.61 4.56

GP-Unified [32] 2.95 4.18 3.44 3.57 4.61

Discriminative DCUNet [33] 3.13 4.24 4.00 3.69 -

- Clean 4.50 5.00 5.00 5.00 4.62

Table 5. SE: Out-of-domain Generalization (Bold: Top-2 scores).

Comment Method PESQ Csig Covrl NISQA

noisy 1.47 2.00 1.60 2.79

UNIVERSE∗ (unofficial) [7] 1.51 2.19 1.76 3.79

SGMSE+ [31] 1.97 2.81 2.33 4.44

GP-Unified [32] 1.88 2.81 2.27 4.32

Vanilla ViT-AE 1.67 2.77 2.14 3.14

Scratch Additive 1.65 2.63 2.05 3.58

Multiplicative 1.64 2.68 2.08 3.49

ViT decoder with STFT input 1.79 2.44 2.01 2.86

ViT-AE-iSTFT 1.81 2.54 2.07 2.92

Vanilla ViT-AE 1.72 2.81 2.19 3.11

LibriTTS Additive 1.73 2.84 2.21 3.77

Multiplicative 1.74 2.87 2.23 3.80

ViT-AE-iSTFT 1.81 2.49 2.05 2.95

Vanilla ViT-AE 1.76 2.86 2.24 3.15

AudioSet Additive 1.78 2.93 2.29 3.79

Multiplicative 1.79 2.95 2.30 3.82

ViT-AE-iSTFT 1.83 2.59 2.11 2.90

Vocoder Oracle 2.99 4.66 3.84 4.72

Clean 4.50 5.00 5.00 4.78

SOTA models in some metrics. However, speech-specialized pre-

trained models used in [16] are not reported to be beneficial for non-

speech tasks such as AudioSet classification. We leave the improve-

ment of ViT-AE’s objective scores to future work.

Finally, we evaluate the generalization ability by applying mod-

els trained or fine-tuned on Valentini’s dataset to the unseen DAPS

dataset (zero-shot condition), and report the mean scores of all 12

scenarios in Tab. 5. Contrary to Tab. 4, we found the pretrained

multiplicative ViT-AE outperforming UNIVERSE, indicating that

our system generalized better to unseen scenarios. While SGMSE+

is reported to have SOTA generalization ability [31], the multiplica-

tive ViT-AE pretrained on AudioSet achieved similar Csig and Covrl

scores, even if ViT-AE is not an SE-specialized method. As for the

pretrained mel-to-mel ViT-AE variations, all outperformed the from-

scratch ones. Moreover, the AudioSet pretraining outperformed the

LibriTTS one in all variations except the NISQA score for ViT-AE-

iSTFT, which implies that the diverse audio sources and recording

environments in AudioSet have been beneficial for generalization.

ViT-AE-iSTFT didn’t consistently benefit from pretraining, which

could have been caused by limitations mentioned in Sec. 3.2 and is

worth investigation in the future.

6. CONCLUSION

In pursuit of universal audio models, this paper extended audio MAE

from audio classification to speech enhancement (SE). SE was cho-

sen from among many restoration tasks due to its widely accepted

evaluation benchmark. The output features of pretrained audio en-

coders are known to be effective for SE tasks, but prior speech-

specialized encoder-only models usually require extra decoders to

become compatible with SE tasks, and involve complicated pretrain-

ing procedures or complex data augmentation. To address these is-

sues, audio MAE, i.e., ViT-AE with MAE pretraining, was explored.

Audio MAE simplifies the pretraining procedures, and enables the

ViT-AE to naturally learn mel-to-mel mapping that is compatible

with SE tasks. We proposed variations of ViT-AE to improve the SE

performance and unleash the power of pretraining. Comprehensive

evaluations and ablation studies demonstrate that MAE pretraining

is beneficial for SE tasks and help the ViT-AE to better generalize to

out-of-domain test data. We further found that large-scale noisy data

of general audio sources, rather than clean speech, are sufficiently

effective for pretraining. We leave the improvement of objective

metrics as our future work, as well as the in-depth exploration to

a broader range of restoration tasks with various sound sources . We

hope our findings here pave the way to the continued research on

universal audio models.
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