
Relative Liveness� From Intuition to Automated

Veri�cation
�

R� Negulescu J� A� Brzozowski

Department of Computer Science
University of Waterloo

Waterloo� Ontario� Canada N�L �G�

�radu�brzozo��maveric��uwaterloo�ca
ftp���cs�archive�uwaterloo�ca�cs�archive�CS��	�
��CS��	�
��ps�Z

Abstract� We point out de�ciencies of previous treatments of liveness� We de�ne a
new liveness condition in two forms� one based on �nite trace theory� and the other
on automata� We prove the equivalence of these two de�nitions� We also intro	
duce a safety condition and provide modular and hierarchical veri�cation theorems
for both safety and liveness� Finally� we present a veri�cation algorithm for liveness�

Index terms� Concurrent systems� deadlock� fairness� �nite automata� liveness�
safety� trace structures� veri�cation�

� Introduction

Motivation and scope
Formal veri�cation� especially if it can be automated� gains importance as designed
systems become more and more complex� Formal veri�cation is particularly impor	
tant for concurrent systems because non	deterministic interleavings of events can
generate considerable complexity�
The subject of this paper is the de�nition� analysis� and automatic veri�cation of

a liveness condition for
possibly asynchronous� digital circuits and other concurrent
systems� We view a concurrent system as a set of processes� where a process is a
dynamic system with a discrete state	space� Digital circuits� parallel programs� and
network protocols are examples of concurrent systems�
According to �LL
��� most formal reasoning about concurrent systems has been

concerned with two kinds of properties� safety and liveness� Intuitively� safety

�This research was supported by a grant and a scholarship from the Information Technology
Research Centre of Ontario and by Grant No� OGP������� from the Natural Sciences and
Engineering Research Council of Canada� An extended summary of this report was published as
�NB��	�

�

properties assert that �something bad does not happen� and liveness properties
assert that �something good eventually does happen� �LL
��� Hazards� invalid
outputs and invalid inputs are examples of safety faults� Deadlock and unfairness
are examples of liveness faults� In our view� another class are progress properties�
which assert that �something good does happen within a bounded time�� Deadlock

again� and livelock are examples of progress faults� In our view� livelock is a
progress fault but not a liveness fault� In a livelock situation� something good may
take an unbounded time to happen� nevertheless� it will eventually happen� Here
we do not consider livelock or other progress faults that do not violate the notion
of liveness described informally in the citation above�

State of the topic
De�ning a liveness condition has a major obstacle� In our view� a correctness
condition should be expressible in a model no more detailed than �common� repre	
sentations of concurrent systems� such as Petri nets� concurrent programs in some
language� or digital circuit schematics together with� say� relationships between the
logic levels of inputs and outputs for representing components� Otherwise� that
condition cannot be decided automatically from such common representations� be	
cause more information would be needed from the users� The major obstacle is
that such representations specify only the �nite executions
sequences of events� of
concurrent systems� while �nite executions are ambiguous for expressing liveness�
a fact that follows from the characterization of liveness in �AS���� More precisely�
two systems with di�erent liveness properties can have the same �nite executions�
Liveness properties are determined by the complete executions of a concurrent

system� i�e�� by the �nite or in�nite sequences of actions that represent the entire
operation of a system� i�e�� until it stops or until the �end of time�� The liveness
properties� or� equivalently� the complete executions are not explicitly represented
in a �common� model
such as the models we listed above�� For example� con	
sider a gate speci�ed by a boolean function� Such a gate is expected to eventually
produce an output transition� after the boolean function has changed value in re	
sponse to input transitions� However� if only the �nite executions are speci�ed� a
gate which may behave as above� or may block internally and fail to produce an
output transition� respects this speci�cation� because it has exactly the same �nite
executions as the non	blocking gate� Nevertheless� the blocking gate has strictly
more complete executions than the non	blocking gate� The non	blocking gate for	
bids complete executions that end with input transitions that should be eventually
followed by output transitions� the blocking gate permits such complete executions�
For another example� consider a mutual exclusion element which ensures that two
processes do not access the same resource at the same time� A fair mutual exclusion
element eventually grants the resource to each process that demands it� However�
an element that may grant the resource to each process� but may also grant it to
only one of the processes� would have the same �nite executions as the fair mutual
exclusion element�
As a result of the lack of modeling power of �nitary representations
which

specify only the �nite executions of a concurrent system� like the common repre	
sentations we listed above�� previous treatments of liveness have used more powerful
models of concurrent systems� There� the users have to specify the liveness prop	

�

erties of their systems� or� equivalently� the sets of complete executions of their
systems� We call such approaches user�directed �
User	directed approaches have a high degree of generality� because they allow

many types of liveness properties to be speci�ed� however� they also have important
de�ciencies� From a practical point of view� such approaches are hard to use� The
identi�cation and speci�cation of liveness properties and�or in�nite executions is
tedious and error	prone� and necessitates familiarity with representations of in�	
nite sequences� such as �	automata or temporal logics� From a theoretical point of
view� user	directed approaches do not decide liveness on the basis of �common� rep	
resentations of concurrent systems
i�e�� �nitary representations like those we listed
above�� Users have to specify explicitly the liveness properties� or� equivalently� the
complete executions� in addition to a �common� representation of their systems� In
e�ect� the users are required to formalize their own notions of deadlock� starvation�
etc�� by specifying these liveness properties� Most importantly� from both points
of view� a user	directed approach provides no indication of appropriateness and
completeness of a speci�cation� In other words� such approaches do not address
the problems whether the liveness requirements� speci�ed by the users� are neces	
sary� and whether they are su�cient to forbid� say� the danger of starvation in a
particular implementation�
This stumbling point is also mentioned in �CMP
����

Our approach
Here we resolve the ambiguity of �nite	execution models by taking a di�erent ap	
proach� The constraints of a concurrent system are the properties known to be
satis�ed� and the requirements are the properties that need to be satis�ed� We
noticed that� in �common� models of concurrent systems� the liveness constraints
are not explicitly speci�ed� The reason for such omissions may be simply that live	
ness constraints do not need to be speci�ed� because they are implicitly assumed �
Practical boolean gates are not supposed to deadlock internally� practical mutual
exclusion elements are supposed to be fair� and practical speci�cations� either global
or intermediate� are not supposed to allow deadlock or starvation� We try to model
these implicitly assumed liveness constraints by assigning augmented semantics to
�nitary representations� we relate a unique set of liveness properties to a �nitary
representation�
In other words� we note that� in many practical concurrent systems� the liveness

constraints are related to the �nite executions and to the sets of ports in a unique
manner� We formalize this relationship by assigning complete execution semantics
to a �nitary representation� in addition to the usual� �nite	execution semantics of
such a representation� In Section � we argue this semantics holds at least for a
large class of asynchronous circuits�
On the other hand� we note that the liveness requirements for a concurrent sys	

tem may vary considerably� Nevertheless� we also relate the liveness requirements
for a given system to �nitary speci�cations by our augmented semantics� This way�
we obtain a relative liveness condition� i�e�� a condition that compares an implemen	
tation to a speci�cation� This condition is determined by �nitary representations
of the implementation and the speci�cation� As a result� our condition does not
have the de�ciencies of a user	directed approach we have mentioned above� From a
practical point of view� �nite automaton formalisms are more tractable than� say�

�

�	automata� and a circuit or a concurrent program can be automatically trans	
lated into a network of �nite automata� without extra input from the users� From
a theoretical point of view� our condition is directly determined by �common� repre	
sentation of concurrent systems� Finally� regarding the problem of appropriateness
and completeness of speci�ed liveness properties� we cannot guarantee that our
default liveness properties are indeed what the users want to specify� nevertheless�
by our augmented semantics we at least suggest what the necessary and su�cient
liveness properties might be� by analogy with the systems we have considered�
Liveness properties involve complete executions� which can be �nite or in�nite�

The liveness constraints of our augmented semantics admit a uni�ed form for �nite
and in�nite sequences� which we name strong liveness�
Apart from the study of examples� we support our liveness condition by proving

it satis�es certain desirable algebraic properties� These properties are important as
tests of appropriateness of a condition and also constitute a technique for modular
and hierarchical veri�cation� as will be discussed later�
We derive a graph	theoretic form for our liveness condition� we show that it

is equivalent to the language	theoretic form� and we use it for additional intuitive
examination of our liveness condition and for deriving a decision algorithm�
We introduce a new condition for safety� Our safety condition agrees with

previous conditions under certain connectivity restrictions� but� for the �rst time�
has no restrictions on how the ports of the involved processes should be connected�
We also prove su�cient theorems for modular and hierarchical veri�cation of safety�
without any connectivity restrictions�

Previous work
Some prominent treatments of liveness are �AS���� �LT���� �Jo���� and �Di�
�� In
�Jo��� and �Di�
�� very general frameworks for reasoning about liveness have been
proposed� along with thorough algebraic treatments� However� those approaches
are user	directed as described above� In �AS���� an exhaustive characterization of
liveness properties has been proposed� However� nothing is said about which of
the properties in the class de�ned by �AS��� can be used for a liveness condition�
The liveness condition in �LT��� also provides important insights� However� that
condition does not cover some common fairness �aws
see Section ���
Two elegant models which capture progress properties based on �nite traces�

and have careful algebraic treatments� have been proposed in �Jos
�� and �Ve
���
However� of the liveness faults� �Ve
�� treats only global deadlocks� where every
process is blocked
no process has to perform an output action� but some process
demands an input action� For simplicity� the treatment in �Jos
�� does not model
processes� such as clocks and ring oscillators� that may never stop in a correct
operation� and also does not deal with fairness�
CCS �Mi�
� and CSP �Ho��� are two powerful high	level models of concurrent

systems� However� �LT��� lists several problems with these formalisms when they
are used to de�ne liveness� Also� in CCS� an action between a sender and a receiver
can occur only if both processes allow it� which may be inconvenient for modeling
low	level communication
where an action can occur even if the receiver is not
ready� producing a fault�� According to �Di�
�� CSP has a similar inconvenience�

�

Contents and form
This paper is structured as follows� In Section � we de�ne our basic model� which
is closely related to trace theories like those of �Sn���� �Ud���� �Eb���� and �Ve
���
In Section �� we discuss a general pattern and some desirable properties for modu	
lar and hierarchical veri�cation of correctness conditions� In Section �� we discuss
correctness conditions other than liveness that are needed as restrictions for our
liveness condition� These conditions extend and simplify other conditions in trace
theory� In Section � we introduce our liveness condition� In Section � we introduce
an automaton model for concurrent systems and relate it to the trace structure
model by a semantic mapping� We also de�ne a parallel composition on automata
and relate it to its trace	structure counterpart� In Section � we state a graph	
theoretic form for our liveness condition and relate it to the language	theoretic
liveness condition of Section �� In Section � we consider and criticize some varia	
tions to our liveness condition� and we point out some shortcomings of the liveness
condition in �LT��� and of another condition in the literature� In our basic au	
tomaton model� we do not model certain cases of non	determinism� for simplicity
and because we consider them to be rather marginal� in Section
� we extend the
graph	theoretic form of our condition to capture these cases� too� at the cost of
additional complexity� In Section ��� we present and analyze an algorithm for the
veri�cation of our liveness condition� Section �� concludes the paper�
Appendix A contains proofs of the results in Sections �� �� and �
the results

that involve the trace structure model only�� Appendix B contains proofs of the
results in Sections � to �
the results that also involve the automaton model�� The
results regarding the algorithm are given in Section ���
We use double quotes � � for citations and single quotes � � for some informal

or unde�ned terms�

� Trace Structures

Preliminaries
We let U be a set� called the symbol universe� An alphabet is a subset of U � A
word over an alphabet � is a �nite sequence of symbols from �� Concatenation of
two words is denoted by their juxtaposition� The empty word is �� For two words
s and t� we write s � t if s is a pre�x of t� For example� aba � abaa� For word
t and symbol a� jtja denotes the number of occurrences of a in t� For example�
jabccbjb ��
A language is a set of words� We use the following notation for languages� pref

is pre�x	closure
the set of all pre�xes of the words in a language�� � is Kleene
closure� � is union� � or juxtaposition is concatenation� symbol x can represent
language fxg� and alphabet � can represent the language of single	symbol words
with symbols from �� A language is pre�x�closed if it is equal to its pre�x	closure�

The trace structure model
A trace structure is a triple P hiP�oP� lgP i of two disjoint alphabets iP and
oP and a pre�x	closed� non	empty language lgP over iP �oP � The words of lgP
are called traces of P � The alphabet of P � denoted by aP � is iP �oP � The symbols

�

in aP are called actions of P �
If symbol a is in oP � P is a source for a� if a � iP � P is a sink for a� if a is not

in the alphabet of P � P is unrelated to a�
A trace structure P can represent a process in the following manner� Symbols

in aP stand for ports� Symbols in oP � called outputs� are ports controlled by the
process� they include the �internal� ports and the genuine output ports� Symbols
in iP � called inputs� represent ports controlled by the environment� Traces in
lgP stand for �nite sequences of events that may have occurred in the modeled
process up to a certain time�
This interpretation justi�es the restriction that lgP
is pre�x	closed��
To illustrate how we represent processes by trace structures� consider a xor

gate with inputs a and b and output c� The actions are the signals on the gate ter	
minals� The traces are all possible sequences of signal transitions� where the signal
transitions are denoted by the symbols associated to the terminals on which they
occur� A transition on terminal a is denoted by a� The language is derived using
the observation that there must be an odd number of input transitions between
any two consecutive transitions on c and before the �rst transition on c� if any��

The language is thus pref

a � b�
a � b � c����
Note that� if a process has �internal ports�
e�g�� internal signals� in the case

of a circuit�� we treat those ports as outputs� since they are controlled by the
process� just like the genuine� external� outputs� Several authors
e�g�� �Eb
��� allow
the input and output alphabets of a trace structure to overlap� the disjointness
condition that we use is intended to be consistent with the particular intuitive
meaning that we assign to input and output alphabets� For example� if the xor
gate above is connected to a second xor gate with inputs c and d and output e�
the resulting circuit has inputs a� b and d and outputs c and e� In �Eb
��� c would
be considered both an input and an output� but here we consider it just an output
because it is controlled by the circuit�
We do not require processes to accept any input at any time� For example�

consider the asynchronous merge element
a �hazard	intolerant� version of a xor��
The environment must wait for a transition on c to occur between any two input
transitions� The trace structure of merge is hfa� bg� fcg� pref

a � b� c��i� Word
acab� which is not in the language� causes a hazard because� after trace aca� the
environment should wait for another transition on c and is not allowed to produce
a b immediately�

Parallel composition
A network is a set of trace structures� Note that there are no restrictions on the
alphabets of the trace structures in a network�
The projection of a word t on an alphabet � is a word t�� obtained by deleting

from t all symbols which are not in �� For word t� trace structure P � and network
N � we denote by tP the projection of t on the alphabet of P � i�e�� tP t�aP � and
we denote by tN the projection of t on the union of the alphabets of the trace
structures in N � i�e�� tN t�
�Q�NaQ�� Note that tP tfPg�

�This is only one of many possible behaviors one can associate with a xor gate� It is the
unrestricted behavior �BS��	 in a
single�winner� model
GSW�� assuming inertial delays�

�

The parallel composition of trace structures is a binary operation k such that�

i
PkQ�
iP � iQ� �
oP � oQ��
o
PkQ� oP � oQ� and
lg
PkQ� ft �
aP � aQ�� j tP � lgP � tQ � lgQg�

The result of parallel composition is called a composite� Note that there are no
restrictions on the composed processes� Similar operators have been used before in
trace theory
e�g�� in �Eb�����
Parallel composition is naturally extended to arbitrary networks� The composite

of a network N is a trace structure kN such that�

i kN
S
P�N iP �

S
P�N oP�

okN
S
P�N oP� and

lg kN ft �

S
P�N aP �� j 	 P � N� tP � lgPg�

Informally� the composite represents a process whose behavior is compatible with all
composed processes� For example� consider again a merge hfa� bg� fcg� pref

a �
b� c��i and a wire hfcg� fdg� pref
c d��i� connected at the output of the merge�
Their composite is hfa� bg� fc� dg� pref

a � b�
c
da � db � ad � bd����i� Symbol
c is an output for the composite because it is driven by the device
for us� it does
not matter that c is also an input to the wire component�� Trace t acdbcdac

appears in the language of the composite because t�fa� b� cg acbcac is in the
language of the merge and t�fc� dg cdcdc is in the language of the wire� Trace
acadcd appears in the language of the composite because it does not violate the
speci�cation of either element� However� if the second c occurred before the �rst d�
a hazard would occur� violating the speci�cation of the wire� Thus acacdd is not
in the language� The network of concurrent processes instantiated by this circuit
is not �safe�
see Section ��� still� its composite is de�ned�
Parallel composition is well	de�ned� The input and output alphabets of the

composite are disjoint� and the language of the composite is pre�x	closed� Also�
this operation has the following algebraic properties�

Proposition � Parallel composition of trace structures is idempotent� commuta�

tive� and associative�

All the proofs are given in the appendices�

Re�ection
Another operation of interest on trace structures is re�ection� The re�ection of
a trace structure P is a trace structure P such that iP oP� oP iP � and
lgP lgP � Informally� P is intended to model the �worst� environment where P
can function correctly�
The re�ection of network N is a network fkNg�

�

� Common Characteristics of Correctness Condi�

tions

A pattern for correctness conditions
The correctness conditions in this paper have the format S v� I� where S and I

are networks and � is a correctness criterion� Such a condition is read I realizes S

with �� S is called the speci�cation and I the implementation� We sometimes write
S v�� I instead of S v� I � S v� I� Some of the conditions in this paper are also
de�ned as predicates over networks� For such a predicate �� we de�ne S v� I

�
I �S�� Informally� this de�nition means that I realizes S with � if I satis�es the
correctness concern � when operating in the worst environment of S�

Structured veri�cation
The modular and hierarchical structure of concurrent systems can be used to re	
duce the computational costs of veri�cation� To allow for modular and hierarchical
veri�cation� a realization relationship v� needs to satisfy only the following two
properties�

��Compatibility For networks M � N � and O such that M v� N � we have

M �O v� N �O�

Note that O is arbitrary� Informally� this property says that� if N is at least as
good as M � then N performs at least as well as M even in the context of O� For a
system that breaks up into modules� each module having its own implementation�
�	compatibility permits one to verify the modules independently� one at a time�

Transitivity For networks M � N � and O such that M v� N and N v� O� we

have M v� O�

For a system that admits di�erent levels of abstraction� transitivity permits one
to verify pairs of consecutive levels independently�
For example� suppose we need to verify that fSg v� fU�R� V�Wg� Further	

more� suppose the system fU�R� V�Wg breaks up into modules such that it is
convenient to check that fSg v� fP�Qg� fPg v� fU�Rg� and fQg v� fV�Wg�
where trace structures P and Q represent some intermediate speci�cations� By
�	compatibility� we have fPg v� fU�Rg � fP�Qg v� fU�R�Qg and fQg v�

fV�Wg � fU�R�Qg v� fU�R� V�Wg� By transitivity� it follows that fP�Qg v�

fU�R� V�Wg� By transitivity again� since fSg v� fP�Qg� we obtain the desired
result fSg v� fU�R� V�Wg�
Note that� a priori� we impose no restrictions on the alphabets of S� P � Q� U �

R� V � and W � As will be discussed later� our condition for liveness still has some
connectivity restrictions� but our condition for safety has no such restrictions� For
both our conditions� it is possible that speci�cations and implementations have
di�erent alphabets� For example� the intermediate speci�cation P from the example
above could have fewer symbols than the implementation part fU�Rg� in order to
abstract that part for the next level of veri�cation
S compared to fP�Qg��

�

As a result� we avoid the need for projection or hiding operators on processes
for performing hierarchical and modular veri�cation� Since we do not restrict the
alphabets of the speci�cation and the implementation� we do not need to get these
alphabets to match by a projection�
For comparison� in �Di�
� a speci�cation and
an implementation have to have the same inputs and the same outputs�� We do
not care how the intermediate speci�cation P is constructed or guessed� it might
be the result of a hiding or projection operator� We do not de�ne such an operator�
because it does not preserve the liveness properties of our processes� still� such an
operator can be used in our veri�cation method as described above�
For another example� suppose the system fU�R� V�Wg above breaks up into

modules such that it is convenient to check that fSg v� fP�Q�R� Tg� fP�Qg v�

fUg� and fTg v� fV�Wg� where trace structures P � Q� and T represent some inter	
mediate speci�cations� By �	compatibility� we have fP�Qg v� fUg � fP�Q�R� Tg
v� fU�R� Tg and fTg v� fV�Wg � fU�R� Tg v� fU�R� V�Wg� By transitivity�
it follows that fP�Q�R� Tg v� fU�R� V�Wg� By transitivity again� since fSg v�

fP�Q�R� Tg� we obtain the desired result fSg v� fU�R� V�Wg�
These properties re�ne the �separation� and �substitution� theorems in �Eb
���

� Connectivity and Safety Conditions

Motivation
We have imposed no restrictions on the operands of our parallel composition� but
we need to introduce explicit restrictions on the networks on which we de�ne a
concept of liveness� Fortunately� however� these restrictions are themselves neces	
sary correctness conditions� a connectivity condition and a safety condition� These
conditions are presented next�
The condition for safety is also interesting by itself because it is intended to

cover all safety concerns� On the other hand� we do not do a thorough study of
connectivity concerns�

Connectivity
Previous trace models contain several connectivity conditions
�alphabet condi	
tions��� We do not adopt all of them because we are mainly interested in �minimal�
connectivity conditions that ensure the applicability of our liveness condition�

De�nition � Network N is output	consistent� written �
N �� if

	 P�Q � N� oP � oQ ��

This requirement is necessary for digital circuits� If the outputs of two circuit
parts were driving the same circuit node with di�erent voltages� a short would
occur� Exceptions
such as wired	logic circuits or tri	state outputs� can be modeled
by introducing separate processes for complex connectors
such as buses�� this way�
the element outputs that could be tied together become tied only to the inputs of
the complex connector and to no outputs� thus respecting output consistency�
The output consistency condition is not compatible with hierarchical and mod	

ular veri�cation� Nevertheless� it can be checked easily in a direct manner�

Another connectivity condition is that no inputs may be left dangling� i�e�� all
inputs of all processes in a concurrent system are either outputs of other processes in
the system or �external� inputs of the system
outputs of the �environment process���
We call this condition input control� We do not treat input control formally because
we do not need it as a restriction for our liveness condition� Nevertheless� we
mention input control because we refer to it in later examples�

Safety
Safety has been extensively studied in trace theory� Conditions covering safety
concerns have been proposed� for example� in �Sn��� Ud��� Eb��� Di�
� Eb
��
Jos
�� GBMN
�� Ve
��� Our condition for safety agrees with some of these previous
conditions under appropriate connectivity restrictions� and we discuss this issue
in more detail later in this section� However� all these previous conditions have
restrictions
either explicit or hidden in the model� on the ports of the processes
they can compare or connect� and on the theorems for structured veri�cation� We
have eliminated all such restrictions from the condition itself and its structured
veri�cation theorems� The fact that connectivity restrictions are not needed for
the treatment of safety was surprising� particularly in Theorem �� which refers to
modular veri�cation
see below��

De�nition � Network N is safe� written �
N �� if� for all words t in U� such that

	 P � N� tP � lgP �
iP � f�g�

we have

tN � lg kN�

For networks S and I we say that I realizes S with safety� written S v� I� if

�
S � I��

For an intuitive explanation� we refer to the �such that� part in the de�nition of
safety as the precondition and to the �we have� part as the postcondition� Informally�
our safety condition demands that� whenever an event is allowed to happen by all
its sources in N � that event must be allowed to happen by all its sinks in N � To
see that� consider a situation where the safety condition may be violated� Let
t ua be such that uN is in lg kN and symbol a is in U � For every source P
of a in N � the precondition says that
ua�P is in lgP � because a cannot be in
lgP � iP � since iP and oP are disjoint� For any sink P of a� the precondition
is empty because uP � lgP � For any P unrelated to a� the precondition is also
empty because
ua�P uP � lgP � In words� the precondition only says that a
is allowed to happen after u by all its sources P � Our safety condition demands
that� if the precondition is satis�ed� the postcondition must also be satis�ed� The
postcondition requires that� for every P � N �
ua�P � lgP � If P is a source for a�
the postcondition is a trivial consequence of the precondition� If P is unrelated to
a� the postcondition is empty� because
ua�P uP � lgP � Thus� the postcondition
only requires that a is allowed to happen after u by all its sinks P �

��

P
a

Q�

Q�

Q�

b

c

a

a�

P
a

Q�

Q�

Q�

b

c

a

b�

wire
ba

wire
ba

xor
e

c

d

c�

Figure �� Examples for the safety condition�

Safety in systems with �normal	 connectivity conditions
For a �rst example� consider a speci�cation containing just a clock P h�� fag� a�i
and an implementation containing three elements� a clock Q� h�� fbg� b�i�
a merge Q� hfb� cg� fag�pref

b � c�a��i� and a link Q� h�� fcg� f�gi from
ground to c�
The link to ground ensures there can be no transition on c�� See
Figure �
a��
Boxes represent processes� incoming arrows represent inputs and
outgoing arrows represent outputs�� We show that the network fQ�� Q�� Q�g does
not realize fPg with safety� For consider trace t bb� We check that t satis�es
the safety precondition� tQ�

 bb � lgQ�� tQ�
 bb � lgQ� � iQ�� tQ�

 � � lgQ��
and tP � � lgP � We check that t does not satisfy the safety postcondition�
tQ�

 bb
� lgQ� � tfP�Q��Q��Q�g

� lg kfP�Q�� Q�� Q�g� Consequently� t causes a

safety violation
a �hazard� for the merge� and fPg
v� fQ�� Q�� Q�g�
In the following example� we modify the previous example to achieve safety� An

i�wire
a �hazard	intolerant� inverter� can be represented by hfag� fbg� pref
ba��i�
In the implementation in the previous example� we replace the clock Q� by
an element Q� representing the i�wire above� See Figure �
b�� We show that
fQ�� Q�� Q�g realizes fPg with safety� First� we characterize the languages of the
elements in terms of numbers of occurrences of certain actions in traces�

lgQ� ft � fa� b� cg� j 	 u � t� juja � jujb ! jujc � juja ! �g
lgQ� ft � fcg� j 	 u � t� jujc �g f�g
lgQ� ft � fa� bg� j 	 u � t� jujb � � � juja � jujbg

Second� we use the safety precondition to deduce relationships on the numbers of

��

occurrences of certain actions in traces�

tQ�
� lgQ� �
iQ� � f�g� � 	 u � t� juja � jujb ! jujc
��

tQ�
� lgQ� �
iQ� � f�g� � 	 u � t� jujc �
��

tQ�
� lgQ� �
iQ� � f�g� � 	 u � t� jujb � juja ! �
��

Since iP aP fag and lgP fag�� in this example tP � lgP �
iP � f�g� is
an empty condition�� Finally� we deduce the safety postcondition�

�� �
�� � 	 u � t� jujb ! jujc jujb � juja ! � � tQ�
� lgQ�

�� �
�� � 	 u � t� juja � jujb ! jujc jujb � tQ�
� lgQ�

�� � tQ�
� lgQ�

Consequently� fPg v� fQ�� Q�� Q�g�
For the case with no dangling inputs and no connected outputs� our safety con	

dition agrees with �absence of computation interference��
We refer the reader to
the version in �Eb
�� for comparison purposes� but similar conditions have been
de�ned at least in �Sn��� Ud��� Eb��� Ve
���� To see that� consider the following
informal reasoning� Our condition says that� whenever an event is allowed to hap	
pen by all its sources in network N � that event must be allowed to happen by all

its sinks in N � Intuitively� �absence of computation interference� demands that�
whenever an event is allowed to happen by some of its sources in N � that event
must be allowed to happen by all other sinks or sources of that event in N
oth	
erwise� �computation interference� would occur�� If there are no dangling inputs
and no connected outputs� every action has exactly one source� In this case� �some
of its sources� �all its sources� and �all its sinks� �all other sinks or sources
of that event�
there are no other sources in this case� because there is only one
source of that event��

Safety in systems with dangling inputs
Systems with dangling inputs may be regarded as �incorrect�� but they may be �safe��
Some examples are certain systems where the implementation has redundant ele	
ments that do not a�ect the speci�ed outputs� For instance� consider the wire rep	
resented by hfag� fbg� pref
ab��i and a xor represented by hfc� dg� feg� pref

c �
d�
c � d � e���i� Consider S fwireg and I fwire�xorg� See Figure �
c��
Intuitively� note that the xor is completely disconnected from the wire in the
implementation� and thus the implementation behaves irreproachably with re	
spect to the speci�cation�
Since the actions c� d� e are not in the alphabet of
the speci�cation� their events are unspeci�ed�� Formally� let t be a trace such
that twire � lgwire �
iwire � f�g�� twire � lgwire �
iwire � f�g� and txor �
lgxor �
ixor � f�g�� One veri�es that� since iwire � owire �� we have
twire � lgwire and t

wire
� lgwire� and that lgxor �
ixor � f�g� � lgxor�

therefore� tfwire�wire�xorg � lg fwire�wire�xorg� This proves that S v� I� in
agreement with our intuition�
In the previous example� we have chosen xor rather than merge because it can

accept arbitrary input transitions
although it may not respond to all of them�� If
merge were used instead� safety violations could occur on the inputs of merge�

Recall that merge is the �hazard	intolerant� version of a xor��

��

In the case with dangling inputs� our safety condition imposes a �receptiveness�
requirement on the set of traces of a network with respect to the set of dangling
inputs� In a safe network� an event on a dangling input port should be acceptable
at any time by the sink processes of that port�
The events on ports which are
not dangling inputs are treated just like the events from the case with normal
connectivity conditions��
Receptiveness has been used previously in �Di�
� and �Jos
��� However� in both

�Di�
� and �Jos
��� receptiveness is used as a model restriction on processes rather
than a correctness condition on networks� Moreover� in �Di�
� receptiveness is a
constraint on the �set of possible traces�� rather than the �set of successful traces��
and thus it has a di�erent meaning than here� Nevertheless� the receptiveness
requirement imposed by our safety condition upon the dangling inputs is similar in
meaning to the receptiveness constraint in �Jos
��� if the whole network is viewed
as a single process�
To point out the di�erence between our condition and absence of computation

interference in the case with dangling inputs� consider the following� First� absence
of computation interference is not de�ned for dangling inputs� More importantly�
if that condition were extended by removing the restriction that no inputs should
be dangling� absence of computation interference would be trivially satis�ed on
dangling inputs� No �computation interference� can occur on a dangling input
port� since there is no source process in the network to generate an event on that
port�

Safety in systems with connected outputs
It was interesting to note what the safety condition says about the situations where
output ports are shared� Such situations are normally disallowed and we will not
illustrate them by an example� Nevertheless� if inputs are connected� our safety
condition can be understood as follows� If an event is not allowed by a source
process� that event does not happen and does not cause a safety fault� even if that
event is allowed by another source process� Note the disagreement with absence of
computation interference in this case�

Structured veri�cation of safety
We now state the �	compatibility and transitivity theorems for safety�

Theorem � For networks M � N � and O such that M v� N � we have M �O v�

N �O�

Theorem � For networks M � N � and O such that M v� N and N v� O� we have

M v� O�

Proofs are given in Appendix A�
Note that Theorems � and � assume no connectivity restrictions� This absence

of restrictions was surprising� especially for Theorem �� For example� O may have
common symbols withM and N � even common output symbols� and these common
symbols do not need to be the same for M and N � For example� O could share
output port a with N and input port b with M �

��

As discussed in Section �� the absence of connectivity restrictions in these the	
orems permit one to perform hierarchical and modular veri�cation without using a
hiding or projection operator� Nevertheless� such an operator can still be used as
a constructor for intermediate speci�cations to be veri�ed�

� Liveness

Preliminaries
For alphabet � � U � let �� be the set of all in�nite sequences of symbols from
�� and �� the set of all �nite or in�nite sequences of symbols from �� We have
�� �� ���� Since we do not use other sequences� we refer to
�nite or in�nite�
sequences of symbols from U as just sequences� Concatenation of a
�nite� word
and a
possibly in�nite� sequence of symbols is denoted by their juxtaposition� For
word u� we denote by u� the in�nite sequence uuu � � �� For language L� we denote
by L� the set of sequences obtained by concatenating in�nitely many words from L�
For example� fab� acg� fe � N� fa� b� cg j 	 i � N�
e�i a � e�i�� � fb� cg�g�
where N is the set of natural numbers f�� �� �� � � �g� For sequences t and e� we write
t � e if t is a �nite pre�x of e� that is� any pre�x of e except e itself� if e is in�nite�
For example� if e abbb � � �� then e ab� and abb � e� also� � � e for every
sequence e� Since we do not use in�nite pre�xes at all� we refer to �nite pre�xes as
just pre�xes� We extend the projection operation from words in the obvious way�
For sequence e and alphabet �� we denote by e�� the projection of e on �� For
sequence e� trace structure P � and network N � we use the notation eP e�aP and
eN e�
�Q�NaQ�� We have eP efPg�

Limits
A limit of a language L is a sequence e such that every pre�x of e is in L� The
limit set of L is limL fe � �� j 	 t � e� t � Lg� A limit of trace structure P
is a limit of lgP � the limit set of P is limP limlgP � For example� consider a
wire hfag� fbg� pref
ab��i� the limit set is pref
ab�� �
ab��� Note that limits
can be �nite� and that the �nite limits of a trace structure are precisely its traces�

Any pre�x of a trace in a trace structure P is itself a trace of P � thus any trace
of P is a �nite limit of P � Also� any �nite limit of P is a �nite pre�x of itself and
thus must be in lgP � by the de�nition of limits�� Thus� we have lgP � limP �
The following proposition computes the limits of composites and re�ections�

Proposition � For trace structures P and Q�

a� lim
PkQ� fe �
aP � aQ�� j eP � limP � eQ � limQg

b� limP limP�

Strong liveness
Informally speaking� the complete executions of a concurrent system are
�nite or
in�nite� sequences of events that can occur until the �end of time�� In contrast to
that� the partial executions are
�nite� sequences that can occur within a bounded
time�
Trying to formalize a notion of complete executions of a concurrent system� we

have obtained a generic property that uni�es a �strong fairness� property of in�nite

��

e
a

a a

a

L

a�

ea a a

b�

e
a

L

c�

Figure �� Recurrently enabled and �red symbols�

sequences
e�g�� see �Fr���� with a �quiescence� property of �nite sequences
e�g��
see �Jo����� We call this property strong liveness� The property is formally the
same for in�nite and �nite sequences� but� for clarity� the intuitive explanations are
given separately for the two cases�
Symbol a is recurrently enabled by sequence e with respect to language L if

	 t � e� � u �
tu � e � tua � L�� The set of recurrently enabled symbols of
e with respect to L is denoted by renLe� Finite sequence t immediately enables

a symbol a in language L if ta � L� Note that� if e is in�nite� the recurrently
enabled symbols of e with respect to L are those symbols that are immediately
enabled in L by in�nitely many pre�xes of e� See Figure �
a�� If e is �nite� the
recurrently enabled symbols of e with respect to L are the symbols immediately
enabled by e in L� See Figure �
c�� For example� renpref��ab��c�
ab�

� fa� b� cg
and renpref��ab��c�ab fa� cg�
Symbol a is �red by sequence e if a appears in e at least once� Symbol a is

recurrently �red by e if 	 t � e� � u � tua � e� The set of recurrently �red symbols of
e is denoted by r� e� Note that the recurrently �red symbols are exactly the symbols
�red in�nitely often� See Figure �
b�� Thus� a �nite sequence has no recurrently
�red symbols� i�e�� for �nite sequence e� r� e �� For example� r�ac
ab�� fa� bg
and r�aba ��
For alphabet � and language L� limit e of L is strongly live with respect to �

and L if e recurrently �res all symbols from � that e recurrently enables in L� i�e��
if renLe � � � r� e�
Limit e of trace structure P is an output trap of P if e is strongly live with

respect to oP and lgP � The set of output traps of P is denoted by otpP �
Note
that otpP � limP � and that the set of output traps of a trace structure is uniquely
determined by its language and alphabets�� Output traps formalize our idea of
�reasonable� or �live� complete executions of a process� For an intuitive picture�
consider that the execution point of a system follows limit e� The recurrently
enabled output actions can be viewed as exerting a pressure to be �red by the
process� that pressure is relieved for recurrently �red actions only� If an output
action a is recurrently enabled but is not recurrently �red by e� the pressure builds
up and e is not complete because an a event is due to be �red by the process�

��

For example� consider a selector hfag� fb� cg� pref
a
b � c���i
upon request
a� it responds with either b or c� taking a choice�� The set of output traps of this
selector is
a
b � c��� � f e � fab� acg� j e �res b in�nitely many times and e

�res c in�nitely many times g� The �nite limits from
a
b � c��� are output traps
because they do not immediately enable any output action� The in�nite limits that
�re both b and c in�nitely many times are output traps because b and c are the only
outputs and are recurrently �red� The remaining �nite limits� those in
a
b� c���a�
are not output traps because they immediately enable b and c� The remaining
in�nite limits are not output traps because they cease to �re one of the outputs
after some �nite pre�x� but they recurrently enable both outputs� Intuitively� the
remaining in�nite limits �owe� an output event and the remaining in�nite limits are
�unfair� to either b or c�

Our liveness condition

De�nition � For networks S and I� we write S v� I if�

	 e � limk
S � I��

	 P � I� eP � otpP � �
eS � otpkS���

For networks S and I such that output consistency and safety are satis�ed� i�e��

such that S v�� I� we say that I realizes S with liveness if S v� I�

Informally speaking� we consider that liveness violations are caused by limits
that are �not live� for the speci�cation� but are �live�
"� for the implementation� The
fact that sequences causing liveness faults need to be live for the implementation
may seem counterintuitive� and is an important insight� liveness faults can be
caused only by executions that can be generated by the implementation�

Examples of common liveness faults
To illustrate our liveness condition� we look at some of the possible liveness faults�
We try to keep our examples very simple� so that we can study more of them� In
addition to the examples in this section� there are several examples for the graph	
theoretic form of our condition
see Sections � and ���
Unfairness is basically a type of fault where one or more options of a speci�ed

choice is blocked forever� For an example of unfairness� consider a speci�cation
containing just a selector hfag� fb� cg� pref
a
b � c���i and an implementation
containing just P hfag� fb� cg� pref
ab��i� Since the implementation element
never issues a c� it is unfair for this speci�cation� Our liveness condition detects
this �aw� because the sequence e
ab�� is in limk
S � I�� eP is in otpP � but
eselector is not in otp selector�
A clock can ��ood� the limits of a system with its output events� but that does

not necessarily change the liveness properties of the system� Consider a slight mod	
i�cation of the example above� where the speci�cation contains just a selector
and the implementation contains two elements� P hfag� fb� cg� pref
ab��i again
and a clock h�� ffg� f�i� See Figure �
a�� Since this implementation never issues
a c� it is unfair for this speci�cation� Our liveness condition detects this �aw as
follows� Let e
afb�� � We have that e is in limk
S � I�� eP
ab�

� is in otpP �
and eclock f� is in otpclock� but eselector
ab�

� is not in otp selector�
Hence� e violates our liveness condition� and� by that� the �aw is detected�

��

selec�

tor

a

b

c
P

a

b

c

clock
f

a�

wire
ba selec�

tor

a

b

c

b�

wire
ba selec�

tor

a

b

c

clock
f

c�

wire
ba

clock
f

selec�

tor

a

b

c

clock
f

d�

Figure �� Examples of common liveness faults�

To forbid unfairness� is it su�cient to demand that the implementation be
capable of producing every trace of the speci�cation# The answer is no� and we
produce a �counterexample� by a slight modi�cation of the example above� Consider
a speci�cation containing just a selector� and an implementation containing just
Q hfag� fb� c� g� hg� pref
ag

b � c�a�� � ah
ba���i� After its �rst input event�
Q decides whether to behave exactly like a selector or to �be unfair�� like P
in the example above� The choices of that decision are represented by g and h�

Recall that� for us� internal actions are the same as output actions because they
are all driven by the device� Hence� g and h are in the output set� In formalisms
with internal actions� g and h should be internal� With this modi�cation� the
present example can be used as a �counterexample� in a model with internal symbols�
too�� Hence� intuitively� this implementation has a danger of unfairness for this
speci�cation� This �aw is detected by our liveness condition� The composite of the
speci�cation and implementation elements is precisely Q� The sequence ahb
ab��

is a limit of Q� and is an output trap of the implementation� but its projection on
the speci�cation alphabet is not an output trap of the speci�cation� However� this
implementation satis�es the capability condition described above� In general� one
can dodge the capability condition above by exhibiting implementations that can
be fair but can also be unfair� Such �aws would pass the test of capability� but
violate our liveness condition�
To illustrate deadlock	detection by our condition� consider the following exam	

ple� Similar examples have been indicated previously in trace theory as limitations

��

of models that address safety concerns only
see for instance Example ����� in
�Ve
���� Consider a speci�cation containing just a wire hfag� fbg� pref
ab��i and
an implementation containing just a selector hfag� fb� cg� pref
a
b � c���i� See
Figure �
b�� After an a� the selector may choose c and block� while� at the
�interface� of the speci�cation
actions a and b� no c� it seems that the device has
received an a and then has blocked� Thus� the implementation has a danger of dead	
lock� Our liveness condition detects this fault� Sequence e ac is in limk
S � I��
eselector ac is in otp selector� but ewire a is not in otpwire because word
a immediately enables output b�
A point of view which we reject is that deadlock can occur only where all

processes in a system are blocked� i�e�� none of them has to produce an output
action�
See for instance �Ve
���� Consider a speci�cation containing just a wire
hfag� fbg� pref
ab��i and an implementation containing two elements� a selector
hfag� fb� cg� pref
a
b� c���i� and a clock h�� ffg� f�i� See Figure �
c�� Without
the clock� this realization has deadlock
see the previous example�� Intuitively�
introducing a clock which does not interfere in any way with the rest of the system
can neither repair nor change the nature of the fault� Although the clock cannot
be blocked� the system deadlocks� Formally� our liveness condition also detects this
�aw and declares it a violation of liveness� Sequence e acf� is in limk
S � I��
eclock f� is in otpclock� and eselector ac is in otp selector� but ewire a

is not in otpwire�
In the example above� any number of f events can occur consecutively� while

f is an output of the implementation but not an action of the speci�cation� thus
it can be viewed as an �internal� action� One could object that the problem above

�local deadlock�� can only occur where a string with unboundedly many internal
actions and with no �external� action is part of a complete execution
i�e�� in a
�divergence� situation�� However� we can adjust the example above to dismiss this
objection� It su�ces to make the clock visible� i�e�� modify the speci�cation to
be fwirekclockg while the implementation remains fselector�clockg� See
Figure �
d�� On the intuitive side� it seems that the introduction of a clock

that does not interfere with the rest of the system should have no e�ect on the
correctness or on the type of �aw of that system� One veri�es that the point of
view does not permit to detect the �aw� but our liveness condition is violated�

Liveness in systems that are incorrect for other reasons
As mentioned in the de�nition� we restrict our liveness condition for speci�cation	
implementation pairs that satisfy safety and output consistency� Nevertheless� our
liveness condition does not have an input control restriction� i�e�� it also applies to
systems that have dangling inputs�
To illustrate the problems with liveness for unsafe systems� consider the follow	

ing example�
S fhfag� fbg� f�� a� abgig
I fhfag� fbg� f�gig

Here I does not realize S with safety because the trace a causes a safety violation
on the implementation element� Therefore� this implementation is incorrect for
this speci�cation� and the pair is outside the domain of applicability of our liveness

��

condition� Let us see� however� what would happen if the safety restriction were
not introduced� Formally� we have S v� I because the single output trap of
the implementation is �� which is an output trap of the speci�cation� Intuitively�
however� it can be argued that I is less live than S� because S can produce b�s
whereas S cannot� There are also objective di�culties caused by having S v� I in
this case� For instance� let N fhfag� fbg� f�� agig� We have S v� I v� N � but
S
v� N and transitivity does not hold�
To illustrate the problems with liveness for systems without output consistency�

consider the following example� Let M fQ�g� N fQ�� Q�g� and O fQ�g�
where�

Q� h�� fa� bg�
a � b��i
Q� h�� fa� bg� b�i

Since oQ� � oQ�
 �� our liveness condition does not apply in this case� Let us
see� however� what would happen if the output consistency restriction were not
introduced� We have that Q�kQ� Q�� thus otpQ� otpkN � and N v� O�
We have that otpQ� f e � fa� bg� j e �res a in�nitely many times and e �res
b in�nitely many times g and that otpQ� fb�g� Thus� there is no sequence e
such that eQ�

� otpQ� and eQ�
� otpQ�� Hence� trivially� M v� N � However�

M
v� O
unfairness� and transitivity does not hold�
In conclusion� our liveness condition needs safety and output consistency re	

strictions for transitivity� These restrictions are su�cient
see Theorem �� and not
severe
see the explanation accompanying Theorem ��� Informally speaking� the
problem lies in the fact that k can introduce new output traps� In the example
above� b� is an output trap in kN but not in all elements of N � The same problem
would occur if a were an input in Q�� but then safety would be violated� However�
as shown in Theorem �� this problem cannot occur if safety and output consistency
are satis�ed� hence the restriction�
Our liveness condition does not have an input control restriction� Some systems

may be regarded as �incorrect�� but they may be �live�� Obvious examples are
systems where the implementation has redundant elements which do not a�ect the
outputs of the speci�cation� either directly or indirectly� For instance� recall from
Section � thewire represented by hfag� fbg� pref
ab��i and the xor represented by
hfc� dg� feg� pref

c� d�
c� d� e���i� Consider S fwireg and I fwire�xorg�
See Figure �
c�� Intuitively� the xor is completely disconnected from the wire
in the implementation� and thus the implementation behaves irreproachably with
respect to this speci�cation�
Since actions c� d� e are not in the alphabet of the
speci�cation� their transitions are unspeci�ed�� Formally� if the projection on fa� bg
of a sequence is an output trap of the implementation wire� then that projection
is also an output trap of the
identical� speci�cation wire� Thus� S v� I� in
agreement with our intuition�

Modeling power
Now we address the following modeling power problem� For which concurrent sys	
tems are the complete executions exactly the output traps# The key is Proposition �
below� but unfortunately this point needs some informal considerations regarding
the notion of �complete execution��

�

P

Q

PkQ

otpP

otpQ

otp
PkQ�

��aQ

��aP
otp

trace structures
sets of �nite and

in�nite sequences over U

Figure �� Output traps� parallel composition� and projection�

Proposition � For networks S and I such that S v�� I� and sequence e � U�

such that eS � limkS�

eI � otpkI� �
	 P � I� eP � otpP ��

Proposition � is illustrated in Figure ��
Admitting
informally� that the �complete executions� of a concurrent system are

those executions that are �complete� for every element of that concurrent system�
i�e�� that project as complete executions on the alphabet of each element of the
system� Proposition � has the following
informal� interpretation� Suppose network
I realizes speci�cation S with safety and output consistency� If� for every element
P of a network I� the complete executions of P are exactly the output traps of P �
then the complete executions of kI that are �legal� for S are exactly the output traps
of kI� By �legal for the speci�cation� we mean �can be generated in the speci�ed
environment�� Accordingly� the complete executions of kI correspond to the output
traps of kI� but only if they are limits of a speci�cation which is realized by I with
safety and output consistency� Since complete executions of kI that are not limits
of the speci�cation do not occur anyway� the only restriction is that of existence of
a speci�cation S such that S v�� I�
Therefore� unfortunately� just like the liveness condition� this relationship be	

tween complete executions and output traps has safety and output consistency re	
strictions� Nevertheless� the restrictions are not severe� because safety and output
consistency need to be satis�ed anyway� for di�erent reasons�
Now� to show that the relationship between complete executions and output

traps occurs for a class of circuits� under the restrictions above� it su�ces to check
the basic components� For example� one veri�es that the basic asynchronous com	
ponents
for instance� the version in �Ve
���� satisfy this relationship
since the
complete executions of these components were not precisely de�ned� we take as
reference the intuitive descriptions in �Ve
���notably that of a toggle� �without
ill e�ect� the ����� selector can be replaced� by� for instance� a toggle �������
p� �����
Consequently� for any circuits formed with these components and that are safe and

��

output consistent for a speci�cation� the �legal� complete executions are exactly the
output traps�

Theorems facilitating veri�cation of liveness
We now state the �	compatibility and transitivity theorems for liveness�

Theorem � For networks M � N � and O such that M v� N � we have M � O v�

N �O�

Theorem
 For networks M � N and O such that M v��� N and N v��� O� we

have M v� O�

Note that there are no restrictions for �	compatibility� this fact is surprising�
just as it was in Theorem �� Unfortunately� however� we had to introduce safety
and connectivity restrictions for transitivity� Nevertheless� these restrictions are not
severe because they are necessary correctness conditions themselves� Moreover�
the safety restriction�condition has unrestricted �	compatibility and transitivity
properties
see Section �� and output consistency is easy to verify directly�
The following proposition provides another
simpler #� form for our liveness

condition� using the safety and connectivity restrictions� We use the initial form for
proving the structure theorems and for discussion of liveness outside the restrictions�
and we use this second form for automatic veri�cation�

Proposition
 For networks M and N � if M v�� N then

M v� N
 fkMg v� fkNg�

Equivalently� for networks M and N such that M v�� N � we have that�

M v� N
 	 e � U��

eM � limkM � eN � otpkN � eM � otpkM ���

In words� every sequence that is �live� for the implementation and �legal� for the
speci�cation must be �live� for the speci�cation� too�

� Modeling Non�deterministic Processes by Au�

tomata

The language	theoretic model we have used so far is convenient for the algebraic
treatment and for handwritten proofs of correctness� For automatic veri�cation� an
automaton model seems more suitable� Another motivation for using an automa	
ton model is that we de�ne a graph	theoretic form for our condition and prove
it equivalent to the language	theoretic form� This provides another test for the
appropriateness of our liveness condition�
We de�ne a model of non	deterministic concurrent systems using so	called be	

havior automata� which are formally incomplete deterministic �nite automata�
With an input�output distinction� these automata represent non	deterministic sys	
tems because� for example� they can have choices between edges marked with output
symbols�

��

q���

q���

q���

q���

b
a

b

b

a�

q q�
a#

b"

q��

no c"

b�

Figure ��
a� A state graph�
b� a behavior automaton�

Our automaton model was inspired by the �state graphs� used previously in
trace theory to represent trace structures having regular languages� To some extent�
this model turned out to be similar to the I�O	automata in �LT���� The main
di�erences between I�O automata and our automata are that I�O automata can
have in�nitely many states� I�O automata require each input action to be enabled
in each state� and I�O automata use �partitions of the locally	controlled actions�

which would correspond to partitions of the output alphabets in our model� to
represent fairness properties�

Basic de�nitions
We de�ne a state graph over a �nite alphabet � as a pair G hstG� edGi� where
stG is a �nite set of states and edG � V � � � V is a
�nite� set of labeled
edges� If
q� b� q�� is an edge� then b is its label � Note that some symbols of � might
not appear as labels� An example of a state graph is given in Figure �
a�� where
� � fa� bg� stG fq���� q���� q���� q���g� and edG f
q���� a� q�����
q���� b� q�����

q���� b� q�����
q���� b� q����g�
A state graph is ambiguous if two edges leaving a state have the same label� For

example� the state graph in Figure �
a� is ambiguous� A state graph is unambiguous

if it is not ambiguous�
A behavior automaton consists of an unambiguous state graph whose alphabet

is partitioned into inputs and outputs� together with an initial state� Formally� a
behavior automaton is a tuple A hiA�oA� stA� edA� initAi such that iA and oA
are �nite and disjoint subsets of U and hstA� edAi is an unambiguous state graph
over iA � oA� We call iA the input alphabet � oA the output alphabet � stA the set
of states� edA the set of edges� and initA � stA the initial state� We use the
same representation as for trace structures� For us� internal symbols are outputs�
because they are driven by the device rather than the environment�
The unambiguity restriction means that behavior automata cannot directly rep	

resent systems where two options of a choice have the same label�
Still� one can
use modeling tricks to represent such systems� as discussed in Section
 and illus	
trated in Figure ���� However� we consider such systems to be rather marginal�
since actions of interest are normally denoted by di�erent symbols� In particular�
the options of a choice should be represented in our model by di�erent output sym	
bols� If the choice is internal to the implementation� the option symbols should
be from the complement of the speci�cation alphabet� Note the dissimilarity from
CCS� which has only one internal symbol and thus distinguishes the options of an
internal choice only by their external e�ects� In Section
 we also state a version
of our liveness condition in automata with ambiguous choice and with a CCS	

��

style silent action� The condition we have obtained is quite complex compared to
traplock	freedom� We settled for the unambiguity restriction� for simplicity without
a signi�cant loss of modeling power�
A behavior automaton is rendered like its graph� except that�
a� the initial

state is distinguished by an incoming arrow�
b� symbols have punctuation� # for
inputs and " for outputs� and
c� unused alphabet symbols are listed below the
graph� Figure �
b� shows a behavior automaton�
For a behavior automaton A we use the following notation� The alphabet of A�

written aA� is iA� oA� the graph of A� written grA� is hstA� edAi� the language
of A� written lgA� is the set of all traces spelled by �nite paths in grA that start
in the initial state� Note that the language of a behavior automaton is always
pre�x	closed and contains �� For example� let A denote the behavior automaton in
Figure �
b�� then aA fa� b� cg and lgA pref
ab���

Trace structures of behavior automata
The semantics of behavior automata is given by their languages and alphabets� For
behavior automaton A� we de�ne the trace structure of A as trA hiA�oA� lgAi�
Note that trA is a well	formed trace structure� i�e�� iA � oA �� lgA �
aA��

and lgA is non	empty
contains �� and pre�x	closed�

Subgraphs and knots
A subgraph of a behavior automaton A is a state graph G over aA such that
stG � stA and edG � edA� Note that the edges of G must be consistent with
its states� because G is a state graph� however� not all edges of A between states
of G must appear in G� Note that G is unambiguous� since grA is unambiguous�
A subgraph G of a behavior automaton is non�void if G has at least one state�

Note that a subgraph with one state and no edges is non	void� and that for behavior
automaton A� grA is non	void
contains at least the initial state�� A subgraph G

of a behavior automaton is strongly connected if� for every two states q and q� of
G� there exists a path in G from q to q�� A subgraph G of a behavior automaton A
is reachable if� for every state q of G� there exists a path in grA from initA to q�
A knot in a behavior automaton is a non	void� reachable and strongly connected

subgraph� For example� the behavior automaton in Figure �
b� has the following
knots� hfqg� �i� hfq�g� �i� and hfq�g� f
q�� b� q��gi� The subgraph with only the state
q�� is non	void and strongly connected but not a knot� because it is not reachable�

The leads�to operation
For behavior automaton A and trace t in lgA� we de�ne A � t to be the state of
A at the end of the unique path starting in the initial state and spelling t� � is
called the leads�to function of A� For example� if A is the behavior automaton in
Figure �
b�� then A � � q and A � abb q�� For arbitrary behavior automaton
A� we have A � � initA�
The leads	to operation is extended to in�nite sequences� For behavior automa	

ton A and sequence e in limtrA� we de�ne A � e to be a subgraph of grA such

��

that

st
A � e� fq � stA j 	 t � e� � u such that tu � e � A � tu qg
ed
A � e� f
q� a� q�� � edA j 	 t � e� � u such that tua � e � A � tu qg

If e is �nite� A � e contains just one state and no edge� where the state is the same
as that produced by the leads	to operation for traces� If e is in�nite� st
A � e�
contains all states that are reached in�nitely often by e� and ed
A � e� contains all
edges that are passed in�nitely often by e� informally speaking�
The following lemmas link the knots in A to sequences in limtrA by means of

the leads	to operation� These lemmas are the basis of the connection between our
language	theoretic and graph	theoretic treatments of liveness�

Proposition � For behavior automaton A and sequence e in lim trA� A � e is a

knot�

Proposition � For behavior automaton A and knot G in A� there exists a sequence

e in lim trA such that A � e G�

Parallel composition
In the following we de�ne a parallel composition operation on behavior automata
and we link it to the parallel composition of trace structures�
A triple e
q� a� q�� is compatible with a behavior automaton A if either e �

edA
i�e�� the transition in question actually occurs in A�� or we have both a
� aA
and q� q
i�e�� the symbol a is not in the alphabet of A� in which case A �does
not mind� a occurring� and the state of A cannot be a�ected by this occurrence��
The parallel composition of two behavior automata A and B is a behavior au	

tomaton AkB such that�

i
AkB�
iA� iB��
oA � oB��
o
AkB� oA � oB�
st
AkB� stA� stB�
ed
AkB� f

p� q�� a�
p�� q��� � st
AkB� � a
AkB� � st
AkB� j

p� a� p�� is compatible with A� and

q� a� q�� is compatible with B g�

init
AkB�
initA� initB��

Informally speaking� the parallel composition describes behaviors consistent with
both operands� As we did for trace structures� we call the result of parallel com	
position a composite�
Note that the case where a
� aA and a
� aB cannot occur in the de�nition

of ed
AkB�� because a � a
AkB�� One veri�es that the other properties of a
behavior automaton are satis�ed by AkB� thus� AkB is well	formed� Note also
that an input of a process connected to an output of another process is not an
input of the composite� but all process outputs are outputs of the composite�
For behavior automata A and B and state o
p� q� � st
AkB�� we use the

notations oA p and oB q� For trace t and sequence e� we use the notation
tA t�aA and eA e�aA�

��

A

B

AkB

trA

trB

trAktrB

tr
AkB�

tr

behavior automata trace structures

Figure �� Commutative diagram of parallel compositions�

Lemma � For behavior automata A and B and word t in lg
AkB�� we have

tA � lgA �

AkB� � t�A A � tA� and
tB � lgB �

AkB� � t�B B � tB �

The following theorem links the parallel compositions of behavior automata and
trace structures by the tr semantics� as illustrated by the commutative diagram in
Figure �� To prove it� we use the following lemma�

Lemma � For behavior automata A and B and word t in
a
AkB���� we have

t � lgAkB
 tA � lgA � tB � lgB�

Theorem � For behavior automata A and B� we have tr
AkB� trA k trB�

Theorem � is important because it shows that the parallel compositions of behavior
automata and trace structures model the same operation�

Knot projections
We now de�ne knot projections and relate them to sequence projections� For
behavior automata A and B and knot G in AkB� we de�ne subgraph GA of A such
that�

stGA fp � stA j � q � stB such that
p� q� � st
AkB�g
edGA f
p� b� p�� � edA j

� q� q� � stB such that

p� q�� b�
p�� q��� � ed
AkB�g

and we de�ne subgraph GB of B similarly�
Projections of knots are knots�

Proposition � For behavior automata A and B and knot G in AkB� GA is a knot

in A and GB is a knot in B�

The following lemma links knot projections to sequence projections�

Lemma � For behavior automata A and B and sequence e in limtr
AkB��

AkB��
e�A A � eA and

AkB� � e�B B � eB �

��

� Traplock�freedom

In this section we de�ne and discuss traplock�freedom� a graph	theoretic form of our
liveness condition�

Traps
For behavior automaton A� subgraph G of A� and state p of A� the set of �red

symbols of G is �G fa � aA j �
p�� a� p��� � edGg� the set of enabled symbols of
p in A is enAp fa � aA j � p� � stA such that
p� a� p�� � edAg� and the set of
enabled symbols of G in A is enAG

S
p��stG enAp

�� For example� let A be the
behavior automaton represented in Figure �
b�� let G hfq�g� f
q�� b� q��gi� and let
H hfq�g� �i� We have �G fbg� �H �� and enAG enAH fbg�
For alphabet �� behavior automaton A� and knot G in A� G is a trap in A with

respect to � if enAG � � � �G�
Since we always have �G � enAG� the subset
relationship in the de�nitions of traps can be replaced by equality�� G is an output

trap in A if enAG � oA � �G� For example� let behavior automaton A and knots
G and H be as in the example in the paragraph above� Since b � oA� G is an
output trap in A but H is not�

Lemma � For behavior automaton A� knot G in A� and sequence e in lim trA
such that A � e G� we have that G is an output trap in A i� e is an output trap

in trA�

Traplock�freedom

De�nition
 For behavior automata S and I� I is traplock	free for S if� for every

knot G in SkI such that GI is an output trap in I� GS is an output trap in S�

Just as we did for v�� we restrict the applicability of the traplock	freedom condition
to speci�cation	implementation pairs of behavior automata that satisfy ftrSg v��

ftrIg� i�e�� satisfy the safety and the output	consistency conditions�
Intuitively� traplock	freedom demands that every trap in the implementation

correspond to a trap in the speci�cation� If this condition is not satis�ed� then the
implementation allows the execution point to remain forever in a trap� while the
speci�cation expects the execution point to eventually leave the set of speci�cation
states corresponding to the implementation trap�
In the examples in Figure �� we compare the traplock	freedom condition to

our intuitive notion of liveness� The implementation in Figure �
a� appears to
be correct with respect to its speci�cation� Accordingly� that implementation is
traplock	free for its speci�cation� because the only trap in the implementation is
the whole graph� corresponding to the whole graph of the speci�cation� which is
also a trap� The implementation in Figure �
b� has danger of deadlock� because
that implementation can block after the occurrence of an
internal� output event
c� while the speci�cation does not indicate the possibility of such blocking� Note
that the implementation in Figure �
b� has traplock
is not traplock	free� for that
speci�cation� as demonstrated by the corresponding knots in the rectangles� The
implementation in Figure �
c� is unfair� because the implementation cannot issue

��

a" v� b" a"

a�

a"

b#
v� a" b#

c"

b�

a#b" a# c"
v� a#b" a#

no c"

c�

a"

v� a"

b"

c"

d"

d�

Figure �� Intuitive liveness compared to traplock	freedom�

the output c� while the speci�cation expects a choice between b and c after each
occurrence of a� Again� the implementation has traplock for the speci�cation� The
implementation in Figure �
d� appears to have a deadlock	like �aw� because the
current state can become trapped in the framed cycle� while an a output is expected
by the speci�cation� Again� the implementation has traplock for the speci�cation�
The examples in Figure � are �mainstream� situations� relatively easy to model�

Several �extreme� situations and subtle points in modeling liveness are also disussed
in Section ��
In conjunction with Proposition �� the following theorem shows the equivalence

of our traplock	freedom condition to our liveness condition�

Theorem � For behavior automata S and I� I is traplock�free for S i� ftrSg v�

ftrIg�

Theorem � has important consequences� First� it proves the equivalence of two
forms in essentially di�erent models� Second� this equivalence facilitates veri�ca	
tion by allowing the application of the
language	theoretic� structured veri�cation
theorems in Section � to the
graph	theoretic� automatic veri�cation method in
Section ��� Finally� since two isomorphic behavior automata have the same lan	
guage� this equivalence shows that traplock	freedom is invariant under automaton
isomorphisms�anecessary property� since isomorphic automata normally represent
the same process�

	 Alternative Liveness Conditions

In this section we consider some variations to our condition for liveness� and point
out their disadvantages� We also point out de�ciencies of the condition for liveness
in �LT��� and another condition� which appears in many forms in the literature�

��

a#
b"

c" c"

b"

v�
a#

b"

c"

a�

a#b" c" v� a#

c"

b"

a#

b�

Figure �� Traplock	freedom vs� wraplock	freedom�

and we call generically capability � We also discuss our liveness condition on several
�extreme� cases�

Liveness with respect to words
The �rst variation is obtained by using liveness with respect to words instead of
symbols� as we sketch below� For a subgraph G of a behavior automaton A� the set
enwAG of enabled words of G in A is the set of all words spelled by �nite paths in
A starting in states of G� The set �wG of �red words of G is the set of all words
spelled by �nite paths in G� A knot G in a behavior automaton A is an output

wrap
short for �output	word trap�� if enwAG �
oA�� � �wG�

De�nition � An implementation I is wraplock	free for a speci�cation S if� for

every knot G in SkI� if GI is an output wrap in I then GS is an output wrap in S�

The examples in Figure � illustrate the di�erence between traplock	freedom
and wraplock	freedom� In Figure �
a�� we represent a speci�cation and an imple	
mentation of a fork� The speci�cation allows the two output actions to occur in
either order� but only one order is possible in the implementation� We take the
position that this is not a �aw� Such a case is quite usual in digital circuits� where
a fork may have unequal delays in the branches� but the relationship between the
two branch delays is not known at design time� Formally� our traplock	freedom
condition is satis�ed� but wraplock	freedom is not� In Figure �
b�� we represent a
selector implemented by a toggle� The toggle alternates the b and c outputs
instead of choosing non	deterministically between them� like the selector does�
In agreement with an opinion expressed in �Ve
��
p� ���� we consider that toggle
is a good implementation for the selector� Our reason is that selectors repre	
sent arbiters� and� for arbitration purposes� periodicity is an acceptable substitute
for randomness� Formally� our traplock	freedom condition is again satis�ed� but
wraplock	freedom is not�
Why would traplock	freedom seem more suitable for practical concurrent sys	

tems than wraplock	freedom# Why would liveness with respect to symbols seem
more suitable than liveness with respect to words# A possible explanation may
have to do with psychology� We presume that designers denote by symbols� rather
than interleavings of symbols� the actions of interest� Accordingly� we presume that
the implicit liveness properties normally refer to single events rather than bursts
of events� Consequently� requirements like �this event must eventually occur if this
state is reached in�nitely often� appear to be appropriate liveness conditions� while

��

requirements like �all interleavings of these concurrent events must eventually occur�
appear to be undesirable as liveness conditions�
Accordingly� in our paradigm� the term �something good� from the informal

description of liveness in �LL
��
see the Introduction� means an occurrence of an
action�

Weak liveness
Another condition can be obtained by using weak instead of strong liveness� For
a subgraph G of a behavior automaton A� the set cenAG of continuously enabled

symbols of G in A is the set of all symbols enabled by all states of G� A knot G in
a behavior automaton A is an weak output trap if cenAG �
oA�� � �wG�

De�nition � An implementation I is weakly traplock	free for a speci�cation S if�

for every knot G in SkI� if GI is a weak output trap in I then GS is a weak output

trap in S�

To point out a de�ciency of this de�nition� we consider the example in Fig	
ure �
c�� Intuitively� that implementation appears to be unfair� and thus it is not
live
in agreement with the traplock	freedom condition� for that speci�cation� Our
liveness condition detects this �aw� as discussed in Section �� However� that im	
plementation is weakly traplock	free for that speci�cation� All weak output traps
of the implementation contain the non	initial implementation state� All imple	
mentation knots that contain the non	initial implementation state correspond to
speci�cation knots which contain the non	initial speci�cation state� Finally� one
veri�es that all such speci�cation knots are weak output traps�

Capability
Another candidate for a liveness condition� which we also ruled out as insu�cient
in Section �� is a condition that the implementation be capable of producing every
trace of the speci�cation� By the examples in Figure �� that condition is not even
a necessary correctness condition� For Figure �
a�� trace acb can be produced by
the speci�cation but not by the implementation� For Figure �
b�� trace abab can
be produced by the speci�cation but not by the implementation�
In Figure

a�� the implementation cannot produce output b� However� it is

impossible to tell it apart from the speci�cation by an external experiment� because
the absence of a �reset� action indicates that the speci�ed process is to be used only
once� i�e�� to produce only one output event� The implementation can only produce
a� but that does not contradict this �one	shot� speci�cation� Correspondingly� our
traplock	freedom condition is satis�ed� Examples of such processes are very rare�
An example may be a surprise box� The �gure inside is �xed by fabrication� and is
used to surprise only once� If the surprise box can be reused� or there are in�nitely

statistically su�ciently� many boxes available� then the appropriate speci�cation
is that in Figure

b�� because it indicates explicitly the �reset� action which is� in
fact� performed� In Figure

b�� the implementation is unfair for the speci�cation

as can be noticed by iterated experiments�� and� accordingly� it is not traplock	free
for the speci�cation�

�

a" b" a"

no b"

v�
a�

a" b"

r#r#
a" r#

no b"

v�
b�

Figure
� Choice�
a� not repeatable�
b� repeatable�

The de�nition in �LT���
We consider again the example in Figure �
c�� The �locally	controlled actions�
from �LT��� correspond to outputs of behavior automata� The model in �LT���
requires the users to specify partitions of these output sets� corresponding to the
output sets of the elements of the modeled concurrent system� Consider again the
processes represented by the behavior automata in Figure �
c�� and let us represent
them using the formalism in �LT���� Both the speci�cation and the implementation
have a single element� thus their respective �partitions of locally	controlled actions�
are trivial� They have one �class� each� consisting of all the outputs
fb� cg�� The
formal de�nition of liveness in �LT��� is satis�ed in this example� However� this
implementation should be considered not live for this speci�cation according to our
intuition
because it is unfair� and even according to intuition described �LT���� If
the
modi�ed� selector
the speci�cation� is used for arbitration purposes� then
the implementation in the
modi�ed� example has the �aw of �lockout�� which
�LT��� considers to be a violation of liveness�
Our liveness condition does detect
this �aw� See the explanations of Figure ���
Although we have chosen the partitions of locally controlled actions as indicated

in �LT���� that indication is informal� Nevertheless� there is only one other way
in which these partitions could be chosen� fbg fcg� Even in that case� the formal
condition in �LT��� is satis�ed in spite of the �aw� and our objection stands�
In general� classical cases of unfairness which pass undetected by the liveness

condition in �LT��� can be constructed using speci�cation	implementation pairs
such that a choice in the speci�cation has one option� say c� disabled in the imple	
mentation�
Set fcg can be a class in the partition of locally	controlled actions��
Often� such a choice is part of a cycle in the speci�cation� and� at some point in the
cycle� c in also disabled in the speci�cation� In such cases� the condition in �LT���
is satis�ed� and does not detect the �aw because basically every behavior of the
speci�cation is considered fair with respect to the option c� according to �LT����

��

 Modeling Power

Syntactic vs� semantic non�determinism
We model non	determinism by output or internal choice� where the options have
di�erent labels by output actions� as they are in Figure �
b��
c�� and
d�� Recall
that we consider internal actions to be outputs� too� because they are driven by
the device rather than by the environment� This way� we associate deterministic
automata to non	deterministic processes�
By a non	deterministic process we mean�
informally� a process that has some choice over its future behavior� as opposed to a
deterministic process� whose behavior is entirely determined by the environment��
From a semantic point of view� the formal
syntactic� term �deterministic� is

misleading when applied to automata which can choose between several outputs�
For that� we prefer the term unambiguous� re�ecting the fact that di�erent options
of a choice that the automaton can take have to be labeled distinctly� unambigu	
ously�
However� one may object that our unambiguous automata cannot express be	

haviors like that in Figure ��
a�
which can stand for� say� a vending machine��
That objection is super�cial� Such a behavior can be simply expressed by intro	
ducing two fresh internal actions� p" and q"� standing for the options of the internal
choice in the initial state� In fact� the least we can ask as part of the representation
discipline is that important events� such as the options of this internal choice� be
explicitly represented� not omitted from the automaton� This way� one obtains a
deterministic automaton� drawn in Figure ��
b�� which can replace the automaton
in Figure ��
a� in the representation of an implementation� provided the symbols
p and q are not used anywhere else in the concurrent system to be veri�ed�
In general� one can always transform a non	deterministic automaton into a

deterministic automaton by using fresh symbols to label the previously �invisible�
choices� just as we did in the example in Figure ��� Note that this transformation
is di�erent from the usual determinization procedures for �nite automata and takes
only linear time� because we introduce fresh symbols�
Weighting the disadvantage of having to represent explicitly the �invisible� choices�

versus the advantage of having simpler algorithms and a simpler correctness condi	
tion� we decided to use unambiguous
deterministic� behavior automata as a model
of non	deterministic processes�

Traplock�freedom with syntactically non�deterministic automata
Nevertheless� our traplock	freedom condition can be easily extended to a more
complex automaton model� allowing ambiguous choices� In the following� we make
this extension� for the following reasons� First� we believe that there is no reason
to restrict a correctness condition to just one or two models of concurrency� Sec	
ond� in our behavior automaton model projection can be used as a constructor of
intermediate speci�cations of concurrent systems� but one has to ensure that pro	
jections preserve liveness properties by applying our liveness condition� A model
using syntactically non	deterministic automata has the potential to preserve live	
ness properties under projection�
A branching automaton is a tuple A hiA�oA� stA� edA� initAi� where iA is

the input alphabet oA is the output alphabet � stA is the set of states� edA is the

��

a"

a"

b#

c#

p"

q"

a"

a"

b#

c#

a�
b�

Figure ��� Modeling invisible choices by fresh device	driven actions�

set of edges� and initA � stA is the initial state� such that iA and oA are �nite
and disjoint subsets of U and hstA� edAi is a state graph over iA�oA� Note that
branching automata di�er from behavior automata only by allowing ambiguous
state graphs� Branching automata are similar to the �behavior schemas� in �BS
���
if the �choice sets� are taken to be the sets of edges with the same label and the
same source state�
Note that behavior automata are a particular case of branching automata� An

example of a branching automaton which is not a behavior automaton is shown in
Figure ��
a��
An option of a branching automaton A is a behavior automaton B such that

iB iA
oB oA
stB stA
initB initA

and such that

edB � edA� and
	
q� a� q�� � edA� � q�� � stB such that
q� a� q��� � edB

The options of a branching automaton are similar to the �options of a behavior
schema� in �BS
��� For example� the options of the branching automaton in Fig	
ure ��
a� are the behavior automata in Figure ���
Note that a behavior automaton has only one option� itself�
We now extend the de�nition of traplock	freedom to branching automata�

De�nition � A branching automaton I is traplock	free for a branching automaton

S if� for every option B of I� there exists an option A of S such that B is traplock�

free for A�

Note that� since a behavior automaton has only one option� De�nition � agrees
with De�nition � if S and I are behavior automata�

��

a"

b#

c#

a"

b#

c#

Figure ��� Options of a branching automaton�

Silent actions
We can extend further the branching automata by introducing a CCS	style silent ac	
tion � and trivially generalizing traplock	freedom accordingly� An extended branch�

ing automaton is de�ned like a branching automaton
see above� except that edA
� stA �
iA�oA�f�g�� stA
compare to edA � stA �
iA�oA�� stA for be	
havior and branching automata�� An extended behavior automaton is an extended
branching automaton A such that 	
q� a� q���
q� b� q��� � stA� if a b or a � or
b � then q� q���
Note that extended behavior automata are formally determin	
istic� but� just like behavior automata� they stand for non	deterministic processes��
Extended branching automata are also similar to the �behavior schemas� in �BS
���
if the �choice blocks� are taken to be sets of edges with the same source state and
with either the same label or the label � �
The silent action can be viewed as a
�wildcard�� Edges bearing the label � will belong to all choice blocks for a certain
source state��
An option of an extended branching automaton A is an extended behavior

automaton B such that�
iB iA
oB oA
stB stA
initB initA

and such that�

edB � edA� and
	
q� a� q�� � edA�

� q�� � stB such that either
q� a� q��� � edB or
q� �� q��� � edB

For example� the options of the extended branching automaton h�� fag� fq� q�� q��g�
f
q� a� q���
q� �� q���g� qi
Figure ��
a�� are h�� fag� fq� q�� q��g� f
q� a� q��g� qi
Fig	
ure ��
b�� and h�� fag� fq� q�� q��g� f
q� �� q���g� qi
Figure ��
c���
In Figure ��� the
silent action � is represented without punctuation� because it is neither an input
action nor an output action��
A compaction of an extended behavior automaton A is a behavior automaton

��

a"

�

q

q�

q��

a�

a"

q

q�

q��

b�

�

q

q�

q��

c�

a"

q q�

d�

q

e�

Figure ��� Extended branching automata� options and compactions�

B such that there exists a function h � stA� stB such that�

h
initA� initB� and
	
p� a� p�� � edA�

a
 � � �

h
p�� a� h
p��� � edB�� �

a � � �
h
p� h
p���� �

Note that compaction is well	de�ned� The resulting automaton is unambiguous�
For example� possible compactions of the options of the extended branching au	
tomaton in the previous example are h�� fag� fq� q�g� f
q� a� q��g� qi
Figure ��
d��
and h�� fag� fqg� �� qi
Figure ��
e��� respectively� In the cases where the extended
behavior automatonA corresponds to a �fundamental mode behavior� from �BS
���
a compaction of A can be related to a �direct behaviour� obtained by the construc	
tion in �BS
��� p� ����
Accordingly� we de�ne an extended branching automaton I to be traplock�free

for an extended branching automaton S if� for every compaction B� of every option
B of I� there exists a compactionA� of an option A of S such that B� is traplock	free
for A��
While the last extension is �ne for modeling deadlock� it leads to problems

with modeling fairness just like CCS does� because � confuses di�erent kinds of
internal actions� Therefore� we encourage the reader to use De�nition � instead�
and simulate silent actions by ambiguous choices� Or� better� use
deterministic�
behavior automata to model non	deterministic processes� as we do in the rest of
this paper�

��

�� An Algorithm for Veri�cation of Liveness

In this section we introduce an algorithm� based on our formalization� for verifying
liveness�

Parallel composition
A polynomial	time algorithm for parallel compositions can be constructed straight	
forwardly using the de�nition of parallel compositions of behavior automata in
Section ��

Traplock�freedom
It remains to derive an algorithm to verify traplock	freedom of two behavior au	
tomata S and I� Considering in turn all output traps in I� all knots that are not
output traps in S� or all knots in SkI would be very ine�cient� because there are
exponentially many of them in the worst case� Therefore� we have to use a more
elaborate method� as shown in the algorithm below�

predicate is traplock�free�
S� I����������������������������

for each b in oS do����������������������

build C by removing from gr
SkI� all edges �ring b

for each state
q�� q��� of C such that b � enSq
� do�����������������

repeat��������������

��������������

��������������

let H be the strongly connected component

of
q�� q��� in C

if HI is an output trap in I then

return false

build C removing from H all states
p�� p���

such that enIp
�� � oI �� �H

while
q�� q��� � stC

return true

Correctness
To sketch a proof of partial correctness� we �rst note that the traplock problem
amounts to the existence� for some b � oS and
q�� q��� � st
SkI� such that b �
enSq

�� of a knot H in SkI with the properties�
�� H passes through
q�� q����

�� H does not �re b
which causes HS to be not an output trap in S�� and
��� HI

is an output trap in I� Suppose there exists such an H� we show that the algorithm
will not overlook it� Let H��H�� � � � be the candidates considered by the algorithm�
and C�� C�� � � � the parts of SkI considered� We prove that� for any i � �� if
stH � stHi� then stH � stHi��� We have that �H � �Hi� because Hi

contains all the edges of SkI whose source states are in stHi and do not �re b�
Thus� if H contained any of the states removed from Hi to obtain Ci��� then HI

would not be an output trap in I� and we have a contradiction� Thus� if stH
� stHi then stH � stCi��� Furthermore� since Hi�� is the strongly connected
component of
q�� q��� in Ci��� and H is strongly connected and contains
q�� q����
we have that� if stH � stCi��� then stH � stHi��� Consequently� the algorithm

��

can only return false if there exists a knot H with the properties
���
�� and

��� Conversely� the algorithm cannot return false if there exists no knot H with
the properties
���
�� and
��
see the condition for the return statement to be
performed�� In conclusion� the algorithm can only return the correct answer if it
terminates�
To sketch a proof of termination� we note that� at each iteration of the repeat

cycle� at least one state of H is removed� If HI is not an output trap in I� then at
least one state p�� of HI has the property enIp�� � oI
� �H and thus is removed�
This proves the algorithm terminates within a bounded time�

Time and space analysis
The time complexity can be assessed as follows� For a subgraph P � let the size of
P be jP j jstP j! jedP j� Searching for strongly connected components of P is
known to take a linear time� i�e�� O
jP j�� and with a small constant� The body
of repeat thus takes O
jCj� time� Because at least one state must be removed
each time� the iterations of repeat are O
jCj�� The iterations of for
q�� q���
are also O
jCj�� the body of for b takes thus O
jCj��� The iterations of for b
are O
joSj�� Therefore� the total worst	case time complexity of our algorithm is
O
jgr
SkI�j� � joSj�� Also� the constants hidden in these O computations are small�
The worst	case space complexity of our algorithm is O
jgr
SkI�j�� because this

is the worst	case size of C� the largest of the
constant number of� data structures
in this algorithm�

Practical considerations
The method for veri�cation of liveness sketched as a remote possibility in �Di�
� is
acknowledged to be impractical� because its worst	case time cost grows exponen	
tially with the square of the size of the speci�cation� To assess the practicality of
our algorithm� we compare it to the veri�cation algorithm for safety in �Di�
�� The

worst	case� time cost of our veri�cation method is no larger than T � times a small
linear factor� where T is the
worst	case� running time of Dill�s safety algorithm�
The space cost of our liveness algorithm is the same as that for the safety algorithm
in �Di�
�� Note� however� that a liveness condition is of a di�erent nature than a
safety condition� and seems to be more complex a priori� Also� in the average case
our algorithm does not visit those states of I that cannot be reached according to
the speci�cation� this feature is important because� as pointed out in �Di�
�� most
states of a �awed implementation are typically such spurious states� Still� although
the costs of our algorithm for traplock	freedom are polynomial in the sizes of S
and I� the costs of the overall veri�cation method should include computing I as
a parallel composition� These costs are exponential in the number of components�
just like the successful method for safety in �Di�
�� This state	explosion problem is
partly remedied by modular and hierarchical veri�cation
as we have shown that
our safety and liveness conditions have the required algebraic properties��
Using this algorithm� we have implemented a program for the veri�cation of

traplock	freedom�

��

�� Conclusions

Contributions
In this paper we have de�ned a liveness condition which can be decided from com	
mon representations of concurrent systems� such as networks of �nite automata�
This was previously thought impossible� because such representations are ambigu	
ous with respect to liveness properties
�Bl��� argues that for trace theory�� We
resolve the ambiguity by assigning augmented semantics to a �nitary represen	
tation of concurrent systems
see Sections � and ��� This semantics represents
liveness properties that seem to be implicitly assumed for many digital circuits and
other practical concurrent systems� Therefore� this semantics can be enforced as
a representation discipline� By de�ning this semantics� we suggest what may be
an appropriate and complete speci�cation of liveness properties of a concurrent
system� by analogy with systems that we have studied�
To de�ne this semantics� we introduce strong liveness�a generic property which

admits a uni�ed form for �nite and in�nite sequences of events� The label �strongly
live� has been used previously
e�g� in �YLS
���� to denote a completely di�erent
concept� Our reason for reusing this label is that strong liveness relates to strong
fairness in a manner similar to the way liveness relates to fairness�
Basically� our extended semantics speci�es what we consider to be the �com	

plete� executions of a concurrent system for which only �nite executions are given�
Apart from studying examples� we show this semantics is preserved by parallel
composition� under certain restrictions
Proposition ���
The restrictions are not
severe� because they amount to necessary correctness conditions�� Thus� it can be
shown that an entire class of concurrent systems obeys this semantics� provided
their basic components or �building blocks� obey this semantics� We have argued in
Section � for a large class of asynchronous circuits that they obey this semantics�
Our extended semantics is not closed under projection or hiding operators on

processes� because such operators can �hide� deadlocks and other liveness violations�
Still� as discussed in Section �� such operators are not needed in our method for
modular and hierarchical veri�cation� because the processes we compare can have
arbitrary� unrelated alphabets�
Note the dissimilarity from previous treatments of
liveness� which impose various connectivity constraints on the processes they can
couple or compare� For example� �Di�
� only compares processes with the same
input and output alphabets�� Nevertheless� such operators can be used in our ver	
i�cation method to build intermediate speci�cations� which are to be compared to
their respective implementations� in a modular and hierarchical manner� Interme	
diate speci�cations may be built or guessed using any other method� as well�
We also derive a graph	theoretic form for our liveness condition� in addition to

the language	theoretic form based on strong liveness�
Actually� we derived the
graph	theoretic form �rst� but we chose to present the language	theoretic form �rst
because we found the treatment of the algebraic properties of the condition to be
more comfortable using languages than using graphs��
In support of our liveness condition� we study several examples in the two es	

sentially di�erent models and we prove that our condition satis�es certain desirable
algebraic properties� We prove su�cient theorems for the modular and hierarchical
veri�cation of our liveness condition�

��

We present� prove and analyze a veri�cation algorithm for our liveness condition�
We de�ne a safety condition� Although reasonable conditions for safety have

been previously de�ned in trace theory� our safety condition is mentioned as a con	
tribution because� unlike the previous conditions� it has no connectivity
structure�
restrictions� We also provide theorems for the modular and hierarchical veri�cation
of our safety condition� which have no connectivity restrictions
Section ��� This
absence of connectivity restrictions may be surprising� especially in the theorem
referring to modularity�

Clari�cation
Our automata are not automata over in�nite objects
e�g� �Th
���� The semantics of
our automata are only alphabets and languages of �nite words
Section �� de�nition
of tr �� The main objective of our paper is to de�ne and verify liveness in terms
of common concurrent system representations� which specify �nite executions only�
�	automata are not appropriate for this approach�

Further work
Unfortunately for the theoretician� our liveness condition is not decoupled from
other correctness concerns
unlike our safety condition�� To achieve this decou	
pling� our liveness condition needs to be extended for concurrent systems that do
not satisfy safety and output consistency� Such an extension should make sense
intuitively and should provide transitivity and �	compatibility theorems for live	
ness that do not involve other correctness conditions� just like our safety condition�
Unfortunately� the extension that uses the same v� relation over unsafe systems
or over systems without output consistency does not satisfy these criteria�
A generalization of our liveness condition to arbitrary concurrent systems does

not seem very promising� because it would boil down to �all liveness requirements
have to be satis�ed if all liveness constraints are satis�ed�� where the liveness re	
quirements and constraints would need to be speci�ed by the users� possibly as
sets of complete executions� Such user	directed approaches have been taken before
and have the disadvantages listed in Section �� Nevertheless� various intermediate
generalizations can be considered� to give some more speci�cation freedom to the
users and to achieve closure of the model under interesting operators such as re	
�ection� One easy extension is to augment the trace structures with a set of �live�
actions� to represent inputs or outputs with respect to which traps are de�ned�
Allowing the users this small degree of freedom in specifying liveness properties by
alphabet distinctions does not seem to put hard demands on the users and does
not trivialize the liveness condition� The bottom line is that alphabet extensions
to a partial	execution model seem acceptable�

Acknowledgements
We are grateful for critical evaluations of this work to Joanne Atlee� David Dill� and
to the members of the Maveric group at the University of Waterloo� especially Igor
Benko� Rob Berks and John Segers� We are indebted to Jo Ebergen and Charles
Molnar for very important comments and suggestions�

��

Appendix A
 Trace Structure Proofs

For word t and alphabets � and $� one veri�es� by structural induction on t� that

t����$ t�
� � $��

Proposition � Parallel composition of trace structures is idempotent� commuta�

tive� and associative�

Proof For the properties above� the parts referring to alphabets are not di�cult to
verify� using set theory� We only discuss here the parts referring to the languages�
Let P�Q� and R be trace structures� To show idempotence� one notes that

any trace t of P satis�es tP t� therefore� the traces of PkP are precisely
the traces of P � Commutativity follows from the commutativity of the set and
logical operators in the de�nition of parallel composition� To show associativ	
ity� one �rst notes that the traces in lg

PkQ�kR� are exactly the words t in

a

PkQ�kR��� that satisfy t�
a
PkQ���aP � lgP � t�
a
PkQ���aQ � lgQ� and
tR � lgR� Then� one veri�es that the alphabet of a composite is the union of
the alphabets of the composed elements� thus a

PkQ�kR� aP � aQ � aR� and
also t�
a
PkQ���aP tP and t�
a
PkQ���aQ tQ� Consequently� lg

PkQ�kR�
 ft �
aP � aQ � aR�� j tP � lgP � tQ � lgQ � tR � lgRg� Since this
form is symmetrical in P�Q� and R� one veri�es similarly that lg
Pk
QkR��
ft �
aP � aQ� aR�� j tP � lgP � tQ � lgQ � tR � lgRg� and associativity is
established� �

Theorem � For networks M � N � and O such that M v� N � we have M �O v�

N �O�

Proof Let word t be such that t satis�es the precondition ofM �O v� N �O� i�e��
such that 	 P � N �O �M �O� tP � lgP �
iP �f�g�� Taking P k
M �O�� we
obtain tM�O � lg k
M �O� �
i k
M �O��f�g� lg k
M �O� �
ok
M�O��f�g��
We split this set and obtain two cases for t�

Case � If tM�O � lg k
M � O�� then tM � lg kM and tO � lg kO� Thus�
tM � lgkM � lgkM �
i kM � f�g�� Since 	 P � N � tP � lgP �
iP � f�g�

precondition� taking P � N � and M v� N � we have tN � lgkN also�

Case � If tM�O � lg k
M � O� � ok
M � O�� then let t uav� where a �
ak
M � O� and vM�O �� We have tM�O uM�Oa� thus uM�O � lg k
M � O�
and a � ok
M �O�� One veri�es that� consequently� tM
ua�M � lgkM �
okM �
f�g� lg kM �
i kM �f�g� and that 	 P � O� tP � lgP �
oP � f�g�� Now� taking
P � O in the precondition� we also have that 	 P � O� tP � lgP �
iP �f�g�� and�
since iP � oP �� we have 	 P � O� tP � lgP � i�e�� tO � lg kO� By M v� N �
knowing that tM � lg kM �
i kM � f�g� and that 	 P � N � tP � lgP �
iP � f�g�

precondition� taking P � N �� we have tM � lg kM lgkM and tN � lgkN �
In both cases� from tM � lgkM � tN � lg kN � and tO � lgkO it follows that

tM�O � lg k
M �O� lg kM �O and tN�O�M�O � lgk
N �O �M �O�� which
is the postcondition of M �O v� N �O� �

The following technical lemmawill be used in the proofs of transitivity for safety
and liveness�

�

Lemma � For networks M � N � and O such that M v� N and N v� O we have

	 t � U��

if tM � lg kM �
i kM � f�g� and
	 P � O� tP � lgP �
iP � f�g���
then tN � lgkN�

Proof Let t � U� such that tM � lg kM �
i kM � f�g� and
	 P � O� tP �
lgP �
iP � f�g��� We show by structural induction that every pre�x u of t
in
particular� t itself"� satis�es uN � lg kN �
Basis� u � uN � lg kN �
Step� Let u � U� and a � U such that ua � t and uN � lg kN � We show

ua�N � lgkN � Note that� for every trace structure Q� the language lgQ�
iQ�f�g�
is pre�x	closed� therefore�
ua�M � lg kM �
i kM � f�g� and 	 P � O�
ua�P �
lgP �
iP � f�g�� We consider three cases for a�

Case �� a
� akN � Then�
ua�N uN � lg kN �
Case �� a � okN � Since uN � lgkN lg kN and okN i kN � we have

ua�N � lg kN �
i kN � f�g�� Since
	 P � O�
ua�P � lgP �
iP � f�g�� and
N v� O� we have
ua�N�O � lg k
N �O�� Thus�
ua�N � lg kN �

Case �� a � i kN � Then� 	 P � N � a
� oP � Since uN � lgkN � we have

	 P � N � uP � lgP �� Thus�
	 P � N �
ua�P � lgP �
iP � f�g��� Since

ua�M � lg kM �
i kM � f�g� and M v� N � we have
ua�M�N � lg k
M � N ��
Thus�
ua�N � lg kN � �

Theorem � For networks M � N � and O such that M v� N � N v� O� we have

M v� O�

Proof Let t � U� such that t satis�es the precondition of M v� O� i�e�� such that
tM � lg kM �
i kM � f�g� and
	 P � O� tP � lgP �
iP � f�g���
By Lemma �� we have tN � lgkN � Therefore� 	 P � N � tP � lgP � lgP �

iP � f�g�� Since tM � lg kM �
i kM � f�g� and M v� N � we deduce tM � lg kM �
Also� from tN � lgkN � we have tN � lg kN � lgkN �
i kN �f�g�� Since
	 P � O�
tP � lgP �
iP � f�g�� and N v� O� we deduce tO � lgkO�
From tM � lg kM and tO � lg kO� we deduce tM�O � lgk
M �O�� i�e�� t satis	

�es the postcondition of M v� O� �

For sequence e � U�� alphabets � and $ such that � � $� and �nite pre�x t�

of e	� one veri�es� by structural induction� that there exists a �nite pre�x t of e

such that t�� t��

Proposition � For trace structures P and Q�

a� lim
PkQ� fe �
aP � aQ�� j eP � limP � eQ � limQg

b� limP limP�

Proof
Part
a�

�� Let e � U� such that ePkQ � lg
PkQ� and let t� be a �nite pre�x of eP �
There exists a �nite pre�x t of e such that tP t�� Since ePkQ � lim
PkQ�� we

��

have tPkQ � lg
PkQ�� thus tP t� � lgP � Since t� was arbitrary� every �nite
pre�x of eP is in lgP � Consequently� eP � limP �
One proves eQ � limQ similarly�

�� Let e � U� such that eP � limP and eQ � limQ� and let t be a �nite pre�x
of e� We have that tP � eP and tQ � eQ� It follows that tP � lgP and tQ � lgQ�
thus tPkQ � lg
PkQ�� Since t was arbitrary� every �nite pre�x of e is in lg
PkQ��
Consequently� ePkQ � lim
PkQ��

Part
b� This property follows from the facts that lim is uniquely determined by
lg and that� for every trace structure P � lgP lgP � �

Lemma � For network N and sequence e � U� such that 	 P � N� eP � otpP �
we have that eN � otpkN �

Proof Let sequence e as above and let a � okN such that eN recurrently enables
a in lgkN � Since okN

S
P�N oP � there exists Q � N such that a � oQ�

We have that eQ recurrently enables a in Q� Since
	 t � eN � u such that

tu � eN � tua � lg kN �� and akN � aQ� we have
	 t� � eQ � u� such that

t�u� � eQ � t�u�a � lgQ��� Since eQ � otpQ� we have that eQ recurrently �res a�
Since akN � aQ� we conclude that eN recurrently �res a� too� �

Lemma � For networks M and N � and sequence e � U� such that eM�N �
limk
M �N �� if M v�� N and eN � otpkN � then� 	 P � N� eP � otpP �

Proof
Let P � N and a � oP such that eP recurrently enables a in lgP � We need to
prove a is recurrently �red by eP � For that� we show a is recurrently enabled by
eN in lgkN �
Let u � e such that
ua�P � lgP � Since M v� N � we have a
� okM and

	 Q � N � fPg� a
� oQ� Since eN � limkN and eM � limkM � we have 	 Q �
N �M� uQ � lgQ� Consequently� 	 Q � N �M�
ua�Q � lgQ �
iQ � f�g�� By
M v� N it follows that
ua�N�M � lg k
N �M �� thus
ua�N � lg kN �
For every pre�x t of e there exists v such that tv � e and
tva�P � lgP
i�e��

a is recurrently enabled by eP in P �� Letting u tv in the paragraph above�
we have
tva�N � lg kN � Consequently� 	 t� � eN � � v� such that
t�v� � eN �

t�v�a�N � lg kN �� i�e�� eN recurrently enables a in lg kN � Since a � okN and
eN � otpkN � we have that eN recurrently �res a� Since a � aP � we conclude that
a is recurrently �red by eP � �

Proposition � For networks S and I such that S v�� I� and sequence e � U�

such that eS � limkS�

eI � otpkI� �
	 P � I� eP � otpP ��

��

Proof This proposition follows immediately from Lemma � and Lemma �� �

Theorem � For networks M � N � and O such that M v� N � we have M � O v�

N �O�

Proof Let e � U� such that eM�N�O � limk
M �N �O� and such that 	 P �
N �O� e � otpP � Since M v� N � we have eM � otpkM � By applying Lemma �
twice� we obtain eM�O � otpk
fkMg�fkOg�� Since k
fkMg�fkOg� k
M �O��
we conclude that eM�O � otpk
M �O�� �

The following lemma will be used to exploit the safety restrictions in the proof
of transitivity for liveness�

Lemma
 For networks M � N � and O such that

M v� N � N v� O�

we have

	 e � U��
eM�O � limk
M �O� � eN � limkN ��

Proof
Let e � U� such that eM�O � limk
M � O�� and let t� � eN � There exists t � e

such that tN t�� We have tM�O � eM�O and thus tM�O � lgk
M � O�� i�e��
tM � lg kM and tO � lgkO� By Lemma �� we have t� tN � lg kN � Since t� was
arbitrary� we have eN � limkN � �

Theorem
 For networks M � N and O such that M v��� N and N v��� O� we

have M v� O�

Proof Let e � U� such that eM�O � limk
M � O� and 	 P � O� e � otpP �
By Lemma �� we have eN � limkN � Since N v� O� we have eN � otpkN � By
Lemma �� we have 	 P � N� eP � otpP � Since M v� N � we conclude that
eM � otpkM � �

Proposition
 For networks M and N � if M v�� N then

M v� N
 fkMg v� fkNg�

Proof
�� Let e � limk
fkMg � fkNg� such that eN � otpkN � By Lemma ��
	 P � N� eP � otpP � Also� we have e � limk
M � N �� because k
M � N �
k
fkMg � fkNg�� Since M v� N � we conclude eM � otpkM �

�� Let e � limk
M � N � such that 	 P � N� eP � otpP � By Lemma �� we
have eN � otpkN � Also� we have e � limk
fkMg � fkNg�
see the
�� part��
Since fkMg v� fkNg� we conclude that eM � otpkM � �

��

Appendix B
 Behavior Automaton Proofs

Proposition � For behavior automaton A and sequence e in lim trA� A � e is a

knot�

Proof If e is in�nite� the fact that A � e is a well	formed state graph follows from
noting that� for any edge
q� a� q�� of ed
A � e�� that edge is passed in�nitely often
by e� thus both q and q� are reached in�nitely often by e� thus both q and q� are in
st
A � e�� If e is �nite� A � e is trivially a valid state graph because it has just one
state and no edge�
The non	voidness of A � e is trivial if e is �nite� because A � e has one state�

If e is in�nite� the non	voidness follows from the pigeonhole principle� Considering
that our automata have only �nitely many states� at least one state of A will be
reached in�nitely often by e�
The reachability follows from the fact that every state recurrently reached by e

must be led	to by at least one pre�x of e�
The strong connectivity is trivial if e is �nite� because e has just one state�
To show strong connectivity for the case with an in�nite e� suppose st
A � e�

could be partitioned into non	void sets S� and S�
S��S� � � S��S� st
A�e��
such that there exists no path from states of S� to states of S�� However� since e
reaches in�nitely many times the states of S� and the states of S�� e passes in�nitely
often through the set of edges of grA that leave S�� i�e�� the set of edges
q� a� q��
such that q � S�� but q�
� S�� Since there are only �nitely many such edges� by the
pigeonhole principle again� at least one such edge will be passed in�nitely often�
and thus has to be in ed
A � e�� For such an edge� q � S� and q� cannot be in
S�� Since A � e is a valid state graph� we have q� � S�� and thus the edge
q� a� q

��
constitutes a path from S� to S�� contradiction�
Finally� for two states p and p� in st
A � e�� suppose that p� were not reachable

from p by a path in A � e� It follows that st
A � e� can be partitioned into the
set S� of states reachable from p
containing at least p� and the set S� of states
not reachable from p
containing at least p��� with no path from S� to S�� which
leads to a contradiction as we have shown above� We conclude that� for every two
states p and p� of st
A � e�� p� is reachable from p by a path in A � e� Thus� A � e
is strongly connected� q�e�d� �

Proposition � For behavior automaton A and knot G in A� there exists a sequence

e in limtrA such that A � e G�

Proof If G has no edge� then� since G is strongly connected� G has only one state�
Let p denote that state� Since G is reachable� there exists a path from initA to
p� Let u be the word spelled by that path� we have A � u p� Let e be the �nite
execution spelling u� We have st
A � e� fpg and ed
A � e� �� thus A � e G�
Now� we consider the case where G has at least one edge� We know that G can

have only �nitely many edges� thus we can ennumerate them as follows�

p�� a�� q��� � � � �
pn� an� qn�

��

where n � ��
Since G is reachable� there exists a path from initA to p�� Let u�� be the word

spelled by that path� We have A � u�� p��
Since G is strongly connected� for every i and j in f�� � � � � ng� such that j

i mod n! �� there exists a path 	ij in G from qi to pj� Let uij be the word spelled
by that path�
We now concatenate the words spelled by these paths and the symbols on these

edges to form an in�nite sequence� Let e u��
a�u�� � � �anun���� Note that� since
n � �� the string a�u�� � � �anun� is non	void and� thus� e is in�nite�
One veri�es that� for all k � � and l such that � � l
 n�

A � tkl pl��

where
tkl u��
a�u�� � � �anun��ka�u�� � � �alul l��

Note that l! � l mod n! � because l
 n� and that the string a�u�� � � �alul l��

is empty if l ���
Therefore� for each l as above� state pl�� is led	to by in�nitely many pre�xes

tkl of e� Similarly� since tklal�� � e� edge
pl��� al��� ql��� is passed through by e
in�nitely many times� We conclude that stG � st
A � e� and edG � ed
A � e��
Conversely� note that the paths 	ij are in G� thus they pass only through states

and edges of G� In conclusion� we also have stG � st
A�e� and edG � ed
A�e��
Therefore� G A � e� q�e�d� �

Lemma � For behavior automata A and B and word t in lg
AkB�� we have

tA � lgA �

AkB� � t�A A � tA� and
tB � lgB �

AkB� � t�B B � tB �

Proof Since the two parts are similar� we prove only the �rst one� We use structural
induction over t�
� Basis� t �� We have� trivially� that �A � � lgA� and thus

AkB� � ��A

init
AkB��A initA A � � A � �A�
� Step� Let t ub� where b is an action in a
AkB�� Assume the property holds for
u� We consider two cases for b�
� Case b
� aA� By the inductive assumption� we have lgA � uA
ub�A� By
the de�nition of compatible triples� we have

AkB� �
ub��A

AkB� � u�A� By
the inductive assumption�

AkB� � u�A A � uA� Since b
� aA� it follows that

ub�A uA� and A � uA A �
ub�A� Thus�

AkB� �
ub��A A �
ub�A�
� Case b � aA�
By the de�nition of �� there exists an edge in AkB of the form

AkB� � u�� b�

AkB� �
ub�� ��

Since b � aA� there exists an edge in A of the form
q� b� q�� where q

AkB��u�A
and q�

AkB� �
ub��A�

��

Thus� there is a path from initA to q spelling uA� to which we add the edge

q� b� q�� to obtain a path from initA to q� spelling
ub�A� Thus� tA � lgA�
By the induction hypothesis� q A � uA�
By the de�nition of � again� and because b � aA� we have q� A�uAb A�
ub�A�
In conclusion�

AkB� �
ub��A q� A �
ub�A q�e�d� �

Lemma � For behavior automata A and B and word t in
a
AkB���� we have

t � lgAkB
 tA � lgA � tB � lgB�

Proof

�� This part is an immediate consequence of Lemma ��

��We use structural induction over t�
� Basis� t �� We have � � lg
AkB��
� Step� Let t uc� where c � aA � aB and u � lg
AkB�� Let p A � uA�
p� A � tA� q B � uB � and q� B � uB �
We have that
p� c� p�� � edA � c
� aA and
q� c� q�� � edB � c
� aB� thus

p� q�� c�
p�� q��� � ed
AkB��
By Lemma ��
AkB� � u
p� q�� Thus� by the de�nition of the � extension�

there exists a path in AkB from init
AkB� to
p� q� spelling u� By appending

p� q�� c�
p�� q��� to that path� we obtain a path starting at init
AkB� and spelling
ua� Thus� t � lg
AkB�� q�e�d� �

Theorem � For behavior automata A and B� we have tr
AkB� trA k trB�

Proof Immediate using Lemma �� �

Proposition � is proven immediately after the following lemma�

Lemma � For behavior automata A and B and sequence e in limtr
AkB��

AkB��
e�A A � eA and

AkB� � e�B B � eB �

Proof Since �nite sequences lead to single	state no	edge subgraphs� the property
for a �nite sequence e trivially follows from Lemma ��
For in�nite sequences� we only prove the A	part� The B	part is similar to the A	

part� We show�
a� st

AkB��e�A � st
A�eA��
b� st

AkB��e�A � st
A�eA��

c� ed

AkB� � e�A � ed
A � eA�� and
d� ed

AkB� � e�A � ed
A � eA��

a� Let p � st

AkB� � e�A�
By the de�nition of subgraph projections� � o � st

AkB� � e� such that oA p�
By the de�nition of the � extension� 	 t � e� � u such that tu � e and
AkB��
tu�
o�
By Lemma �� for each such t and u� we have oA A�
tu�A and thus p A�
tAuA��
One veri�es that� for each t� � eA� there exists t � e such that tA t�� and therefore
there exists u� uA
where u is constructed as above� such that t�u� � eA and
p A �
t�u���

��

We conclude that p � st
A � eA�� by the de�nition of the � extension�

b� Let p � st
A � eA�� Let t � e arbitrary�
By the de�nition of the � extension� � u� such that tAu� � eA and A �
t�u�� p�
One veri�es that� 	 u� such that tAu� � e� � u such that
tu � e and uA u���
Thus� we have 	 t � e� � u such that tu � e � A �
tu�A p�
Since e � lim tr
AkB�� we have that tu � lg
AkB� and thus we can apply
Lemma � to obtain 	 t � e� � u such that tu � e �

AkB� �
tu��A p�
That is� since e is in�nite� there are in�nitely many pre�xes
tu� of e such that

AkB� �
tu�A p�
Since there are only �nitely many states o of AkB such that oA p� by the pigeon	
hole principle there exist one state o� of AkB such that there are in�nitely many
pre�xes v of e which lead	to o��

� o� � st
AkB� such that

o�A p � 	 t � e� � u such that tu � e �
AkB� �
tu� o��

Therefore� � o� � st

AkB� � e� such that o�A p� thus� p � st

AkB� � e�A�

c� Part
c� is almost identical to Part
a� discussed above�
Let
p� d� p�� � ed

AkB� � e�A�
By the de�nition of subgraph projections� � o � st

AkB� � e� such that oA p�
By the de�nition of the � extension� 	 t � e� � u such that tud � e and
AkB� �

tu� o�
By Lemma �� for each such t and u� we have oA A�
tu�A and thus p A�
tAuA��
One veri�es that� for each t� � eA� there exists t � e such that tA t�� and therefore
there exists u� uA
where u is constructed as above� such that t�u�d � eA and
p A �
t�u���
We conclude that
p� d� p�� � ed
A � eA�� by the de�nition of the � extension�

d� Part
d� is almost identical to Part
b� discussed above�
Let
p� d� p�� � ed
A � eA�� Let t � e arbitrary�
By the de�nition of the � extension� � u� such that tAu�d � eA and A �
t�u�� p�
One veri�es that� 	 u� such that tAu�d � e� � u such that
tud � e and uA u���
Thus� we have 	 t � e� � u such that tud � e � A �
tu�A p�
Since e � lim tr
AkB�� we have that tu � lg
AkB� and thus we can apply
Lemma � to obtain 	 t � e� � u such that tu � e �

AkB� �
tu��A p�
That is� since e is in�nite� there are in�nitely many pre�xes
tu� of e such that

AkB� �
tu�A p and tud � e�
Since there are only �nitely many states o of AkB such that oA p� by the pigeon	
hole principle there exist one state o� of AkB such that there are in�nitely many
pre�xes v of e which lead	to o� and such that vd � e�

� o� � st
AkB� such that

o�A p � 	 t � e� � u such that tud � e �
AkB� �
tu� o��

Therefore� � o� � st

AkB��e� such that o�A p� thus�
p� d� p�� � ed

AkB��e�A�
�

��

Proposition � For behavior automata A and B and knot G in AkB� GA is a knot

in A and GB is a knot in B�

Proof
By Proposition �� there exists a sequence e in lim
AkB� such that
AkB� � e G�
By Lemma �� we have that A � eA

AkB� � e�A�
By Proposition �� we conclude that GA is a knot in A�
One proves similarly that GB is a knot in B� �

Lemma � For behavior automaton A and sequence e in A� we have r� e �
A�e�
and renlgAe enA
A � e��

Proof We distinguish two cases�
� Case e �nite�
� The �rst equality is trivial� r� e � �
A � e�� since
A � e� has no edges�
� For the second equality� we note�

enA
A � e�
 fa � aA j � p� � stA such that

A � e�� a� p�� � edAg
 fa � aA j ea � lgAg
 fa � aA j 	 t � e � u such that tu � e � tua � lgAg
e is �nite�
 enlgAe

� Case e in�nite�
� We prove r� e � �
A � e�� Let a � r� e� i�e�� e �res a in�nitely many times�
Since there are only �nitely many edges labelled with symbol a in A� by the pi	
geonhole principle� at least one such edge is passed through in�nitely often by e�
That edge is thus an edge in
A � e�� Since that edge has symbol a� we conclude
a � enA
A � e��
� We prove �
A � e� � r� e� Let a � �
A � e�� i�e�� such that there exists an
edge in A � e labelled with symbol a� By the de�nition of A � e� that edge is passed
through in�nitely often by e� thus a is �red in�nitely often by e�
� We prove renlgAe � enA
A � e�� Let a � renlgAe� i�e�� a is immediately en	
abled in lgA by in�nitely many pre�xes of e� Let S fA� t j t � e � ta � lgAg�
i�e�� the set of states led	to by these pre�xes� we have 	 p � S� enAp � a� Since
there are only �nitely many states in A� one of the states in S� by the pigeon	
hole principle� is led	to by in�nitely many pre�xes of e� i�e�� � p � S such that
	 t � e� � u such that tu � e � A �
tu� p� Thus� p � st
A � e�� Since
enAp � a� we conclude that a � enA
A � e��
�We prove enA
A�e� � renlgAe� Let a � enA
A�e�� i�e�� such that there exists
a state p in A � e such that a � enAp� We have that p is led	to by in�nitely many
pre�xes of e� i�e�� 	 t � e� � u such that tu � e � A �
tu� p� For each such
pre�x tu� we have that tua � lgA� because a � enAp� Therefore� a is immediately
enabled by in�nitely many pre�xes of e� and thus a � renlgAe� �

Lemma � For behavior automaton A� knot G in A� and sequence e in lim trA
such that A � e G� we have that G is an output trap in A i� e is an output trap

for trA�

��

Proof By Lemma ��
enAG � oA �G�

renlgAe� � oA r� e�� By
the de�nition of trA�

renlgAe� � oA r� e�

renlg trA�� o trA r� e��
Finally�

renlg trA� � o trA r� e�

e � otp trA�� �

Theorem � For behavior automata S and I� I is traplock�free for S i� ftrSg v�

ftrIg�

Proof

�� We prove that ftrSg v� ftr Ig� Let e � lim
trSktr I� such that eI �
otp tr I� By Theorem �� e � lim tr
SkI�� Let G
SkI� � e� by Proposition ��
G is a knot in SkI� By Proposition �� GI is a knot in I and GS is a knot in S� By
Lemma �� GI I � eI and GS S � eS � By Lemma
� GI is a trap in I� Since
I is traplock	free for S� GS is a trap in S� By Lemma
 again� we conclude that
eS � otp trS�

��We prove that I is traplock	free for S� Let G be a knot in SkI such that GI is
an output trap in I� By Proposition � and Theorem �� there exists a sequence e in
lim tr
SkI� lim
trSktr I� such that
SkI��e G� By Lemma � and Lemma
�
eI � otp tr I� Therefore� eS � otp trS and� by Lemma
 and Proposition �� we
conclude that GS is an output trap in S� �

��

References

�AS��� B� Alpern� F� B� Schneider� De�ning Liveness� Information Processing Let�

ters� ��
��� �
��� pp� ���%����

�Bl��� D� Black� On the Existence of Delay	insensitive Fair Arbiters� Trace theory
and its limitations� Distributed Computing�
��� �
��� pp� ���%����

�BS
�� J� A� Brzozowski� C	J� H� Seger� Asynchronous Circuits� Springer Verlag�
�

��

�CMP
�� E� Chang� Z� Manna� A� Pnueli� The Safety	Progress Classi�cation� Re	
port No� STAN	CS	
�	����� Stanford University� Dept� of Computer Science�
�

��

�DC��� D� Dill� E� Clarke� Automatic Veri�cation of Asynchronous Circuits Using
Temporal Logic� In� H� Fuchs� ed�� �	
� Chapel Hill Conf� on VLSI� pp� ���%
���� Computer Science Press� �
���

�Di�
� D� Dill� Trace Theory for Automatic Hierarchical Veri�cation of Speed�

Independent Circuits� An ACM Distinguished Dissertation� MIT Press� �
�
�

�Eb��� J� C� Ebergen� A Technique to Design Delay	Insensitive VLSI Circuits� Re	
port CS	R����� Centrum voor Wiskunde en Informatica� Amsterdam� The
Netherlands� �
���

�Eb
�� J� C� Ebergen� A Formal Approach to Designing Delay	Insensitive Circuits�
Distributed Computing�
��� �

�� pp� ���%��
�

�Fr��� N� Francez� Fairness� Springer	Verlag� �
���

�GBMN
�� G� Gopalakrishnan� E� Brunvand� N� Mitchell� S� M� Nowick� A Correct	
ness Criterion for Asynchronous Circuit Validation and Optimization� IEEE
Transactions on Computer�Aided Design of Integrated Circuits and Systems�
��
���� �

�� pp� ���
	�����

�Ho��� C� A� R� Hoare� Communicating Sequential Processes� Prentice	Hall� �
���

�Jo��� B� Jonson� Modular Veri�cation of Asynchronous Networks� In� Proc� �th

Ann� ACM Symp� on Principles of Distributed Computing� pp� ���%���� �
���

�Jos
�� M� B� Josephs� Receptive Process Theory� Acta Informatica� �

�����	���
�

��

�LL
�� L� Lamport� N� Lynch� Distributed Computing� Models and Methods� In
J� van Leeuwen� ed�� Handbook of Theoretical Computer Science� vol� B� Formal

Methods and Semantics� the MIT Press 	 Elsevier� pp� ���
%��
�� �

��

�LT��� N� Lynch� M� Tuttle� Hierarchical Correctness Proofs for Distributed Algo	
rithms� In� Proc� �th Ann� ACM Symp� on Principles of Distributed Comput�

ing� ���%���� �
���

�

�Mi�
� R� Milner� Communication and Concurrency� Prentice	Hall� �
�
�

�NB
�� R� Negulescu and J� A� Brzozowski� Relative Liveness� From Intuition to
Automated Veri�cation� In Proceedings of the Second Working Conference on

Asynchronous Design Methodologies� South Bank University� London� UK�
IEEE Computer Society Press� pp� ���	���� May �

��

�RSU��� M� Rem� J� L� A� van de Snepscheut� J� T� Udding� Trace Theory and
the De�nition of Hierarchical Components� In R� Bryant� ed�� Third CalTech

Conference on Very Large Scale Integration� pp� ���%��
� Computer Science
Press� Inc�� �
���

�Sn��� J� L� A� van de Snepscheut� Trace Theory and VLSI Design� PhD Thesis�
Department of Computer Science� Eindhoven University of Technology� Eind	
hoven� The Netherlands� �
���

�Th
�� W� Thomas� Automata on In�nite Objects� In J� van Leeuwen� Handbook
of Theoretical Computer Science� vol� B� Formal Methods and Semantics� the
MIT Press 	 Elsevier� pp� ���%�
�� �

��

�Ud��� J� T� Udding� A Formal Model for De�ning and Classifying Delay	
Insensitive Circuits and Systems� Distributed Computing� �
����
�%���� �
���

�Ud��� J� T� Udding� Classi�cation and Composition of Delay�Insensitive Circuits�
PhD Thesis� Department of Computer Science� Eindhoven University of Tech	
nology� Eindhoven� The Netherlands� �
���

�Ve
�� T� Verhoe�� A Theory of Delay�Insensitive Systems� Ph�D� Thesis� Eind	
hoven University of Technology� Eindhoven� The Netherlands� �

��

�YLS
�� A� Yakovlev� L Lavagno� A� Sangiovanni	Vincentelli� A Uni�ed Signal
Transition Graph Model for Asynchronous Control Circuit Synthesis� In Proc�
of the IEEE Int� Conf� on Computer Aided Design� pp� ���	���� IEEE Com	
puter Society Press� �

��

��

