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Abstract 
This paper presents a method for the verification 
speed-independent circuits. The main contribution 
the reduction of the circuit to a set: of complex 

gates that makes the verification time complexity d e -  
pend only on the number of state signals (C elements, 
RS fiip-jlops) o f  the circuit. 

Despite the reduction to complex gates, verijica- 
tion is kept  exact .  The specification of the environ- 
ment only requires t o  describe the transitions of the 
input/output signals of the circuit and is allowed to ex- 
press choice and non-determinism. Experimental re- 
sults obtained from circuits with more than 500 gates 
show that the computational cost can be drastically re- 
duced when using hierarchical verification. 

1 Introduction 
Asynchronous circuits can be considered as a prac- 

tical alternative to  face some of the critical problems 
that appear when designing complex, low power, high 
performance digital systems. 

The clock signal in synchronous circuits enables to 
introduce a level of abstraction in the time domain 
and overlook most temporal relations among the sig- 
nals of the circuit. Only the concept of critical path 
is relevant for the performance of the system but not 
for its functional correctness. Unfortunately for the 
designer, the absence of a clock in asynchronous cir- 
cuits makes their design an error-prone task. Most 
difficulties come from the need to ensure that all sig- 
nals are free of undesirable transitions, hazards, that 
can produce circuit malfunctions. 

The additional complexity introduced by the anal- 
ysis of the temporal relations makes verification essen- 
tial for asynchronous circuits. But while only the out- 
puts of memory elements, e.g. flip-flops, are required 
to  represent the state of a synchronous circuit, the out- 
put of all nodes (gates and memory elements) must be 
probed to define the state of an asynchronous circuit. 
Given that, in the worst case, the size of the state 
space can be 0(2.), TI being the number of signals 
to  define the state, this space can become extremely 
large even for moderate size asynchronous circuits. 

Several authors have proposed verification tech- 
niques to avoid the explicit enumeration of all the 
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states: unfoldings [ll], partial orders [14], symbolic 
model checking [4] and trace theory [6] among others. 

This paper presents sufficient conditions to au- 
tomatically reduce the complexity of the circuit to 
be verified for speed-independence. The proposed 
method aims at the reduction of the number of vari- 
ables required for verification. It has been combined 
with symbolic model checking techniques to  efficiently 
represent the state space of the circuit. 
1.1 Contributions 

The method presented in this paper aims at the 
verification of gate-level speed-independent circuits. 
Beerel et al. [a] observed that, if the verifier were told 
by some oracle that the circuit is hazard-free, check- 
ing its correctness against its specification coiild he 
reduced, roughly speaking, to perform a verification B 
la synchronous with only the outputs of the memory 
elements (e.g. C-elements or RS flip-flops) as state 
variables. Based on this observation, our approach 
verifies correctness in two steps: (1) satisfiability of 
the specification assuming the absence of hazards and 
(2) hazard detection. The major contributions of this 
paper are the following: 

The circuit, a flat netlist of gates, is automatically 
reduced to a set of complex gates. The time com- 
plexity of verification is made dependent on the 
number of memory elements rather than on the 
number of signals of the circuit. 

Even with the reduction to  complex gates, verifi- 
cation is kept exact, i.e. neither false positive nor 
false negative verification results are possible. 

The environment is described by a state graph 
that only needs to contain the transitions of the 
input/output signals of the circuit. Choice and 
non-determinism of the environment are allowed. 

The paper is organized as follows. Section 2 dis- 
cusses the basic ideas of hierarchical gate-level veri- 
fication by means of an example. Section 3 presents 
some basic definitions used along the paper. Section 4 
analyzes the conditions under which exact hierarchical 
verification can be performed. Section 5 discusses the 
most significant implementation issues of our verifier. 
Comparative results between flat and hierarchical ver- 
ification are presented in Section 6. Finally, Section 7 
concludes the paper. 
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Figure 1: (a) Circuit with a hazard-free behavior, (b) The same circuit with a hazardous behavior, (c) Equivalent 
hazard-free complex-gate circuit. 

2 Hiewrchical verification: overview 
This section presents hierarchical verification by 

means of two examples. In this section, speed- 
independence will be considered equivalent to hazard- 
freeness under the unbounded gate delay model. More 
precise definitions will be given in Section 3. 

Speed-independence is not a property of a circuit by 
itself but of the behavior of a circuit under a certain 
environment. In our framework, the behavior of the 
environment will be represented by a Signal Transition 
Graph [5] in which the output signals will be inputs 
of the circuit and vice versa. Figures l.(a) and l.(b) 
depict a circuit excited by two different environments. 
The circuit is hazard-free with environment (a), but 
hazardous with environment (b). In the latter case, 
a static hazard can be produced on signal d when, 
in the state (abcde) = (11110), the event e-- arrives 
before e has switched to 1. However, note that an 
equivalent complex-gate implementation of the same 
circuit (Figure l.(c)) can be hazard-free. 

Figure 2 shows the state graph obtained by a reach- 
ability analysis of the system in Figure l.(a). In the 
worst case, tthe number of states can be as lar,ge as 2” , 
n being the number of signals of the circuit. Verifi- 
cation through reachability analysis [4] would simply 
check that each transition produced at the outputs of 
the circuit can be accepted by the environment, i.e. a 
transition with the same label is enabled in the STG. 
2.1 Functional and behavioral correct ness 

Two important concepts must now be introduced to  
set up the basis of verification: functional correctness 
and behavioral correctness. 

A circuit is said to be functionally correct if an ap- 
propriate combination of the delays of its components 
can produce the behavior expected by the environ-- 
ment . 

A functionally correct circuit is said to be behaw 
iorally correct if it produces the behavior expected by 
the environrnent regardless the delay assigned to each 
component, provided that the delays are within the 
margins assumed for the delay model and the technol- 
ogy. For speed-independent circuits, delays are in the 
range (0, a). 

(abcde) 
00000 
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~01010] I 00011 I 

01110 

01111 

Figure 2: State Graph of the circuit in Figure l.(a). 

We can say now that the circuit in Figure l .(b) is 
functionally correct, since by assigning the AND gate 
a delay shorter than the delay between the transitions 
b+ --+ e-, the generated behavior is the one expected 
by the environment. However, this circuit is behav- 
iorally incorrect, since long delays on the AND gate 
may produce a static hazard on d. The circuit in Fig- 
ure l.(c) is both functionally and behaviorally correct 
(the complex-gate architecture basically assumes zero 
delay for the AND gate). 

2.2 Verification of functional correctness 
A speed-independent circuit must behave correctly 

for any finite delay of its components. A particular 
case consists in “moving” the delay of a gate to its 
fan-out gates. Let us take as example the circuit in 
Figure l .(b).  We can move the delay of gate e to its 
fan-out gate d,  and we obtain the complex gate in 
Figure l.(c). We refer to this kind of gate clustering 
as collapsing. Since all the delays are in the range 
(0,  a), the sum of the delays of d and e is still in the 
same range. The behavior of the output of a complex 
gate is included in the behavior of the original circuit 
(prior to collapsing). 

In our framework, functional correctness is verified 
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Figure 3: (a) State graph after verification of func- 
tional correctness. (b) State graph after verification 
of behavioral correctness. 

by collapsing some of the gates of the circuit. In this 
way, multiple gates can be collapsed into one complex 
gate and, thus, internal signals eliminated for the veri- 
fication. Only for memory elements (e.g. C elements) 
or outputs of complex gates, the signals cannot be 
eliminated. 

Verification of functional correctness becomes sim- 
pler and faster because of the elimination of internal 
signals. Moreover, design errors that do not depend on 
the delays of the gates can be detected soon, without 
requiring an exhaustive verification of the temporal 
relations among all signals. 

In the example of Figure l.(b), functional correct- 
ness is verified by first collapsing the AND and OR 
gates into one complex gate and eliminating signal e.  
Next, the state graph of the circuit/environment is 
built and verified for correctness (Figure 3.(a)). 

2.3 Verification of behavioral correctness 
In general, large circuits will be collapsed into sev- 

eral complex gates. As illustrated in Figure 4, this can 
be done hierarchically according to efficiency criteria 
for verification. 

Figure 4: (a) Flat circuit (8 gates). (b) Hierarchical 
complex-gate organization (3 complex gates). 

The second step of verification is devoted to de- 
tect hazards inside the complex gates. Intuitively, this 
is performed as follows. Given a complex gate, the 
state graph of the collapsed circuit is projected onto 
the input/output signals of the complex gate. This 
projection maps all states with the same values for 
the input/output signals of the complex gate (even if 
they are semantically different) onto the same state. 
We will show that this apparent loss of environmen- 
tal information is not relevant for the verification of 
hazard-freeness. Finally, the complex gate is verified 
to be hazard-free under the projected graph as envi- 
ronment. 

Isomorphic groups of gates can be mapped onto the 
same complex gate. In the example in Figure 4 there 
is a pattern repeated twice: an OR gate which inputs 
are an AND gate and a primary input. We will show 
in Section 4 that we can project the environment of 
several complex gates onto one single state graph and 
verify they hazard-freeness at a time. This hierarchy 
allows us to verify isomorphic subcircuits together. 

It is important to  notice that the environment of 
each complex gate is calculated as if it were hazard- 
free. In Section 4 we will show that,  even with this 
restricted environment, hazard-freeness can be exaclly 
verified. 

Figure 3.(a) shows the state graph of the collapsed 
circuit. By chance, this graph coincides with its pro- 
jection onto the signals {a, b , c , d }  as the whole cir- 
cuit has been collapsed into one complex gate. When 
generating the state graph of the complex gate (Fig- 
ure 3.(b)), an unexpected transition (d- )  is detected 
in state ii010, since the corresponding state of the 
environment (1101) can only accept transition a-. 

In case the complex gate were verified to  be hazard- 
free, its corresponding state graph would be projected 
onto the input/output signals of its components and 
the same operation would be performed a t  the next 
level of the hierarchy. This is illustrated in Figure 5 
that depicts the environment of the AND gate after 
projecting the graph of Figure 3.(b) onto the signals 
( % b ,  e l l .  

‘This environment is only depicted as an example, since 
there is not need to derive it for simple gates or for gates con- 
tained in hazardous complex gates. 
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Figure 5: Environment of the AND gate after the pro- 
jection of the state graph onto the signals a ,  b and e .  

Only one question remains to  be answered: why 
is hierarchical verification exact? In our framework, 
the absence of hazards is proved by verifying that the 
circuit is semz-modular, i.e. no gate can be disabled by 
changing the value of its inputs. Let us assume that C 
is a circuit amd 6 is an equivalent circuit in which some 
gates have lbeen collapsed into complex gates and the 
corresponding internal signals eliminated. In Section 4 
we will prove that: 

a) if 6 is not semi-modular, then C is not semi- 

b) if C is semi-modular but C is not semi-modular, 
there is a complex gate of e for which the behav- 
ior of the corresponding decomposed gate, under 
the prc)jection of the state graph of 6 onto the 
input/outputs of the gate, is not semi-modular. 

Conjecture a) guarantees no false negatzves, 

Why is hierarchical verification more 
efficient ? 

A critical factor that determines the complexity of 
verification is the number of signals of the circuit. 
With hierarchical verification the number of signals 
relevant at each step of the verification is drastically 
reduced: during verification of functional correctness 
only the input/output signals of the complex gates are 
required; during verification of behavioral correctness 
of a complex gate only the interface and internal sig- 
nals of the gate are required. 

There is only one limit to the minimum number of 
variables required for functional verification: the num- 
ber of output signals of the memory elements, such as 
C-elements or RS flip-flops. 

modular either. 
h 

whereas conjecture b) guarantees no false posztzves. 
2.4 

approach impractical when a flat netlist of gates, with 
no explicit hierarchical organization, must be verified. 

Following Dill’s approach, a subset of gates of the 
flat circuit (potentially substitutable by a complex 
gate) should be substituted by an equivalent trace 
structure. Not knowing how the environment of the 
complex gate will be inside the circuit, the trace struc- 
ture should consider all possible input/output transi- 
tions and, therefore, include the state of all internal 
signals, which would preclude the subset of gates to 
be handled as a complex gate. 

Conservative verification 

Beerel et al. [2] also propose a two-step approach. Af- 
ter verifying the circuit is complex-gate equivalent to 
its specification, hazard-freeness is verified by subse- 
quently checking the monotonicity and acknowledg- 
ment of all signal transitions. A cube approximation 
that overestimates the set of states of the circuit is 
proposed to  conservatively prove the absence of haz- 
ards. Although never found in the examples presented 
by the authors, false negatives are theoretically possi- 
ble. Other limitations of this approach are that it is 
limited to externally-cut circuits (all memory elements 
must appear in the specification) and that the speci- 
fication of the circuit is not allowed to  express output 
choice (arbitration). 

Polynomial methods for signal graphs 

Kishinevsky et al. [7] presented a polynomial algo- 
rithm to verify distributivity (a subclass of speed- 
independence) from circuit behaviors described by sig- 
nal graphs. The main limitation of their approach is 
that the signal graph must specify the transitions of 
all signals of the circuit and that neither choice nor 
non-determinism are allowed in the signal graphs. 

3 Definitions 
We will consider a circuit to be a set of gates con- 

nected to an environment. The behavior of the envi- 
ronment will be modeled by means of a state graph. 
In our verifier, the state graph is derived from a Sig- 
nal Transition Graph that describes the interaction 
of the environment with the input/output signals of 
the circuit. Thus. environments with choice and non- 

2.5 Related work determinism are allowed. 
In this section, some of the most relevant efforts re- 

lated with t8he verification of speed-independence and 
closest to the approach described in this paper are 
presented. 

Hierarchical verification 

Definition 3.1 (Circuit) A circuit is a pair C = 
(A,  “ 1 ,  where A = { a l ,  ..., a,} is a set of signals 
(. = AI) and F maps each signal a; E A to a boolean 
function f ;  of arity n ,  that represents the function 
compuied b y  the gate that drives a;. 

In his thesis [B], Dill already proposed hierarc!hical ver- 
ification of speed-independence: if a component con- 
forms to  a trace structure, the behavior of that compo- 
nent can be safely substituted by the trace structure. 

However, this approach requires the designer to 
identify the basic components of the circuit and know 
their expected behavior in advance. This makes the 

Definition 3.2 (Fan-in and fan-out of a signal) 
The fan-in of signal a; E A, fanin(a;) C A, is ihe 
set of signals that fi depends on. For gates that hold 
state, a; E fanin(a;) .  The fan-out of signal a; E A ,  
fanout(a;) C_ A, is the set of signals that depend on 
ai, i .e. fanout(a;) = { a k  E Ala; E fanin(ak)} .  
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Definition 3.3 (State graph) A state graph (SG) 
is a 4-tuple, ( A , S ,  E , X ) ,  where A = {a1 ,..., a,} is the 
set of signals, S is the set of states, E C S x S is 
the set of transitions and X is the labeling function for 
states that maps each state with a bit-vector over A. 

The fact that (s, s’) E E will be also denoted by SES’. 
E* denotes the transitive closure of E, and sE*s‘ de- 
notes that there is a path from state s to state s’ in 
the state graph. In those cases jn which the labeling 
function is the identity, the state graph will be denoted 
simply as (A ,  S, E). 

Definition 3.4 State graph of a circuit The state 
graph of a circuit C = (A ,  F )  with initial state so is a 
state graph, SG(C, so) = (A ,  S ,  E ) ,  such that S and E 
are strictly defined b y  the following recursion: 

1. so E s . 
2. [ ( S  E S)A(Vi#kSi = Si)A(SL # S k ) A ( S L  = f k ( s ) ) ]  

==+ [(s’ E S) A (s, s‘) E E] . 

Relation E can be partitioned into n subsets as fol- 
lows: 

Ei = {(s,s’) E Elsi = S i }  , 
E = U E i .  

a , E A  

Note that the labeling function X is the identity. This 
means that each state s E S is a bit-vector over A such 
that the ith element of s, denoted by si ,  specifies the 
value of signal ai in state s. 

Given a state s E S, if there exists s’ E S such that 
sEis‘ we will say that signal ai is excited in state s. 
Otherwise we will say that ai is stable in s. 

Definition 3.5 (Projection of the state graph 
of a circuit) Given the state graph of a circuit, 
SG(C, so) = (A ,  S ,  E ) ,  and a subset of signals X C A,  
the projection of SG(C,so) onto X is a state graph, 

Vs = (SI ,... , Sn) E s, projx(s ) ,= (SI,..., Sk), 
i.e. the sub-vector of s containing only the 
signals in X (we assume 1x1 = k and X to 
be the first IC elements o f  A), 

pro jx(S)  = (~’13s E S : projx(s)  = s’} , 
P..& ( E )  { (Pro& ( s )  9 Pro& ( 4) I SE’ s’ 

and only one signal in X 
transitions from s to s’} . 

= 

Note that the definition of a state as a bit- 
vector implies that semantically different states can 
be projected onto the same state (i.e. projx(s)  = 
p r o j x  (s ’ )  = i’ and s # s’). 

The following proposition is a result of the previous 
definition. 

Proposition 3.1 Let C = ( A ,  F )  be a circuit, 
SG(C,  so) = ( A ,  S,  E )  its state graph, and fanin(ai)  U 
{ a i }  & X E, A. Let pro jx(SG(C,so) )  = ( X , s ^ , @  be 
the projection of SG(C,so) onto X .  Let s,s’ E S and 
S E  S such that projx(s)  = projx(s’) = 2. Then 

ai excited in s e ai excited in  s’ e ai excited in  i? . 

Proposition 3.1 is crucial for our method, since 
it states that the excitation/stability of a complex 
gate (and subsequently semi-modularity) can be lo- 
cally checked by only knowing the values of the in- 
put/output signals of the gate and regardless the state 
of the rest of the circuit. 

Without loss of generality and for the sake of sim- 
plicity, we will consider autonomous circuits, i.e. with 
no interface, for verification. The obtained results can 
be naturally extended to circuits with interface. 

Next, observational equivalence [12] is defined. 
This is a concept that establishes an equivalence 
among those circuits that produce the same events 
on a given set of signals. For simplicity, we will use 
a restricted definition, since we are only interested in 
circuits in which the signals of one of them is a subset 
of the signals of the other. 

Definition 3.6 (Observational equivalence be- 
tween two circuits) Let C = ( A ,  F )  and 6 = ( X ,  @) 
be two circuits with X C A, and let S G ( C , s o )  = 
( A , S , E )  and SG(G,?’) = (X,,!?,,f?) be their state 
graphs. C and C are observationally equivalent from 
so and ?’ respectively iff: 

h 

h 

I .  if’ = projx(so)  . 

2. Vs E S,? E ŝ  such that 2 = projx(s)  and Vai E 

a) if sEis’ then 3 1  E s^ such that Z&? and 

b )  if ?,!$? then 3s‘ E S such that sE>EjE>s‘ 

where E: denotes any sequence of non-observable 
transitions. 

X :  

9 -  s - p.ojx(s’) . 

and Z’ = projx(s‘) . 

In this paper we propose to  verify semi-modularity 
rather than speed-independence. Semi-modularity is 
more robust than speed-independence and both con- 
cepts are tightly related for most practical cases, as 
subsequently explained (see [17] for further details). 

Definition 3.7 (Semi-modularity) A signal ai is 
semi-modular with respect to signal a b  E fanin(ai) 
(ai # a k )  i f  the gate that drives ai,  having been excited, 
cannot become stable b y  changing the value of  a k .  I n  
terms of the SG of the circuit, a signal ai is semi- 
modular with respect t o  a b  in SG(C, so) = (A,  s, E )  
i f f  

s E ~ s ’  * [si # fi(s) ==+ # f i (~’ ) ]  . 
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f4 = a3 . a5 + a4 . (a3 + as) 
f4 := a3 . (a1 + a2) + a4 . (a1 + a2 + u 3 )  

Figure 6: O:R and C gates collapsed into a complex 
gate. 

A signal ai is semi-modular if it is semi-modular with 
respect to ar‘l its fan-in signals. A circuit i s  semi- 
modular if ai l  its signals are semi-modular. 

Definition i3.8 (Strongly-live circuit [17]) A cir- 
cuit is strongly live z f f  its state graph is strongly con- 
nected and for each signal ai there exists a state s E S 
in which ai i s  excited. 

Theorem 3.1 ([17]) If a circuit is strongly live, then 
the circuit is speed-independent iff it is semi-modular. 

4 Reduction to complex gates 
This section provides the means that enable to elim-. 

inate some signals of a circuit to  simplify its verifica- 
tion. We propose to  collapse several gates into one 
complex gate with the same functional behavior and 
eliminate the internal signals. 

Let us assume we have a circuit C = ( A , F )  with 
signal a, being driven by a combinational gate, Le. 
a,  @ fanin(a,). Let us build a new circuit e = (X, F ) ,  
with X = A-{a,}. Let 2= projx(s)  and the boolean 
expressions of the gates of e defined as follovvs: 

h 
if a, 4 fanin(ai)  , 

ifa,  Efanin(a i )  . 

Note that the above expression substitutes s, by f,(s) 
and, therefore, fi(2) does not depend on s,, as a, 
fanin(a,). 

Figure 6 shows how the boolean expression of a 
complex gate is derived from the expressions of the 
simple gates. In case ]fanout(a,)l > 1, multiple com- 
plex gates will be created, as illustrated in Figure 7. 

h 

Theorem 4.1 Given two circuits C = (A ,  F )  and e = ( X , P ) ,  with X = A - {a,} and dejined as 
above, and their state graphs, SG(C, so) =AA, SI E )  
and S G ( e ,  projx(so)) = ( X ,  2, g). C and C are ob- 
servationally equivalent from so and proj, ( s o )  respec- 
tively iff all signals in fanout(a,) are semi,-modular 
with respect to a,  in S G ( C , s n ) .  

Proof 
Condition 1 of definition 3.6 holds by construction. 
Let s E S,  2 E S ,  g = projx(s)  and ai E X. In those 
cases where we prove that fa(s) = f ; (Z) ,  it imme- 
diately follows that obsezvational equivalence holds. 
More precisely, fi(s) = fi(g) = si implies that ai is 
stable in both s and S and, therefore, conditions 2.a 
and 2.b hold. If fi(s) = fi(2) = Si there exist s’ and 
s such that sEis’ and SEi? and ? = projx(s’) ,  since 
the same signal transitions from s and 2. Therefore, 
conditions 2.a and 2.b also hold. 

If a, @ fanin(ai)  then s(2) = fi(s) and, therefore, 
observational equivalence holds. 

If a, E fanin(ai)  then 

h 

h 

h 

h 
/y 

h 

fi (2) = fi(S1,. . . , Sn- l,O).K(.)+fi (s1 ,. . . , S , - l , l ) . f n  ( s ) .  

1 semi-modularity observational equivalence I 
~ ~~~ 

Since ai is semi-modular with respect to a,, a 
change on signal a, cannot disable ai .  Hence, fi(s) 
does not depend on s, when signals ai and a, are 
simultaneously excited, i.e. 

It only remains the case 

which describes the situation in which ai is stable, a ,  
is excited, and f i ( s )  depends on the value of signal a,. 
Hence, 
h 

fi(2) = K(s1,. .., S n - l , l ) . S , + f i ( S 1 , . . . , S , - l , l ) . ~ n  
- 

- - f ; ( s )  = si . 

Clearly, condition 2.a holds for state s, since ai is not 
excited in s.  To prove 2.b, let us take ? such that 
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Figure 7: (a) Gate with multiple-fan-out. (b) Complex gate considered for functional correctness (c) and for 
behavioral correctness. 

h 

2EiS’. We will prove that there exist s’, s” E S such 
that sE,s“Eis‘ and S’ = projx(s’). 

Since a, is excited in s then we have s“ E S such 
that sE,s”. But now, ai is also excited in s” as 

- 
fi(S1,...,sn-1,0) = - f ’ i ( ~ ~ , . . . , s n - ~ ,  1) , 

and thus there exists s’ E S such that d’Eis’. Finally, 
s and s’ only differ in the ith and nth elements and 
therefore 2 = projx(s’). 

17 semi-modularity -3 7 observational equivalence I 
If ai is not semi-modular with respect to a,, then 

3s,s‘,s/ /  E S such that sEis’, sE,s” and ai is not 
excited in s”. 
Since only a, changes between s and s“, we have that 
s = projx(s)  = projx(s/’). Thus, h 

Since ai is excited in s and stable in s” (after a tran- 
sition of a,) then 

f i (s1, . . . ,  s n - l , ~ )  = fi(sl,..., sn-1,1) . 
Moreover, f n ( s )  = S, and f i ( s )  = S i ,  as a, and ai are 
excited in s. Therefore, 
h 

fi(2) = f;(sl ,..., sn-1 ,1)  ‘ s n  + fi(sl,..., sn-1 ,1)  ‘ 5 ,  
- 

= f i ( S )  = si , 
which means that ai is not excited in 2 and, therefore, 
condition 2.a does not hold. 0 

Theorem 4.1 is the basis to prove that hierarchical 
verification is exact. This is the purpose of the next 
corollaries. 
Corollary 4.1 C not semi-modular from 9 ==+ C 
not semi-modular from so. 

h 

Proof This immediately follows from the fact that 
the state graph of e is the projection of the state graph 
of c. 0 

Corollary 4.1 guarantees that hierarchical verifica- 
tion will not give false negatives. 

Corollary 4.2 If 2 is semi-modular from and C 
is not semi-modular from so ,  then either a,  or some 
signal ai E fanout(a,) are not semi-modular in  C .  

Proof (by contradiction) Assume that a, and all 
its fanout signals are semi-modular. Then, by theo- 
rem 4.1, C and e should be observationally equivalent. 
Since C is semi-modular and C is not semi-modular, 
then a, (the only non-observable signal) should be 
non-semi-m-odular, which contradicts the initial as- 
sumption. 0 

Corollary 4.2 shows that hierarchical verification 
does not produce false positives. Consider a complex 
gate that drives ai E fanout(a,), and that X i  is the 
set of input/output signals of the gate, i.e. 

h 

x, = ( a i }  U ( f u n q a i )  - {a,}) Ufunin(a,) . 

It can be derived that,  by taking projx,(SG(e,2’)) as 
the environment of the complex gate, and SE as the ini- 
tial value for signal a,, non-semi-modularity of ai and 
a, in SG(C, so) is also detected in projx, ( S G ( e ,  2’)) 
(by proposition 3.1). 

Intuitively it can be proved by showing there is al- 
ways one state s of C in which non-semi-modularity is 
manifested for the first time from so. Because of the 
observational equivalence while semi-modularity holds 
from so, the projection of s ontoAXi will also belong 
to the set of states of projx,(SG(C,?’)). 
4.1 Environment of a complex gate and 

circuits with environment 
Complex gates obtained from collapsing can be seen 

as externally-cut circuits [l]. An important property 
of externally-cut circuits is that they have no hidden 
state. The state of such circuits is completely captured 
by the values of the interface signals, i.e. the values 
of the interface signals uniquely define the value to  
which all internal signals would eventually settle if the 
interface were held fixed [l] .  This follows from the 
fact that memory elements in externally-cut circuits 
can be regarded as combinational gates when given an 
interface state. For example, a C-element will operate 
as an AND gate in those states in which the output is 
zero, but as an OR gate if the output is one. 

The projection of the state graph onto the inter- 
face signals will keep the edges involving interface 
signal switches (see proposition 3.1). This projec- 
tion, however, may fold semantically different states 
onto the same state, thus introducing additional non- 
determinism (choice). Nevertheless, input choice is 
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not a problem because in the second verification step 
we are dealing with externally-cut circuits. Since there 
are no hidden variables, the circuit reaction will de- 
pend only on the state and on the signal that has 
switched. Therefore, the behavior of an externally-cut 
circuit in such cases will be the same independently of 
whether theire is a state with nondeterministic choice 
or two different states (with deterministic choice). 

Let us assume that a circuit has several iinstances 
of the same l(comp1ex) gate. Figure 8 shows two AND 
gates of the same circuit with a different environment 
for each. As previously mentioned, the environment 
of a complex gate is calculated as the projection of 
the state gratph onto X,. In this is example the states 
labeled with 010 of the environment of G2 result from 
the projection of two different states2. 

To verify the semi-modularity of each AND gate, 
we calculate the union of the environments of all AND 
gates of the circuit (environment for the generic gate 
G in Figure 13). This many-to-one mapping may intro- 
duce choice and/or non-determinism not manifested in 
the initial state graph. In fact, the set of sequences of 
transitions accepted by the union of projected state 
graphs can be larger than the union of the sets of 
sequences generated by each individual gate. How- 
ever, semi-modularity is a local property of a gate that 
needs to  be checked only between adjacent states of 
its environment. Since any transition of the projected 
state graph results from at least one projection of the 
original state graph, verification is not pessimistic but 
exact. 

Interestingly, if the union of the projected state 
graphs produces a semi-modular behavior of G (the 
generic gate), it also describes a set of sequences of 
events that, if applied to each gate individually, would 
produce a semi-modular behavior. 

Needless to say that,  with the previous considera- 
tions, the presented approach allows to verify circuits 
against an environment described by a state graph, 
possibly containing choice, non-determinism and/or 
state variables that do not correspond to  values of in- 
put/output signals. 

5 Impleimentation issues 
A verifier based on symbolic model checking has 

been implemented. Its inputs are a Signal Transition 
Graph, describing the behavior of the environment, 
and a netlist of gates. The environment only needs 
to  specify transitions of the interface signals of the 
circuit. Input/output choice and non-determinism are 
allowed. 

The markings (states) of the Signal Transition 
Graph are symbolically represented by using encoding 
techniques such as the ones presented in [8]. Disjunc- 
tively partitioned transition relations and breadth first 
search algorithms for symbolic traversal [4] htwe been 
used to calculate the set of reachable states. Next, 
some implementation issues are discussed. 

'For the sake of clearness, they are depicted as different 
states in the fiigure 

5.1 Reduction to complex gates 
The algorithm currently implemented is very sim- 

ple. Each combinational gate is collapsed with its fan- 
out gates. Only when the output of a combinational 
gate is one of its inputs (feedback loop), the reduction 
is not possible. 

At the end of the reduction step, only one signal 
for each memory element and combinational loop is 
kept. These signals are the ones used for functional 
verification. 
5.2 Output choice 

Circuits with output choice (arbitration) can 
also be verified with our method. The non-semi- 
modularity of arbitration signals (e.g. outputs of a 
mutex) is considered hidden inside the gate and not 
manifested externally. This requires a special ad-hoc 
description of arbitration elements in the library of 
gates. For example, a mutex element with two inputs 
(RI,R2) and two outputs (Al,A2) can be modeled by 
two boolean equations: 

A I  = RI A E; A 2  = R 2  A 

In this case, non-semi-modularity is allowed for A1 
and A2 with respect to  A2 and A1 respectively. 
5.3 Isochronic forks 

Verification of speed-independence assumes that 
wire delays are negligible with regard to  gate delays. 
As shown in Figure 7, gates with multiple fan-out are 
split into several instances, each one collapsed with 
one of the fan-out gates. However, forks must be con- 
sidered isochronic during the detection of hazards on 
the internal signals. Therefore, gates that share some 
input signals must be simultaneously verified for be- 
havioral correctness, with only one common instance 
of the multiple-fan-out internal gates. As it is shown 
in Figure 7.(c), signals a5 and a6 must be simulta- 
neously verified with only one instance of the gate 
that drives a7. This would not be necessary if delay- 
insensitiveness were verified, since forks are not as- 
sumed to  be isochronic. 

6 Experimental results 
Table 1 reports the results obtained from running 

several experiments on our verifier. All the examples 
are scalable, i.e. they can be enlarged by simply in- 
creasing the number of instances of the basic cells. 
However, their intrinsic regularity has not been ex- 
ploited to verify the circuit. 

The examples used are the following: master-read 
(obtained from automatic synthesis tools), a Dis- 
tributed Mutual Exclusion (DME) circuit [9, 61, a tree 
arbiter [lS], an asynchronous FIFO [IO], a register file 
[I31 and a demultiplexer [3]. 

Results on flat (no reduction to complex gates) and 
hierarchical verification are shown3. The number of 
signals for hierarchical verification corresponds to  the 

3 F ~ r  the DME, results are comparable to those presented in 
[4] when multiple initial states are used. Here, we only present 
results obtained with one initial state (to avoid taking advantage 
of the regularity of the circuit) 
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Figure 8: Union of environments for different instances of the same gate. 

number of states signals of the circuit, since all com- 
binational gates are eliminated. 

All the circuits are dominated by memory elements. 
The one with most combinational gates is the DME 
(half of the signals). The FIFO is a peculiar case, as 
all the signals are outputs of memory elements and, 
therefore, no difference exists between flat and hier- 
archical verification. The reported BDD sizes are the 
largest ones encountered during the traversal of the 
circuit. The CPU time of hierarchical verification is 
mostly dominated by the first step (functional verifica- 
tion). The number of states of hierarchical verification 
is the one obtained during functional verification. 

The size of the BDDs, often crucial to avoid running 
out of space, is reduced by the fact that many variables 
are eliminated when reducing to complex gates. The 
significant improvements in CPU time are basically 
due to two factors: 1) the reduction of the size of 
the BDDs and 2) the reduction of the logic depth of 
the circuit, which directly influences on the number of 
iterations required to reach a fixed point during the 
traversal. 

The presented results confirm that hierarchical ver- 
ification makes time complexity depend on the number 
of state signals of the circuit, rather than the number 
of gates. We believe that even better results can be 
obtained for circuits generated by automatic synthesis 
techniques, in which the ratio of combinational gates 
may be higher. However, a t  this moment there are 
no examples large enough to be considered critical for 
verification (the largest ones can be verified in roughly 
a dozen of seconds). As tools for synthesis and com- 
position of circuits become mature, the complexity of 
the circuits will increase significantly. 

7 Conclusions 
The complexity of formal verification of asyn- 

chronous circuits fundamentally depends on the size 
of the circuit, i.e. the number of gates. Reducing the 
size of a circuit by collapsing gates into complex gates 

only allows a partial verification in which a false pos- 
itive might be given as result. 

In this paper, sufficient conditions for hierarchically 
verifying speed-independence have been presented. It 
has been shown that an exact verification can still be 
done if the circuit is reduced to  complex gates and the 
environment of each complex gate is calculated during 
the verification of functional correctness. Circuits are 
allowed to be verified against an environment that may 
specify input/output choice and non-determinism. 

A verifier based on symbolic model checking has 
been implemented and several experiments with large 
circuits reported. It has been shown that,  by reducing 
the number of relevant variables during verification, 
both the size of the BDDs and the computational cost 
drastically drop. 

As future work, techniques for regularity extraction 
will be explored [15]. They should allow to  further re- 
duce the computational cost of those circuits in which 
combinational gates dominate over memory elements. 
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