
Hierarchical Gate-Level Verification of Speed-Independent Circuits

of
as

Oriol Roig, Jordi Cortadella and Enric Pastor *
Department of Computer Architecture
Universitat Politkcnica de Catalunya

Gran Capit& s/n, Mbdul D6, 08071-Barcelona, Spain

Abstract
This paper presents a method for the verification
speed-independent circuits. The main contribution
the reduction of the circuit to a set: of complex

gates that makes the verification time complexity d e -
pend only on the number of state signals (C elements,
RS fiip-jlops) o f the circuit.

Despite the reduction to complex gates, verijica-
tion is kept exact . The specification of the environ-
ment only requires t o describe the transitions of the
input/output signals of the circuit and is allowed to ex-
press choice and non-determinism. Experimental re-
sults obtained from circuits with more than 500 gates
show that the computational cost can be drastically re-
duced when using hierarchical verification.

1 Introduction
Asynchronous circuits can be considered as a prac-

tical alternative to face some of the critical problems
that appear when designing complex, low power, high
performance digital systems.

The clock signal in synchronous circuits enables to
introduce a level of abstraction in the time domain
and overlook most temporal relations among the sig-
nals of the circuit. Only the concept of critical path
is relevant for the performance of the system but not
for its functional correctness. Unfortunately for the
designer, the absence of a clock in asynchronous cir-
cuits makes their design an error-prone task. Most
difficulties come from the need to ensure that all sig-
nals are free of undesirable transitions, hazards, that
can produce circuit malfunctions.

The additional complexity introduced by the anal-
ysis of the temporal relations makes verification essen-
tial for asynchronous circuits. But while only the out-
puts of memory elements, e.g. flip-flops, are required
to represent the state of a synchronous circuit, the out-
put of all nodes (gates and memory elements) must be
probed to define the state of an asynchronous circuit.
Given that, in the worst case, the size of the state
space can be 0(2.), TI being the number of signals
to define the state, this space can become extremely
large even for moderate size asynchronous circuits.

Several authors have proposed verification tech-
niques to avoid the explicit enumeration of all the

*Work supported by ACID-WG (Esprit 7225), CYCIT TIC
94-0531-E and Department d’Ensenyaxnent de la Generalitat
de Catalunya.

states: unfoldings [ll], partial orders [14], symbolic
model checking [4] and trace theory [6] among others.

This paper presents sufficient conditions to au-
tomatically reduce the complexity of the circuit to
be verified for speed-independence. The proposed
method aims at the reduction of the number of vari-
ables required for verification. It has been combined
with symbolic model checking techniques to efficiently
represent the state space of the circuit.
1.1 Contributions

The method presented in this paper aims at the
verification of gate-level speed-independent circuits.
Beerel et al. [a] observed that, if the verifier were told
by some oracle that the circuit is hazard-free, check-
ing its correctness against its specification coiild he
reduced, roughly speaking, to perform a verification B
la synchronous with only the outputs of the memory
elements (e.g. C-elements or RS flip-flops) as state
variables. Based on this observation, our approach
verifies correctness in two steps: (1) satisfiability of
the specification assuming the absence of hazards and
(2) hazard detection. The major contributions of this
paper are the following:

The circuit, a flat netlist of gates, is automatically
reduced to a set of complex gates. The time com-
plexity of verification is made dependent on the
number of memory elements rather than on the
number of signals of the circuit.

Even with the reduction to complex gates, verifi-
cation is kept exact, i.e. neither false positive nor
false negative verification results are possible.

The environment is described by a state graph
that only needs to contain the transitions of the
input/output signals of the circuit. Choice and
non-determinism of the environment are allowed.

The paper is organized as follows. Section 2 dis-
cusses the basic ideas of hierarchical gate-level veri-
fication by means of an example. Section 3 presents
some basic definitions used along the paper. Section 4
analyzes the conditions under which exact hierarchical
verification can be performed. Section 5 discusses the
most significant implementation issues of our verifier.
Comparative results between flat and hierarchical ver-
ification are presented in Section 6. Finally, Section 7
concludes the paper.

0-8186-7098-3/95 $04.00 0 1995 IEEE
128

I I
d+f cc

(b)

Figure 1: (a) Circuit with a hazard-free behavior, (b) The same circuit with a hazardous behavior, (c) Equivalent
hazard-free complex-gate circuit.

2 Hiewrchical verification: overview
This section presents hierarchical verification by

means of two examples. In this section, speed-
independence will be considered equivalent to hazard-
freeness under the unbounded gate delay model. More
precise definitions will be given in Section 3.

Speed-independence is not a property of a circuit by
itself but of the behavior of a circuit under a certain
environment. In our framework, the behavior of the
environment will be represented by a Signal Transition
Graph [5] in which the output signals will be inputs
of the circuit and vice versa. Figures l.(a) and l.(b)
depict a circuit excited by two different environments.
The circuit is hazard-free with environment (a), but
hazardous with environment (b). In the latter case,
a static hazard can be produced on signal d when,
in the state (abcde) = (11110), the event e-- arrives
before e has switched to 1. However, note that an
equivalent complex-gate implementation of the same
circuit (Figure l.(c)) can be hazard-free.

Figure 2 shows the state graph obtained by a reach-
ability analysis of the system in Figure l.(a). In the
worst case, tthe number of states can be as lar,ge as 2” ,
n being the number of signals of the circuit. Verifi-
cation through reachability analysis [4] would simply
check that each transition produced at the outputs of
the circuit can be accepted by the environment, i.e. a
transition with the same label is enabled in the STG.
2.1 Functional and behavioral correct ness

Two important concepts must now be introduced to
set up the basis of verification: functional correctness
and behavioral correctness.

A circuit is said to be functionally correct if an ap-
propriate combination of the delays of its components
can produce the behavior expected by the environ--
ment .

A functionally correct circuit is said to be behaw
iorally correct if it produces the behavior expected by
the environrnent regardless the delay assigned to each
component, provided that the delays are within the
margins assumed for the delay model and the technol-
ogy. For speed-independent circuits, delays are in the
range (0, a).

(abcde)
00000

1 1000

11001

11011

11111

Fk
C+

,
/01000~ 1 00010 I

d- b- e-

C- \e- b-f
~01010] I 00011 I

01110

01111

Figure 2: State Graph of the circuit in Figure l.(a).

We can say now that the circuit in Figure l .(b) is
functionally correct, since by assigning the AND gate
a delay shorter than the delay between the transitions
b+ --+ e-, the generated behavior is the one expected
by the environment. However, this circuit is behav-
iorally incorrect, since long delays on the AND gate
may produce a static hazard on d. The circuit in Fig-
ure l.(c) is both functionally and behaviorally correct
(the complex-gate architecture basically assumes zero
delay for the AND gate).

2.2 Verification of functional correctness
A speed-independent circuit must behave correctly

for any finite delay of its components. A particular
case consists in “moving” the delay of a gate to its
fan-out gates. Let us take as example the circuit in
Figure l .(b). We can move the delay of gate e to its
fan-out gate d, and we obtain the complex gate in
Figure l.(c). We refer to this kind of gate clustering
as collapsing. Since all the delays are in the range
(0, a), the sum of the delays of d and e is still in the
same range. The behavior of the output of a complex
gate is included in the behavior of the original circuit
(prior to collapsing).

In our framework, functional correctness is verified

129

(abed)

“hazard”

(b)

Figure 3: (a) State graph after verification of func-
tional correctness. (b) State graph after verification
of behavioral correctness.

by collapsing some of the gates of the circuit. In this
way, multiple gates can be collapsed into one complex
gate and, thus, internal signals eliminated for the veri-
fication. Only for memory elements (e.g. C elements)
or outputs of complex gates, the signals cannot be
eliminated.

Verification of functional correctness becomes sim-
pler and faster because of the elimination of internal
signals. Moreover, design errors that do not depend on
the delays of the gates can be detected soon, without
requiring an exhaustive verification of the temporal
relations among all signals.

In the example of Figure l.(b), functional correct-
ness is verified by first collapsing the AND and OR
gates into one complex gate and eliminating signal e.
Next, the state graph of the circuit/environment is
built and verified for correctness (Figure 3.(a)).

2.3 Verification of behavioral correctness
In general, large circuits will be collapsed into sev-

eral complex gates. As illustrated in Figure 4, this can
be done hierarchically according to efficiency criteria
for verification.

Figure 4: (a) Flat circuit (8 gates). (b) Hierarchical
complex-gate organization (3 complex gates).

The second step of verification is devoted to de-
tect hazards inside the complex gates. Intuitively, this
is performed as follows. Given a complex gate, the
state graph of the collapsed circuit is projected onto
the input/output signals of the complex gate. This
projection maps all states with the same values for
the input/output signals of the complex gate (even if
they are semantically different) onto the same state.
We will show that this apparent loss of environmen-
tal information is not relevant for the verification of
hazard-freeness. Finally, the complex gate is verified
to be hazard-free under the projected graph as envi-
ronment.

Isomorphic groups of gates can be mapped onto the
same complex gate. In the example in Figure 4 there
is a pattern repeated twice: an OR gate which inputs
are an AND gate and a primary input. We will show
in Section 4 that we can project the environment of
several complex gates onto one single state graph and
verify they hazard-freeness at a time. This hierarchy
allows us to verify isomorphic subcircuits together.

It is important to notice that the environment of
each complex gate is calculated as if it were hazard-
free. In Section 4 we will show that, even with this
restricted environment, hazard-freeness can be exaclly
verified.

Figure 3.(a) shows the state graph of the collapsed
circuit. By chance, this graph coincides with its pro-
jection onto the signals {a, b , c , d } as the whole cir-
cuit has been collapsed into one complex gate. When
generating the state graph of the complex gate (Fig-
ure 3.(b)), an unexpected transition (d-) is detected
in state ii010, since the corresponding state of the
environment (1101) can only accept transition a-.

In case the complex gate were verified to be hazard-
free, its corresponding state graph would be projected
onto the input/output signals of its components and
the same operation would be performed a t the next
level of the hierarchy. This is illustrated in Figure 5
that depicts the environment of the AND gate after
projecting the graph of Figure 3.(b) onto the signals
(% b , e l l .

‘This environment is only depicted as an example, since
there is not need to derive it for simple gates or for gates con-
tained in hazardous complex gates.

130

Figure 5: Environment of the AND gate after the pro-
jection of the state graph onto the signals a , b and e .

Only one question remains to be answered: why
is hierarchical verification exact? In our framework,
the absence of hazards is proved by verifying that the
circuit is semz-modular, i.e. no gate can be disabled by
changing the value of its inputs. Let us assume that C
is a circuit amd 6 is an equivalent circuit in which some
gates have lbeen collapsed into complex gates and the
corresponding internal signals eliminated. In Section 4
we will prove that:

a) if 6 is not semi-modular, then C is not semi-

b) if C is semi-modular but C is not semi-modular,
there is a complex gate of e for which the behav-
ior of the corresponding decomposed gate, under
the prc)jection of the state graph of 6 onto the
input/outputs of the gate, is not semi-modular.

Conjecture a) guarantees no false negatzves,

Why is hierarchical verification more
efficient ?

A critical factor that determines the complexity of
verification is the number of signals of the circuit.
With hierarchical verification the number of signals
relevant at each step of the verification is drastically
reduced: during verification of functional correctness
only the input/output signals of the complex gates are
required; during verification of behavioral correctness
of a complex gate only the interface and internal sig-
nals of the gate are required.

There is only one limit to the minimum number of
variables required for functional verification: the num-
ber of output signals of the memory elements, such as
C-elements or RS flip-flops.

modular either.
h

whereas conjecture b) guarantees no false posztzves.
2.4

approach impractical when a flat netlist of gates, with
no explicit hierarchical organization, must be verified.

Following Dill’s approach, a subset of gates of the
flat circuit (potentially substitutable by a complex
gate) should be substituted by an equivalent trace
structure. Not knowing how the environment of the
complex gate will be inside the circuit, the trace struc-
ture should consider all possible input/output transi-
tions and, therefore, include the state of all internal
signals, which would preclude the subset of gates to
be handled as a complex gate.

Conservative verification

Beerel et al. [2] also propose a two-step approach. Af-
ter verifying the circuit is complex-gate equivalent to
its specification, hazard-freeness is verified by subse-
quently checking the monotonicity and acknowledg-
ment of all signal transitions. A cube approximation
that overestimates the set of states of the circuit is
proposed to conservatively prove the absence of haz-
ards. Although never found in the examples presented
by the authors, false negatives are theoretically possi-
ble. Other limitations of this approach are that it is
limited to externally-cut circuits (all memory elements
must appear in the specification) and that the speci-
fication of the circuit is not allowed to express output
choice (arbitration).

Polynomial methods for signal graphs

Kishinevsky et al. [7] presented a polynomial algo-
rithm to verify distributivity (a subclass of speed-
independence) from circuit behaviors described by sig-
nal graphs. The main limitation of their approach is
that the signal graph must specify the transitions of
all signals of the circuit and that neither choice nor
non-determinism are allowed in the signal graphs.

3 Definitions
We will consider a circuit to be a set of gates con-

nected to an environment. The behavior of the envi-
ronment will be modeled by means of a state graph.
In our verifier, the state graph is derived from a Sig-
nal Transition Graph that describes the interaction
of the environment with the input/output signals of
the circuit. Thus. environments with choice and non-

2.5 Related work determinism are allowed.
In this section, some of the most relevant efforts re-

lated with t8he verification of speed-independence and
closest to the approach described in this paper are
presented.

Hierarchical verification

Definition 3.1 (Circuit) A circuit is a pair C =
(A, “ 1 , where A = { a l , ..., a,} is a set of signals
(. = AI) and F maps each signal a; E A to a boolean
function f ; of arity n , that represents the function
compuied b y the gate that drives a;.

In his thesis [B], Dill already proposed hierarc!hical ver-
ification of speed-independence: if a component con-
forms to a trace structure, the behavior of that compo-
nent can be safely substituted by the trace structure.

However, this approach requires the designer to
identify the basic components of the circuit and know
their expected behavior in advance. This makes the

Definition 3.2 (Fan-in and fan-out of a signal)
The fan-in of signal a; E A, fanin(a;) C A, is ihe
set of signals that fi depends on. For gates that hold
state, a; E fanin(a;) . The fan-out of signal a; E A ,
fanout(a;) C_ A, is the set of signals that depend on
ai, i .e. fanout(a;) = { a k E Ala; E fanin(ak)} .

131

Definition 3.3 (State graph) A state graph (SG)
is a 4-tuple, (A , S , E , X) , where A = {a1 ,..., a,} is the
set of signals, S is the set of states, E C S x S is
the set of transitions and X is the labeling function for
states that maps each state with a bit-vector over A.

The fact that (s, s’) E E will be also denoted by SES’.
E* denotes the transitive closure of E, and sE*s‘ de-
notes that there is a path from state s to state s’ in
the state graph. In those cases jn which the labeling
function is the identity, the state graph will be denoted
simply as (A , S, E).

Definition 3.4 State graph of a circuit The state
graph of a circuit C = (A , F) with initial state so is a
state graph, SG(C, so) = (A , S , E) , such that S and E
are strictly defined b y the following recursion:

1. so E s .
2. [(S E S)A(Vi#kSi = Si)A(SL # S k) A (S L = f k (s))]

==+ [(s’ E S) A (s, s‘) E E] .

Relation E can be partitioned into n subsets as fol-
lows:

Ei = {(s,s’) E Elsi = S i } ,
E = U E i .

a , E A

Note that the labeling function X is the identity. This
means that each state s E S is a bit-vector over A such
that the ith element of s, denoted by si , specifies the
value of signal ai in state s.

Given a state s E S, if there exists s’ E S such that
sEis‘ we will say that signal ai is excited in state s.
Otherwise we will say that ai is stable in s.

Definition 3.5 (Projection of the state graph
of a circuit) Given the state graph of a circuit,
SG(C, so) = (A , S , E) , and a subset of signals X C A,
the projection of SG(C,so) onto X is a state graph,

Vs = (SI ,... , Sn) E s, projx(s) ,= (SI,..., Sk),
i.e. the sub-vector of s containing only the
signals in X (we assume 1x1 = k and X to
be the first IC elements o f A),

pro jx(S) = (~’13s E S : projx(s) = s’} ,
P..& (E) { (Pro& (s) 9 Pro& (4) I SE’ s’

and only one signal in X
transitions from s to s’} .

=

Note that the definition of a state as a bit-
vector implies that semantically different states can
be projected onto the same state (i.e. projx(s) =
p r o j x (s ’) = i’ and s # s’).

The following proposition is a result of the previous
definition.

Proposition 3.1 Let C = (A , F) be a circuit,
SG(C, so) = (A , S, E) its state graph, and fanin(ai) U
{ a i } & X E, A. Let pro jx(SG(C,so)) = (X , s ^ , @ be
the projection of SG(C,so) onto X . Let s,s’ E S and
S E S such that projx(s) = projx(s’) = 2. Then

ai excited in s e ai excited in s’ e ai excited in i? .

Proposition 3.1 is crucial for our method, since
it states that the excitation/stability of a complex
gate (and subsequently semi-modularity) can be lo-
cally checked by only knowing the values of the in-
put/output signals of the gate and regardless the state
of the rest of the circuit.

Without loss of generality and for the sake of sim-
plicity, we will consider autonomous circuits, i.e. with
no interface, for verification. The obtained results can
be naturally extended to circuits with interface.

Next, observational equivalence [12] is defined.
This is a concept that establishes an equivalence
among those circuits that produce the same events
on a given set of signals. For simplicity, we will use
a restricted definition, since we are only interested in
circuits in which the signals of one of them is a subset
of the signals of the other.

Definition 3.6 (Observational equivalence be-
tween two circuits) Let C = (A , F) and 6 = (X , @)
be two circuits with X C A, and let S G (C , s o) =
(A , S , E) and SG(G,?’) = (X,,!?,,f?) be their state
graphs. C and C are observationally equivalent from
so and ?’ respectively iff:

h

h

I . if’ = projx(so) .

2. Vs E S,? E ŝ such that 2 = projx(s) and Vai E

a) if sEis’ then 3 1 E s^ such that Z&? and

b) if ?,!$? then 3s‘ E S such that sE>EjE>s‘

where E: denotes any sequence of non-observable
transitions.

X :

9 - s - p.ojx(s’) .

and Z’ = projx(s‘) .

In this paper we propose to verify semi-modularity
rather than speed-independence. Semi-modularity is
more robust than speed-independence and both con-
cepts are tightly related for most practical cases, as
subsequently explained (see [17] for further details).

Definition 3.7 (Semi-modularity) A signal ai is
semi-modular with respect to signal a b E fanin(ai)
(ai # a k) i f the gate that drives ai, having been excited,
cannot become stable b y changing the value of a k . I n
terms of the SG of the circuit, a signal ai is semi-
modular with respect t o a b in SG(C, so) = (A, s, E)
i f f

s E ~ s ’ * [si # fi(s) ==+ # f i (~’)] .

132

f4 = a3 . a5 + a4 . (a3 + as)
f4 := a3 . (a1 + a2) + a4 . (a1 + a2 + u 3)

Figure 6: O:R and C gates collapsed into a complex
gate.

A signal ai is semi-modular if it is semi-modular with
respect to ar‘l its fan-in signals. A circuit i s semi-
modular if ai l its signals are semi-modular.

Definition i3.8 (Strongly-live circuit [17]) A cir-
cuit is strongly live z f f its state graph is strongly con-
nected and for each signal ai there exists a state s E S
in which ai i s excited.

Theorem 3.1 ([17]) If a circuit is strongly live, then
the circuit is speed-independent iff it is semi-modular.

4 Reduction to complex gates
This section provides the means that enable to elim-.

inate some signals of a circuit to simplify its verifica-
tion. We propose to collapse several gates into one
complex gate with the same functional behavior and
eliminate the internal signals.

Let us assume we have a circuit C = (A , F) with
signal a, being driven by a combinational gate, Le.
a, @ fanin(a,). Let us build a new circuit e = (X, F) ,
with X = A-{a,}. Let 2= projx(s) and the boolean
expressions of the gates of e defined as follovvs:

h
if a, 4 fanin(ai) ,

ifa, Efanin(a i) .

Note that the above expression substitutes s, by f,(s)
and, therefore, fi(2) does not depend on s,, as a,
fanin(a,).

Figure 6 shows how the boolean expression of a
complex gate is derived from the expressions of the
simple gates. In case]fanout(a,)l > 1, multiple com-
plex gates will be created, as illustrated in Figure 7.

h

Theorem 4.1 Given two circuits C = (A , F) and e = (X , P) , with X = A - {a,} and dejined as
above, and their state graphs, SG(C, so) =AA, SI E)
and S G (e , projx(so)) = (X , 2, g). C and C are ob-
servationally equivalent from so and proj, (s o) respec-
tively iff all signals in fanout(a,) are semi,-modular
with respect to a, in S G (C , s n) .

Proof
Condition 1 of definition 3.6 holds by construction.
Let s E S, 2 E S , g = projx(s) and ai E X. In those
cases where we prove that fa(s) = f ; (Z) , it imme-
diately follows that obsezvational equivalence holds.
More precisely, fi(s) = fi(g) = si implies that ai is
stable in both s and S and, therefore, conditions 2.a
and 2.b hold. If fi(s) = fi(2) = Si there exist s’ and
s such that sEis’ and SEi? and ? = projx(s’) , since
the same signal transitions from s and 2. Therefore,
conditions 2.a and 2.b also hold.

If a, @ fanin(ai) then s(2) = fi(s) and, therefore,
observational equivalence holds.

If a, E fanin(ai) then

h

h

h

h
/y

h

fi (2) = fi(S1,. . . , Sn- l,O).K(.)+fi (s1 ,. . . , S , - l , l) . f n (s) .

1 semi-modularity observational equivalence I
~ ~~~

Since ai is semi-modular with respect to a,, a
change on signal a, cannot disable ai . Hence, fi(s)
does not depend on s, when signals ai and a, are
simultaneously excited, i.e.

It only remains the case

which describes the situation in which ai is stable, a ,
is excited, and f i (s) depends on the value of signal a,.
Hence,
h

fi(2) = K(s1,. .., S n - l , l) . S , + f i (S 1 , . . . , S , - l , l) . ~ n
-

- - f ; (s) = si .

Clearly, condition 2.a holds for state s, since ai is not
excited in s. To prove 2.b, let us take ? such that

133

Figure 7: (a) Gate with multiple-fan-out. (b) Complex gate considered for functional correctness (c) and for
behavioral correctness.

h

2EiS’. We will prove that there exist s’, s” E S such
that sE,s“Eis‘ and S’ = projx(s’).

Since a, is excited in s then we have s“ E S such
that sE,s”. But now, ai is also excited in s” as

-
fi(S1,...,sn-1,0) = - f ’ i (~ ~ , . . . , s n - ~ , 1) ,

and thus there exists s’ E S such that d’Eis’. Finally,
s and s’ only differ in the ith and nth elements and
therefore 2 = projx(s’).

17 semi-modularity -3 7 observational equivalence I
If ai is not semi-modular with respect to a,, then

3s,s‘,s/ / E S such that sEis’, sE,s” and ai is not
excited in s”.
Since only a, changes between s and s“, we have that
s = projx(s) = projx(s/’). Thus, h

Since ai is excited in s and stable in s” (after a tran-
sition of a,) then

f i (s1, . . . , s n - l , ~) = fi(sl,..., sn-1,1) .
Moreover, f n (s) = S, and f i (s) = S i , as a, and ai are
excited in s. Therefore,
h

fi(2) = f;(sl ,..., sn-1 ,1) ‘ s n + fi(sl,..., sn-1 ,1) ‘ 5 ,
-

= f i (S) = si ,
which means that ai is not excited in 2 and, therefore,
condition 2.a does not hold. 0

Theorem 4.1 is the basis to prove that hierarchical
verification is exact. This is the purpose of the next
corollaries.
Corollary 4.1 C not semi-modular from 9 ==+ C
not semi-modular from so.

h

Proof This immediately follows from the fact that
the state graph of e is the projection of the state graph
of c. 0

Corollary 4.1 guarantees that hierarchical verifica-
tion will not give false negatives.

Corollary 4.2 If 2 is semi-modular from and C
is not semi-modular from so , then either a, or some
signal ai E fanout(a,) are not semi-modular in C .

Proof (by contradiction) Assume that a, and all
its fanout signals are semi-modular. Then, by theo-
rem 4.1, C and e should be observationally equivalent.
Since C is semi-modular and C is not semi-modular,
then a, (the only non-observable signal) should be
non-semi-m-odular, which contradicts the initial as-
sumption. 0

Corollary 4.2 shows that hierarchical verification
does not produce false positives. Consider a complex
gate that drives ai E fanout(a,), and that X i is the
set of input/output signals of the gate, i.e.

h

x, = (a i } U (f u n q a i) - {a,}) Ufunin(a,) .

It can be derived that, by taking projx,(SG(e,2’)) as
the environment of the complex gate, and SE as the ini-
tial value for signal a,, non-semi-modularity of ai and
a, in SG(C, so) is also detected in projx, (S G (e , 2’))
(by proposition 3.1).

Intuitively it can be proved by showing there is al-
ways one state s of C in which non-semi-modularity is
manifested for the first time from so. Because of the
observational equivalence while semi-modularity holds
from so, the projection of s ontoAXi will also belong
to the set of states of projx,(SG(C,?’)).
4.1 Environment of a complex gate and

circuits with environment
Complex gates obtained from collapsing can be seen

as externally-cut circuits [l]. An important property
of externally-cut circuits is that they have no hidden
state. The state of such circuits is completely captured
by the values of the interface signals, i.e. the values
of the interface signals uniquely define the value to
which all internal signals would eventually settle if the
interface were held fixed [l] . This follows from the
fact that memory elements in externally-cut circuits
can be regarded as combinational gates when given an
interface state. For example, a C-element will operate
as an AND gate in those states in which the output is
zero, but as an OR gate if the output is one.

The projection of the state graph onto the inter-
face signals will keep the edges involving interface
signal switches (see proposition 3.1). This projec-
tion, however, may fold semantically different states
onto the same state, thus introducing additional non-
determinism (choice). Nevertheless, input choice is

134

not a problem because in the second verification step
we are dealing with externally-cut circuits. Since there
are no hidden variables, the circuit reaction will de-
pend only on the state and on the signal that has
switched. Therefore, the behavior of an externally-cut
circuit in such cases will be the same independently of
whether theire is a state with nondeterministic choice
or two different states (with deterministic choice).

Let us assume that a circuit has several iinstances
of the same l(comp1ex) gate. Figure 8 shows two AND
gates of the same circuit with a different environment
for each. As previously mentioned, the environment
of a complex gate is calculated as the projection of
the state gratph onto X,. In this is example the states
labeled with 010 of the environment of G2 result from
the projection of two different states2.

To verify the semi-modularity of each AND gate,
we calculate the union of the environments of all AND
gates of the circuit (environment for the generic gate
G in Figure 13). This many-to-one mapping may intro-
duce choice and/or non-determinism not manifested in
the initial state graph. In fact, the set of sequences of
transitions accepted by the union of projected state
graphs can be larger than the union of the sets of
sequences generated by each individual gate. How-
ever, semi-modularity is a local property of a gate that
needs to be checked only between adjacent states of
its environment. Since any transition of the projected
state graph results from at least one projection of the
original state graph, verification is not pessimistic but
exact.

Interestingly, if the union of the projected state
graphs produces a semi-modular behavior of G (the
generic gate), it also describes a set of sequences of
events that, if applied to each gate individually, would
produce a semi-modular behavior.

Needless to say that, with the previous considera-
tions, the presented approach allows to verify circuits
against an environment described by a state graph,
possibly containing choice, non-determinism and/or
state variables that do not correspond to values of in-
put/output signals.

5 Impleimentation issues
A verifier based on symbolic model checking has

been implemented. Its inputs are a Signal Transition
Graph, describing the behavior of the environment,
and a netlist of gates. The environment only needs
to specify transitions of the interface signals of the
circuit. Input/output choice and non-determinism are
allowed.

The markings (states) of the Signal Transition
Graph are symbolically represented by using encoding
techniques such as the ones presented in [8]. Disjunc-
tively partitioned transition relations and breadth first
search algorithms for symbolic traversal [4] htwe been
used to calculate the set of reachable states. Next,
some implementation issues are discussed.

'For the sake of clearness, they are depicted as different
states in the fiigure

5.1 Reduction to complex gates
The algorithm currently implemented is very sim-

ple. Each combinational gate is collapsed with its fan-
out gates. Only when the output of a combinational
gate is one of its inputs (feedback loop), the reduction
is not possible.

At the end of the reduction step, only one signal
for each memory element and combinational loop is
kept. These signals are the ones used for functional
verification.
5.2 Output choice

Circuits with output choice (arbitration) can
also be verified with our method. The non-semi-
modularity of arbitration signals (e.g. outputs of a
mutex) is considered hidden inside the gate and not
manifested externally. This requires a special ad-hoc
description of arbitration elements in the library of
gates. For example, a mutex element with two inputs
(RI,R2) and two outputs (Al,A2) can be modeled by
two boolean equations:

A I = RI A E; A 2 = R 2 A

In this case, non-semi-modularity is allowed for A1
and A2 with respect to A2 and A1 respectively.
5.3 Isochronic forks

Verification of speed-independence assumes that
wire delays are negligible with regard to gate delays.
As shown in Figure 7, gates with multiple fan-out are
split into several instances, each one collapsed with
one of the fan-out gates. However, forks must be con-
sidered isochronic during the detection of hazards on
the internal signals. Therefore, gates that share some
input signals must be simultaneously verified for be-
havioral correctness, with only one common instance
of the multiple-fan-out internal gates. As it is shown
in Figure 7.(c), signals a5 and a6 must be simulta-
neously verified with only one instance of the gate
that drives a7. This would not be necessary if delay-
insensitiveness were verified, since forks are not as-
sumed to be isochronic.

6 Experimental results
Table 1 reports the results obtained from running

several experiments on our verifier. All the examples
are scalable, i.e. they can be enlarged by simply in-
creasing the number of instances of the basic cells.
However, their intrinsic regularity has not been ex-
ploited to verify the circuit.

The examples used are the following: master-read
(obtained from automatic synthesis tools), a Dis-
tributed Mutual Exclusion (DME) circuit [9, 61, a tree
arbiter [lS], an asynchronous FIFO [IO], a register file
[I31 and a demultiplexer [3].

Results on flat (no reduction to complex gates) and
hierarchical verification are shown3. The number of
signals for hierarchical verification corresponds to the

3 F ~ r the DME, results are comparable to those presented in
[4] when multiple initial states are used. Here, we only present
results obtained with one initial state (to avoid taking advantage
of the regularity of the circuit)

135

cl-
000 - 010

al++ t b l -

100 011
bl+i t a l -

1 1 0 d 111
Cl+

01 0

001

Figure 8: Union of environments for different instances of the same gate.

number of states signals of the circuit, since all com-
binational gates are eliminated.

All the circuits are dominated by memory elements.
The one with most combinational gates is the DME
(half of the signals). The FIFO is a peculiar case, as
all the signals are outputs of memory elements and,
therefore, no difference exists between flat and hier-
archical verification. The reported BDD sizes are the
largest ones encountered during the traversal of the
circuit. The CPU time of hierarchical verification is
mostly dominated by the first step (functional verifica-
tion). The number of states of hierarchical verification
is the one obtained during functional verification.

The size of the BDDs, often crucial to avoid running
out of space, is reduced by the fact that many variables
are eliminated when reducing to complex gates. The
significant improvements in CPU time are basically
due to two factors: 1) the reduction of the size of
the BDDs and 2) the reduction of the logic depth of
the circuit, which directly influences on the number of
iterations required to reach a fixed point during the
traversal.

The presented results confirm that hierarchical ver-
ification makes time complexity depend on the number
of state signals of the circuit, rather than the number
of gates. We believe that even better results can be
obtained for circuits generated by automatic synthesis
techniques, in which the ratio of combinational gates
may be higher. However, a t this moment there are
no examples large enough to be considered critical for
verification (the largest ones can be verified in roughly
a dozen of seconds). As tools for synthesis and com-
position of circuits become mature, the complexity of
the circuits will increase significantly.

7 Conclusions
The complexity of formal verification of asyn-

chronous circuits fundamentally depends on the size
of the circuit, i.e. the number of gates. Reducing the
size of a circuit by collapsing gates into complex gates

only allows a partial verification in which a false pos-
itive might be given as result.

In this paper, sufficient conditions for hierarchically
verifying speed-independence have been presented. It
has been shown that an exact verification can still be
done if the circuit is reduced to complex gates and the
environment of each complex gate is calculated during
the verification of functional correctness. Circuits are
allowed to be verified against an environment that may
specify input/output choice and non-determinism.

A verifier based on symbolic model checking has
been implemented and several experiments with large
circuits reported. It has been shown that, by reducing
the number of relevant variables during verification,
both the size of the BDDs and the computational cost
drastically drop.

As future work, techniques for regularity extraction
will be explored [15]. They should allow to further re-
duce the computational cost of those circuits in which
combinational gates dominate over memory elements.

Acknowledgments
We would like to thank Lucian0 Lavagno, Alex

Yakovlev, Michael Kishinevsky and Alex Kondratyev
for numerous insightful discussions on improving the
clarity and presentation of this work.

References
[I] P. A. Beerel. CAD Tools for the Synthesis, Verification,

and Testability of Robust Asynchronous Circuits. PhD
thesis, Stanford Univ., Aug. 1994.

[a] P.A. Beerel, J. R. Burch, andT. H.-Y. Meng. Sufficient
conditions for correct gate-level speed-independent cir-
cuits. In Proc. Int. Symp. on Advanced Research in
Asynchronous Circuits and Syst., pages 33-43. IEEE
Computer Society Press, Nov. 1994.

131 P. A. Beerel and T. H.-Y. Meng. Semi-modularity and
testability of speed-independent circuits. Integration,
the VLSljournal, 13(3):301-322, Sept. 1992.

136

example

[4] J. R. Buirch, E. M. Clarke, D. E. Long, K. L. McMillan,
and D. L,. Dill. Symbolic model checking for sequential
circuit vserification. IEEE Trans. on CAD, :13(4):401-

[5] T.-A. Chu. Synthesis of Self-timed VLSI Circuits from
Graph-theoretic Specifications. PhD thesis, MIT, June
1987.

Trace Theory for Automatic Hierachical
Verification of Speed-Independent Circuits. .ACM Dis-
tinguished Dissertations. MIT Press, 1989.

[7] M. Kishinevsky, A. Kondratyev, A. Taubin, and
V. Varshavsky. Analysis and identification of speed-
independent circuits on an event model. Formal Meth-
ods in System Design, 4(1):33-75, Jan. 1994.

[SI A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pas-
tor, 0. Itoig, and A. Yakovlev. Checking signal transi-
tion grajph implementability by symbolic BDD traver-
sal. In Proc. EDAC-ETC-EuroASIC, pages 325-332,
Paris, M:ar. 1995.

[9] A. J. Martin. The design of a self-timed circuit for dis-
tributed mutual exclusion. In H. Fuchs, editor, Proc. of
the Chqpel Hill Conf. on VLSI, pages 245-260. Com-
puter Science Press, 1985.

[lo] A. J. Martin. Self-timed FIFO: An exerciise in com-
In D. Borrione,

editor, From HDL Descriptions to Guaranteed Correct
Circuit Designs, pages 133-153. Elsevier Science Pub-
lishers, 1986.

424, 1994.

[6] D. L. Dill.

piling programs into VLSI circuits.

signals states BDD size
flat I hier. flat 1 hier. flat I hier.

iterations
flat I hier.

CPU (sec.) speed-
flat I hier. UP

42
39

428
3890

28365
40

261
1425
4316

130
634

2200
588

2156
7246

11330
662

1268
2027
2995

8.4
5.6
5.0
4.9
4.9
1.6
2.0
2.8
3.3
-

-

-

-
2.3
3.2
4.1
2.4
7.0
7.0
6.9
6.7

5
7

86
799

5788
25

132
512

1318
8 -

-
-
-

171
681

1763
4650

95
181
292
444

[11] K. L. McMillan. Using unfoldings to avoid the state
explosion problem in the verification of asynchronous
circuits. In G. v. Bochman and D. K. Probst, editors,
Proc. Int. Workshop on CAV, volume 663 of LNCS,
pages 164-177. Springer-Verlag, 1992.

[I21 R. Milner. A CaIcuIus of Communicating Systems,
volume 92 of LNCS. Springer-Verlag, 1980.

[13] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and
A. Takamura. TITAC: Design of a quasi-delay-
insensitive microprocessor. IEEE Design i3 Test of
Comp., 11(2):50-63, 1994.

[14] D. K. Probst and H. F. Li. Using partial-order se-
mantics to avoid the state explosion problem in asyn-
chronous systems. In R. P. Kurshan and E. M. Clarke,
editors, Proc. Int. Workshop on CAV, volume 531 of
LNCS, pages 146-155. Springer-Verlag, 1990.

On clustering for max-
imal regularity extraction. IEEE Trans. on CAD,

[16] C. L. Seitz. Ideas about arbiters. Lambda, l(1, First
Quarter):lO-14, 1980.

[17] A. Yakovlev, L. Lavagno, and A. Sangiovanni-
Vincentelli. A unified signal transition graph model
for asynchronous control circuit synthesis. In Proc. of
the IEEE Int. Conf. on Computer Aided Design, pages
104-111. IEEE Computer Society Press, Nov. 1992.

[15] D. Rao and F. Kurdahi.

12(8):1198-1208, Aug. 1993.

34
58

106
202
22
30
39
49
12
22
32
42
15
15
15
15
9
9
9
9

137

19
31
55

103
22
27
37
45
-

-
-
-

7
7
7
7
5
5
5
5

