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Abstract—In this letter, we study the robust beamforming
problem for the multi-antenna wireless broadcasting system with
simultaneous information and power transmission, under the
assumption of imperfect channel state information (CSI) atthe
transmitter. Following the worst-case deterministic model, our
objective is to maximize the worst-case harvested energy for
the energy receiver while guaranteeing that the rate for the
information receiver is above a threshold for all possible channel
realizations. Such problem is nonconvex with infinite number of
constraints. Using certain transformation techniques, weconvert
this problem into a relaxed semidefinite programming problem
(SDP) which can be solved efficiently. We further show that the
solution of the relaxed SDP problem is always rank-one. This
indicates that the relaxation is tight and we can get the optimal
solution for the original problem. Simulation results are presented
to validate the effectiveness of the proposed algorithm.

Index Terms—Energy harvesting, beamforming, worst-case
robust design, semidefinite programming.

I. I NTRODUCTION

Energy harvesting for wireless communication is able to
extend the flying power of handheld devices and advocacy for
green communication [1]- [3]. With the aid of this promising
technique, the transmitter can transfer power to terminals
who need to harvest energy to charge their devices, which
is especially important for energy-constrained wireless net-
works. Beamforming is another promising technique which
exploits channel state information (CSI) at the transmitter
for information transmission [4]- [6]. In wireless networks
with simultaneous transmission of power and information,
beamforming is anticipated to play an important role as well.

The beamforming design with perfect knowledge of CSI
at the transmitter was first considered in [7] to characterize
the rate-energy region in a simplified three-node wireless
broadcasting system. In practical scenarios, perfect knowledge
of CSI may not be available due to many factors such as
inaccurate channel estimation, quantization error, and time
delay of the feedback.

The goal of this letter is to investigate the robust beam-
former design with imperfect CSI for simultaneous informa-
tion transmission and energy harvesting. In general, there
are two classes of models to characterize imperfect CSI:
the stochastic and deterministic (or worst-case) models. In
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the stochastic model, the CSI errors are often modeled as
Gaussian random variables and the system design is then based
on optimizing the average or outage performance [8], [9].
Alternatively, the deterministic model assumes that the CSI
uncertainty, though not exactly known, is bounded by possible
values [10], [11]. In this case, the system is optimized to
achieve a given quality of service (QoS) for every possible
CSI error if the problem is feasible, thereby, achieving absolute
robustness. It was also shown in [12] that a bounded worst-
case model is able to cope with quantization errors in CSI. In
this letter, we shall employ the worst-case approach to address
the robust beamforming design problem.

Consider the three-node system shown in Fig. 1, where
we assume that the transmitter only has imperfect knowledge
of the channels to both the information receiver and energy
receiver. We formulate the worst-case robust beamforming
problem for harvested energy maximization at the energy re-
ceiver while ensuring a minimum target rate at the information
receiver. Since the original problem has infinite constraints due
to the channel uncertainties, we first transform it into an easier
problem which has finite constraints but is still nonconvex.
Then we apply the semidefinite relaxation (SDR) and obtain
a semidefinite programming (SDP) problem which can be
solved efficiently. Finally we show that the optimal solution
of the SDP problem is always rank-one, which means that the
relaxation is tight and we can obtain the optimal solution of
the original problem.

The rest of this letter is organized as follows. In Section II,
the system model and the problem formulation are presented.
Section III presents our proposed algorithm to find the so-
lutions to the robust problems using convex optimization and
rank relaxation, and show its optimality. Simulation results are
given in Section IV. Finally, Section V concludes this letter.

Notation: (·)H and Tr{·} stand for Hermitian transpose and
the trace respectively.|x| denotes the absolute value of the
scalarx and‖x‖ denotes the Euclidean norm of the vectorx.
The function log(.) is taken to the base2.

II. SYSTEM MODEL AND PROBLEM FORMULATION

With reference to Fig. 1, we consider a three-node multiple-
input single-output (MISO) communication system, where the
transmitter hasN antennas and each receiver has a single
antenna. LethH andgH denote the frequency-flat quasi-static
1 × N complex channel vectors from the transmitter to the
information receiver and the energy receiver respectively, and
s denote the transmitted symbol. Then the received signals at
the information receiver and the energy receiver are given by,
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Fig. 1. A three-node wireless MISO system for simultaneous information
and power transmission.

respectively,

yi = hHws+ zi (1)

ye = gHws+ ze (2)

wherew is the N × 1 beamforming vector applied to the
transmitter, andzi and ze are the additive white circularly
symmetric Gaussian complex noise with varianceσ2/2 on
each of their real and imaginary components.

For the energy receiver, it will harvest energy from its
received signal. Thanks to the law of energy conservation, we
can assume that the total harvested RF-band power, denoted
by Q, is proportional to the power of the received baseband
signal, i.e.,

Q = η|gHw|2 (3)

where η is the efficiency ratio at the energy receiver for
converting the harvested energy to electrical energy to be
stored. Here we simply assume thatη = 1 and the details
for the converting process is beyond the scope of this letter.

Our objective is to maximize the harvested energy for the
energy receiver while guaranteeing that the information rate
for the information receiver is above a threshold. Mathemati-
cally, the problem is expressed as follows:

P0 : max
w

|gHw|2 (4)

s.t. log

(
1 +

|hHw|2
σ2

)
≥ r (5)

‖w‖2 ≤ P (6)

where r is the rate target for the information receiver and
P is the power constraint at the transmitter. Similar problem
has been considered in [7] with the objective of maximizing
information rate subject to a minimum energy threshold.

Herein we consider that the transmitter has imperfect CSI
of both receivers. In particular, the channels are modeled as

h = ĥ+∆h (7)

g = ĝ+∆g (8)

where ĥ and ĝ denote the estimated CSI known at the
transmitter,∆h and ∆g are the error vectors. We assume
no statistical knowledge about the error vectors but that they
are bounded by some possible values (also known to the
transmitter) as

‖∆h‖ ≤ ε (9)

‖∆g‖ ≤ ε (10)

where ε is the radius of the uncertainty region. We assume
that both the two receivers have perfect CSI knowledge.

To take the CSI errors into account, the problemP0 based
on worst-case criterion can be formulated as

P1 : max
w

min
‖∆g‖≤ε

|(ĝ +∆g)Hw|2 (11)

s.t. log

(
1 +

|(ĥ+∆h)Hw|2
σ2

)
≥ r, ∀ ‖∆h‖ ≤ ε (12)

‖w‖2 ≤ P. (13)

Since log(1 + x) is monotonically increasing for positivex,
problemP1 can be reformulated as below

P1 : max
w

min
‖∆g‖≤ε

|(ĝ +∆g)Hw|2 (14)

s.t. |(ĥ+∆h)Hw|2 ≥ σ2(2r − 1), ∀‖∆h‖ ≤ ε (15)

‖w‖2 ≤ P. (16)

It can be seen that the goal of the problemP1 is to maximize
the harvested energy for the worst channel realization while
guaranteeing that the information rate is above a thresholdfor
all possible channel realizations.

III. SEMIDEFINITE PROGRAMMING SOLUTION

The key challenges in problemP1 are the channel un-
certainties and the nonconvex constraints, which cause that
P1 is a semi-infinite nonconvex quadratically constrained
quadratic programming (QCQP) problem. It is well known
that the general nonconvex QCQP problem is NP-hard and
thus, intractable. However, as we will show in the following,
due to the special structure of the objective function and the
constraints, problemP1 can be reformulated as a convex SDP
problem and solved optimally.

We first transform the above problem into a more tractable
form. For the objective function ofP1 in (14), we simplify
it using an approach similar to the one developed in [10] and
[13]. According to triangle inequality, we obtain

|ĝHw+∆gHw| ≥ |ĝHw| − |∆gHw|. (17)

Then applying the Cauchy-Schwarz inequality to the second
term in the right-hand-side (RHS) of (17), we have

|∆gHw| ≤ ‖∆g‖ · ‖w‖ ≤ ε‖w‖. (18)

Plugging (18) into (17), we then have that

|ĝHw+∆gHw| ≥ |ĝHw|−|∆gHw| ≥ |ĝHw|−ε‖w‖. (19)

An important observation about problemP1 is that its optimal
solution is obtained only when the constraint in (16) is active,
i.e., the transmitter should work with full power. Then we have

|ĝHw +∆gHw| ≥ |ĝHw| − ε
√
P . (20)

The inequality becomes equality when∆g = − w
‖w‖εe

−jθ,
whereθ is the angle between̂gH andw. Note that it has been
assumed that|ĝHw| ≥ ε‖w‖ in (19), and|ĝHw| ≥ ε

√
P in

(20). This assumption essentially means that the errors∆g is
sufficiently small or equivalentlyε is sufficiently small. It is
a practical assumption since large channel estimation errors
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can cause large beamforming errors and no robustness can
be guaranteed in such case. Then combining (17)-(20), we
conclude that

min
‖∆g‖≤ε

|(ĝ +∆g)Hw|2 =
∣∣∣|ĝHw| − ε

√
P
∣∣∣
2

. (21)

For the infinite number of constraints in (15), we can
similarly have that

|ĥHw +∆hHw| ≥ |ĥHw| − ε
√
P . (22)

Here, the equality holds when∆h = − w
‖w‖εe

−jϕ with ϕ

being the angle between̂hH andw. Then in order to meet
the constraints for all possible∆h, we just need to satisfy the
following

|ĥHw| − ε
√
P ≥ σ

√
2r − 1. (23)

Then the robust beamforming problemP1 can be rewritten
as follows

P1 : max
w

|ĝHw|2 (24)

s.t. |ĥHw|2 ≥
(
ε
√
P + σ

√
2r − 1

)2
(25)

‖w‖2 ≤ P. (26)

Although the problemP1 is much easier now, it is still a
nonconvex QCQP problem. We then apply the semidefinite
relaxation and obtain the following relaxed problem:

P2 : max
W�0

Tr{ĜW} (27)

s.t. Tr{ĤW} ≥
(
ε
√
P + σ

√
2r − 1

)2
(28)

Tr{W} ≤ P (29)

where Ĝ = ĝĝH and Ĥ = ĥĥH . Notice that the rank-one
constraint has been dropped andP2 is a relaxed version ofP1.
The problemP2 is a standard SDP problem which is convex
and can be solved efficiently using the software package [14].

At this point, an important question is that whether the
optimal solution ofP2 is rank-one. IfW is rank-one, then
the optimal beamformer for the original problemP1 can
be extracted by eigenvalue decomposition. Otherwise, the
solution of P2 is only an upper bound ofP1 and the
beamformer extracted fromW is not guaranteed to be globally
optimal. Generally there is no guarantee that an algorithm
for solving SDP problems will give the desired rank-one
solution. However, in some special cases such as [15]- [17],
the relaxation is proven to be exact and thus there always
exists a rank-one solution. Whether the relaxation is tightfor
our proposed algorithm will be addressed in the following
theorem.

Theorem 1: The optimal solutionW for problemP2 is
rank-one.

Proof: Please refer to Appendix A.
According to Theorem 1, we can see that problemP2 is

indeed equivalent to the original problemP1, which means
that the relaxation is tight. So in order to solve the problem
P1, we first solve the SDP problemP2 and obtain the resulting
rank-one matrixW⋆. Apply eigenvalue decomposition onW⋆

as
W⋆ = α⋆w⋆w⋆H . (30)
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Fig. 2. Average harvested energy for the robust beamformingdesign.
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Fig. 3. Outage percentage for the nonrobust beamforming design.

The optimal solution ofP1 is then obtained asw =
√
α⋆w⋆.

IV. SIMULATION RESULTS

In this section, we present numerical results to evaluate
the performance of the proposed robust beamforming algo-
rithm. We consider the three-node MISO system in which the
transmitter has four antennas(N = 4). We set the power
P = 10 and noise covarianceσ2 = 1. The channel from
the transmitter to each receiver is assumed as the normalized
Rayleigh fading channel. The rate target for the information
receiver is set to be smaller thanlog(1 + 10‖h‖2) in order
for the problem to be feasible. For simplicity, we normalize
these channel vectors with respect to the number of transmit
antennas as‖h‖2 = ‖g‖2 = 4. Thus the feasible region
for the rate target is0 ≤ r ≤ log(1 + 40). A total of 100
independent normalized channel realizations are simulated.
For each channel realization,100 channel uncertainty samples
are generated.

In Fig. 2, we plot the average harvested energy versus differ-
ent targets of information rate for different levels of bounded
channel uncertainty. The special case with the CSI (i.e.,ε = 0)
is also simulated. It can be seen that the performance loss is
small when the CSI error is not big. Also the performance gap
increases when the rate target becomes larger.

In order to show how important it is to take the channel
uncertainty into account when designing the beamformers, let
us assume that the beamforming design takes place under the
assumption of perfect CSI at the transmitter while in fact
there is some uncertainty associated with the CSI used in the
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design problem, which we call the “nonrobust beamforming
design”. Fig. 3 shows percentage of outage1 at different rate
targets for the nonrobust design. We observe that the channel
uncertainty, when not considered in the design process, leads
to frequent violations of the rate target at the information
receiver. However, for our proposed worst-case robust beam-
forming algorithm, the rate target is always satisfied and no
outage happens.

V. CONCLUSION

In this letter, we consider the worst-case robust beamform-
ing design for the wireless communication system with both
information and energy receivers when the CSI is imperfect.
By means of semidefinite relaxation, we transform the original
robust design problem into a SDP problem. Then we prove
that such relaxation is tight and we can always obtain the
optimal solution of the original problem. The performance of
the proposed beamforming algorithm has been demonstrated
by simulations. Future research directions may include the
robust beamforming design for the more general broadcast-
ing systems with multiple information receivers and multiple
energy receivers.

APPENDIX A
PROOF OFTHEOREM 1

Denoteβ ,

(
ε
√
P + σ

√
2r − 1

)2
, the Lagrangian ofP2

is given by

L (W, λ, µ) = Tr{ĜW}+ λ
(

Tr{ĤW} − β
)

(31)

−µ (Tr{W} − P ) ,

where λ and µ are the dual variables. The Lagrange dual
function is then defined as

g(λ, µ) = max
W�0

L (W, λ, µ) . (32)

SinceP2 is convex with strong duality, we can solve it by
solving its dual problem

D2 : min
λ≥0,µ≥0

g(λ, µ). (33)

Denote the optimal solution ofD2 as (λ⋆, µ⋆), then the
matrix W⋆ that maximizesL (W, λ⋆, µ⋆) is the optimal
solution of P2, which means that we can findW⋆ through
the following problem

max
W�0

Tr{ĜW} − Tr
{(

µ⋆I− λ⋆Ĥ
)
W
}

(34)

where the constant terms has been discarded. In order for
problem (34) to have a bounded value, it is shown as follows
that the matrixµ⋆I−λ⋆Ĥ should be positive definite. Suppose
µ⋆I− λ⋆Ĥ is not positive definite, then we can chooseW =
twwH , wheret > 0 and Tr{t(µ⋆I−λ⋆Ĥ)wwH} ≤ 0. Due to
the independence of̂g andĥ, it follows that Tr{tĜwwH} > 0
with probability one. Lett → +∞, the optimal value in (34)
will be unbounded, which is a contradiction of the optimality
of (λ⋆, µ⋆).

1We call the outage happens when the rate target is not satisfied at the
information receiver.

DefineQ , (µ⋆I− λ⋆Ĥ) ≻ 0 and letW = Q1/2WQ1/2,
the problem in (34) is then rewritten as

max
W�0

(Q−1/2ĝ)HW(Q−1/2ĝ)− Tr{W}. (35)

Then we claim that the optimal solution of (35) is always
rank-one. Suppose the optimal solutionW

⋆
is not rank-

one, without loss of generality, we can assume its rank isk
(2 ≤ k ≤ N ) and decompose it asW

⋆
=
∑k

j=1
αjwjw

H
j .

Then we choose anotherW
⋆′

= (
∑k

j=1
αj)wiw

H
i , where

i = arg max
j∈{1,...,k}

|(Q−1/2ĝ)Hwj |. ThenW
⋆′

can achieve a

larger value thanW
⋆
, which is a contradiction.

From the above discussions, it is known thatW
⋆

is always
rank-one. SinceW⋆ = Q−1/2W

⋆
Q−1/2, we must have that

W⋆ is rank-one, which completes the proof of Theorem 1.
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