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Abstract—We present an algorithm to dynamically allocate
transmission power to maximize the throughput-utility in an
interference-limited network under an instantaneous sum power
constraint with time-varying channels. We consider the equiva-
lent problem of maximum admission with queue stability con-
straint through Lyapunov optimization. The resultant non-convex
minimization problem is solved by an online algorithm consisting
of two components: first, successive convex approximations to
randomly choose a local minimum, and second, a modified pick-
and-compare method for low-complexity convergence to a global
minimum. We prove the optimality of this approach, derive its
tradeoff between throughput-utility and delay, and demonstrate
its performance advantage against existing methods.

I. INTRODUCTION

We consider a time-slotted interference-limited network
with M users. Let M := {(m,n)} be the set of com-
munication pairs, where m and n, 1 < m < M, 1 <
n < M, are the transmitter and receiver, respectively. The
transmission rate for (m,n) at time slot ¢ is modeled as
Ryn(p(t), G(t)) = log(1 4+ I'SINR,,,, (¢)) [bits/s/Hz], where
P(t) = [Pmn(t)](m,n)er is the vector of transmission power
allocated to (m,n), G(t) = [gmn(t)]arxas is the matrix of
channel power gain from m ton, 0 < I' < 1 is a capacity gap
from the Shannon bound, and SINR,,,(¢) is given by

Umndmn (t)pmn (t)
Z(k,l)eM,(k,l)#(m,n) gkn(t)pkl(t) + o? 7

SINR, ., (t) =

where v,,,,, is the processing gain for (m,n) and o2 is the
noise power.

An important open problem is the optimal allocation of
transmission power p,,,(t) to maximize the sum-rate at each
time slot ¢:

max
p(t)

Y Run(p(t),G(1), )

(m,n)eM

given a per-node power constraint ..., . e Pmn(t) <
Prax ¥Ym. This problem is known to be NP-hard in general
[1]. Approximating in the high SINR region, the problem can
be efficiently solved by geometric programming [2]. However,
since the SINR depends on the power allocation decision to
be made, such approximation could induce large performance
loss. Other known heuristics include iterative water filling [3],
successive convexification [2][4], and asymptotic Lagrange
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duality either with small tone spacing [5] or with an infinite
number of sub-carriers [6]. None of these methods guarantees
a global optimum. In [7], a globally optimal solution was
derived with the prismatic branch and bound method, but
its computation complexity is exponential. Furthermore, all
of these methods consider only a static setting where the
channel gains are fixed. When the channels are time-varying,
the computational complexity multiplies.

Alternatively, the problem may be recast as maximizing
the time-averaged throughput, which is equivalent to max-
imization of the instantaneous rate asymptotically in ¢. It
can be solved by employing a Lyapunov-typed cross-layer
optimization technique iteratively over multiple time slots [8].
However, this technique involves the minimization of a Lya-
punov drift-plus-penalty function, which is reduced to an NP-
hard max-weight scheduling problem. Low-complexity pick-
and-compare (PaC) algorithms have been studied in [9]-[13] to
iteratively compute the max-weight solution. These algorithms
are proven to achieve arbitrarily near optimal throughput.
However, they suffer from long transmission delays due to the
unavoidable tradeoff between throughput and queue lengths.
In particular, since one step of the PaC technique requires
picking a max-weight solution that has a positive probability
to be near optimal, the delay is severe when the PaC technique
is applied to our rate maximization problem, which admits an
uncountable space for power allocation.

In this paper, we consider the general problem of maxi-
mizing the throughput utility in interference-limited networks.
We propose a novel algorithm that can substantially reduce
the queueing delay over simple PaC algorithms. First, the
uncountable power allocation space is reduced to a finite
set of local minima by a successive convex approximation
technique applied in each time slot. Then, a modified form of
PaC is employed to dynamically extract the global optimum.
The proposed algorithm is proven to efficiently solve the
throughput utility maximization problem over a continuous
power space, incurring a tradeoff between 1 — O(+) utility
and O(V) delay for arbitrary V' > 0. We further demonstrate
its performance advantage over existing alternatives.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume that the channel process G(t) is ergodic and

takes value from a finite set with probability (G?) 2
Pr[G(t) = G?]. Furthermore, the power constraint induces
a maximum rate Ry, such that R,,,,,(p(t), G(t)) < Rpax, Vt
and (m,n) € M. For simplicity of illustration, we initially
focus on throughput maximization and later discuss the exten-
sion to throughput utility maximization in Section VL.

Instead of directly maximizing the sum of instantaneous



rates as in (1), we maximize the sum of time-averaged rate
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With only a constraint on the instantaneous power, this
corresponds to an asymptotic solution to (1), i.e., for any
power allocation strategy that maximizes Z(m’n)e M Ry,
there exists a time ¢o such that 3_,, e\ R (P(1), G(1))
is maximized for all ¢ > .

We assume that for each communication pair (m,n),
m always has data to send, and Q,,,(t) is the transmis-
sion queue length at time ¢. In order to maintain queue
stability, we consider an admission control strategy, where
the admitted amount of data for (m,n) at time ¢ is
@pmn(t). Then, the queue evolution function is expressed as
Qmn(t+1) = max{Qmn(t) = Rinn(P(t), G(1)), 0} + amn(t).
Furthermore, define the throughput of (m,n) as G, =
limy o0 % Z?:l am'n,(t)~

Then our problem can be equivalently stated as

max Z Grn 3)

a(t),p(t) (m.meM
S.t. Gmn < Rpn, V(m,n) € M, 4)
amn(t) < Rpax, V(m,n) eM, )
> pmn(t) < PR, Vm, 6)
Pmn(t) 20, V(m,n) € M, @)

where a(t) = [@mn(t)](m,n)er. In the above, (4) is required
for queue stability, and (5) is an upper bound on the admission
rate that does not affect the throughput optimality but is
used later to improve the cleanliness of analysis'. Thus, our
objective is to choose a policy for joint admission and power
allocation over time, to maximize the network throughput
while maintaining queue stability.

III. EFFICIENT ADMISSION AND POWER ALLOCATION

To solve the above optimization problem, a standard ap-
proach is to construct the following Lyapunov drift-plus-
penalty function [8]:

£l Y max{Qua(t) — Run(p(t), G(1)),0} + ann(1)]?
(m,n)eM

5 Y @Gumien} Ve[ Y amlamn},
(m,n)eEM (m,n)eM

where Q(t) = [Qmn(t)](m,n)em and V is an arbitrary positive
constant. The function has the following upper bound:

MIB s+ E{ Y (Qunt) = V)amn(t)

(m,n)eM
Qun (D) R (p(1), G(1)|Q(H) }. ®)

It has been shown in [8] that any strategy that minimizes such
an upper bound, in our case (8) subject to (5), (6), and (7),

'All transmission queues remain constantly backlogged under this condi-
tion, as can be seen in the admission control algorithm described in (9), so
the sum input into the queues equals the sum output of the queues for any
upper bound of amn (t) greater than Rmax.

solves the original optimization problem, with V' as a tuning
parameter that determines the tradeoff between optimization
performance and queueing delay. We adopt this general ap-
proach for joint admission control and power allocation.

A. Admission Control

From the form of (8), the optimal data admission for (m, n)
at time ¢ is independent of power allocation:

| Buas 1 Qun(t) =V <0
A (1) = {0’ £ Oo() —V 30 ©)

B. Power Allocation by Pick-and-Compare (PaC)

To determine the optimal power to minimize the last term
in (8), we have the following problem at each time ¢,

r;l(ltr)l{ > —an(t)log(l+FSINRmn(t))}7 (10)
(m,n)eM

subject to power constraints (6) and (7). Note that this is a
generalized form of (1), so it is at least as difficult as the
original problem due to the non-convexity of SINR,,, ().

However, instead of solving this intractable problem directly
at each time slot, a random pick-and-compare algorithm [9]
can be used to dynamically compute its solution over multiple
time slots. Using power allocation as an example, the PaC
algorithm consists of two steps to compute a power allocation
preC(t) for each t:

1) A power allocation p(t) is randomly picked.

2)  p(t) is compared with p’?“(r;), where 7, =
max{7T < t: G(7) = G(¢)}, and the one that gives
a smaller value to (10) for the current queue lengths
Q(t) is chosen as p?¢(t).

The PaC algorithm was first proposed in [9] for generic
transmission control. With the condition that Step 1) must
select an optimal solution with a positive probability, PaC
was shown to maintain queue stability for any input vector
within the network capacity region under fixed channel gains,
ie., + =t — 1. It was later modified to accommodate time-
varying channels in [10] and [11], and extended to throughput
maximization in [12].

In power allocation problems, PaC is not directly appli-
cable to a continuous power space. To guarantee a positive
probability of optimality in Step 1), one may quantize power
to finite levels, but such an approach is suboptimal, and it
is not scalable since the decision space is exponential in the
number of channels. Another technique was presented in [13]
for distribution control under an SINR model, where in Step 1)
a solution to (10) is picked over the continuous power space,
while ensuring that it is within a constant neighborhood of
the optimum with positive probability. However, near-optimal
solutions generally occur with low frequency in a continuous
space, which implies long queue lengths and hence large delay.

C. SC-PaC: Creating a Finite Space for Pick-and-Compare

We propose a new method to improve the performance of
PaC in power allocation. It significantly reduces the decision
space in a modified PaC algorithm, by picking from only a



small finite set of power allocations that contains the optimal
solution to (10).

Toward this end, we utilize the successive convexification
(SC) approach by approximating the original problem with
a series of convex optimization problems [14]. Existing SC
methods applied to the SINR rate model include single con-
densation [2] and logarithmic approximation [4]. Here we
adopt a more computationally efficient method, which also
facilitates the optimality proof in Section IV.

We first rewrite (10) as

%1{ <m§M Qrmn(£)log (gomn<p<t>, G<t>>)}’ "

where ¢pmn (p(1), G(t)) = > ) grn(t) Z(k,z);ﬁ(m,n) pri(t) +
o, Pmn(P(t), G(1) = >k n (1) Z(k,z);ﬁ(m,n) pr(t) +
TUmnGmn (£)Pmn (t)+02. Note that the log term in (11) can be
viewed as the difference of two concave functions. Then, with
some initial power allocation p(o)(t), we apply the following
iterative algorithm:

a) Approximate 10g(¢m..(p(t), G(t))) with its tangent

line at p(* ().

b) Solve the resultant convex program and assign its
minimizer to pt1)(¢).
c) Let ¢ =4+ 1 and repeat from a) until convergence.

It can be shown that the sequence p'*)(t) converges to a
local minimizer of the original problem [15]. However, the
SC approach cannot guarantee a global minimum. Further-
more, it is generally infeasible to obtain the set of all local
minimizers in the multi-dimensional power space. Therefore,
the optimality of SC, when used alone, is largely dependent
on the initial point.

Fortunately, throughput optimality can be achieved by PaC
under a milder condition that Step 1) has a positive probability
to pick a global minimizer of (10). Theorem 1 below states that
SC satisfies this requirement, i.e., Pr{p®“(t) = p*(t)} > 0,
where p““(t) is a local minimizer derived from SC and p*(t)
is a global minimizer.

Hence, we propose an algorithm that combines SC and PaC:

1.1)  Pick p(®)(#) uniformly randomly from the constraint
set (6) and (7).
1.2) Run SC as described above. Let p(t) = p°(t).

2) Same as PaC.
We label this algorithm SC-PaC. An analytical study on SC-
PaC is presented in the next section.

IV. THROUGHPUT AND DELAY ANALYSIS

In this section, we show that by reducing the decision
space from uncountable to finite, SC-PaC can substantially
reduce the queueing delay toward throughput maximization.
For notation simplicity, the time index ¢ is omitted when it is
clear from the context. We first present Lemma 1, which is
required for the proof of Theorem 1.

Lemma 1: The set of local minima of (10) is finite.

Proof: Let A\, and p,,, be Lagrange multipliers cor-
responding to (6) and (7), respectively. Part of the KKT
conditions of (10) includes the following:

Z Q3955 9mnl'Vi;D5;

i) m) Xij(Xij + gijlvijpij) In2

+ )\m — Bmn—

angmnrvmn _
(an + gmnrvmnpmn) In2 B

0, V(ij)eM, (12)

)\m(z Pmn — P::llax) = 07 Vm, (m; n) S M7 (13)
HmnPmn = O> V(m7 n) S M7 (14)

where X,,, = Z(k,’l)eM,(kJ)#(m’n) GknPrl + 02

It is easy to transform (12) into a polynomial function
by multiplying out the denominators, and (13) and (14) are
both polynomials. Then, since there are an equal number of
variables and equations, and the number of distinct monomials
is finite, by Khovanskii’s Theorem [16], the number of real
roots of (12), (13), and (14) is finite. This implies that the set
of local minima is finite. |

Intuitively, since SC randomly chooses from a finite set
of local minimizers by Lemma 1, as long as the choice is
unbiased in some sense, a global minimizer will be chosen
with positive probability. The following theorem formalizes
this observation.

Theorem 1: There exists
Pr{p®“(t) = p*(t)} > p.

Proof: Let Z(p) = 3_(.n)em @mnlog (%),
and let Z(®) (p) be its convex approximation in the 7 iteration
of the SC algorithm, induced by the point p(*). By the strict
concavity of log(¢mn(p(t), G(t))) and the definition of a
tangent line, we have Z()(p) > Z(p), with equality if and
only if p = p¥.

Let Ci be a neighborhood where the kth local minimizer
Px is the only minimizer. Let H; be the set of local max-
imizers in Ci, and we define a minimum-maximizer py =
argming, ey, {Z(p)}. Consider the region Uy, = {p € Cy :
Z(p) < Z(Pr)}. Suppose p¥) € U, but pitl) & U,
Then there always exists some p’ = ap® + (1 — a)p(th),
0 < a < 1, such that Z(p') = Z(pi). Since ptth
is a global minimizer of Z(®(p), we have Z((p(it))) <
Z@O(pD) = Z(pD) < Z(px). Then, by convexity, we have
ZO(p) < aZD(PD) + (1 — a)ZO Pty < Z(pp). It
follows that Z()(p’) < Z(p'), which creates a contradiction.
Hence, with any starting point p(°) € U}, the sequence of SC
minimizers stays inside U/, so they must converge to pg.

Since the number of local minima of (10) is finite by Lemma
1, there exists a constant ¢ > 0 such that [Uy| > (,Vk. In
particular, consider the U, that contains p*. Let P be the
feasible set defined by (6) and (7). It then follows that, when
the initial point of PC is uniformly randomly selected in P,
Pr{pSC(t) = p*(t)} > [t > 0. m

Theorem 1 can be used to lower bound the throughput of
SC-PaC, as stated in Theorem 2.

Theorem 2: SC-PaC provides the following throughput per-
formance guarantee:

2| M|R?

Z G > A* _ |M|R?nax _ max
(meM - V pV min; {n(G*)}

some p > 0 such that

,» (15)

where A* is the global maximum of (3) - (7).

Proof: Due to space limitation and to avoid redundancy
with existing literature, we omit some details in the stan-
dard algebraic manipulation of (8). Interested readers are
referred to similar proof techniques used in [10], [11], [12].
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Fig. 1. Network performance comparison.

In particular, similar to the proof of Theorem 9 in [12], it
can be shown that ]E[Z(m,n) Quun (1) (R (p* (1), G(2)) —

Runn (T (1), G(t)))|Q(t)L < 2l Then (15) fol-
lows from Theorem 4.8 in [8]. ]

Meanwhile, the admission control strategy in (9) dictates
that each queue does not exceed V + R,ax, SO an upper bound
to the sum queue length is 3, v @mn(t) < [M|(V +
Ruax). Hence, SC-PaC achieves a tradeoff between 1—O(3:)
throughput and O(V') delay. This means that with a large V,
we can drive the throughput arbitrarily closed to its optimum
value, while incurring a linearly increasing delay.

Note that the term % in (15) can be viewed
as a cost incurred in exchange for reducing the complexity of
power allocation. It is inversely proportional to pV, which
is a general condition for PaC methods. However, as SC-
PaC reduces the decision space for power allocation from
an uncountable continuum to a finite set, it significantly
increases p over conventional PaC, leading to drastic increase
in throughput for any given V' or drastic decrease in V for
any given throughput requirement.

V. NUMERICAL EVALUATION

We evaluate the performance of SC-PaC through simulation.
Comparison is made with the conventional PaC approach used
in [10]-[13] as described in Section III, and with geometric
programming assuming high SINR as in [2].

We use as an example the downlink of a cellular system with
one transmitter and four receivers. The channel amplitudes are
modeled as i.i.d. Rayleigh random variables with unit average
power, which are quantized into six equal-probability states
{0.280,0.535,0.734,0.937,1.183,1.649}. We normalize the
noise power to 1 and set P2 = 20, vg,, = 5, and I' = 1,
which gives Ryax = 8.1 bps/Hz.

From Figs. 1(a), we see that the throughput of SC-PaC is
substantially higher than that of PaC for the same V. It also
out performs geometric programming when V' > 2, while
PaC requires V' > 5000, incurring extremely high delay.
Furthermore, there is no significant improvement in the SC-
PaC throughput when V' > 20, suggesting that the global
optimum can be approached without too much delay. From
Fig. 1(b), we see that SC-PaC and PaC induce similar queue
backlog for V' > 20, roughly at |[M|V as expected from
Section IV. Hence, the throughput improvement by SC-PaC
is achieved without delay penalty.

VI. EXTENSION TO THROUGHPUT UTILITY
MAXIMIZATION

The proposed method can be easily extended to maxi-
mize the sum of throughput utility, by replacing a,,, with
U(@mn) in (3), where U(-) is some concave non-decreasing
function. This is useful, for example, when fairness among
the communication pairs is considered. The general form
of such extension is given in [8], which shows that the
problem can be transformed into maximizing the sum of
time-averaged utility of some instantaneous rate by, (t), such
that lim¢_,o0 + 37" byun(t) < @ This allows a similar
Lyapunov drift-plus-penalty formulation, with an additional
virtual queue H,,, (t) for each (m,n), with updating function
Hpn(t+ 1) = max{Hn(t) — amn(t),0} + b ().

Then, it can be shown that optimal admission is modified
from (9) to amn(t) = Rmax, if Qun(t) — Hpn(t) < 0, and
0 otherwise, and an optimal b,,,(t) can be obtained from
minimizing H,p,p, (¢)bimn (t) — VU (b (t)), which is a convex
function of by, (t). Furthermore, the power allocation remains
as in (10), so that SC-PaC can be applied without further
modification. Finally, it can be proven similarly that we have
a tradeoff between 1 — O(7;) utility and O(V') delay.
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