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Fair Traffic Relaying for
Two-Source-One-Destination Wireless Networks

Alessandro Nordio, Carla-Fabiana Chiasserini, Tamer ElBatt

Abstract—We propose a communication strategy for a three-
node wireless network, where the relay nodes generate theirown
data besides decoding and forwarding other nodes messages.
Unlike previous work, we consider that the nodes are arbitrarily
located on a 2D plane, are equipped with half-duplex radios and
require a fair rate allocation. We quantify the performance in
terms of achievable rate as the SNR conditions, the network
geometry and the nodes traffic demand vary, and compare it
to the cut-set bound that we derive for the network under
study. Furthermore, we show that our strategy outperforms that
proposed in [2].

I. I NTRODUCTION

Cooperative relaying has received a growing interest in the
literature since it is frequently encountered in a variety of
wireless systems, e.g., cellular, ad hoc and sensor networks.

The basic three-node relay channel, where one source node
transmits to a destination via an intermediate node (relay),
has been studied in [1], where different coding strategies
are defined under the asumptions of full-duplex nodes. More
recently, the work in [2] introduces two cooperative protocols
that encompass the ones previously proposed. The case of
multi-source, multi-destination, multi-relay networks has been
addressed in [3]. Unlike our study, all these works hinge on
the rather strong assumption of full-duplex radios.

A network with half-duplex nodes (i.e., unable to transmit
and receive simultaneously) has been studied in [4], [5], in
the case of a diamond-shaped network topology. The protocols
proposed there achieve rates close to the cut-set upper bound
derived in [6]. Note, however, that the scenarios addressedin
[2], [4]–[6] are fundamentally different from ours, since the
relay nodes do not generate their own data. The achievable
rate in half-duplex networks with two sources, one destination
and multiple relays is studied in [7], but assuming a noise-free
channel and single-hop transmissions only.

The cases of a three- and a four-node network where nodes
can be both sources and relays have bee investigated in [8],
[9], respectively. However, unlike our work and similar to
the aforementioned information-theoretic approach, the study
in [8] assumes full-duplex nodes. The study in [9], instead,
deals with a half-duplex network where two sources can reach
their destination only using the other source as a relay. The
symmetry of such a scenario allows the authors to exploit
the so-called broadcast channel with cognitive receiver, which
cannot be applied to our case.

Our objective in this work is to revisit the three-node,
decode-and-forward (DF) relay channel with four key differ-
ences with respect to previous work: i) each node can act
as both a source and a relay, ii) nodes are half duplex, iii)
they use the same frequency channel and the signal of both

Fig. 1. The network under study (left) and the network cuts used for
computing the bound (right).

sources can reach the destination, possibly with an arbitrarily
low power, iv) a fair rate allocation is required, i.e., nodes
need to achieve different data rates according to their traffic
demand. Considering this network scenario, we derive the cut-
set upper bound on the achievable rates and propose a relaying
strategy that closely approximates such a bound. We also show
that our strategy outperforms the one presented in [2].

II. SYSTEM MODEL

We consider a network composed of three nodes, as depicted
in Fig. 1 (left). We assume that the network lies on a plane
where the positions of the nodes 1, 2, and D are given by
(−1/2, 0), (+1/2, 0) and(z1, z2), respectively. Letdij be the
distance between nodei and nodej, with i, j ∈ {1, 2, D}.
We setd12 = 1, which yields:d1D =

√
(z1 + 1/2)2 + z2

2 and
d2D =

√
(z1 − 1/2)2 + z2

2 .
Nodes 1 and 2 are sources of data traffic to be delivered to

the destination D. These nodes may also cooperate by relaying
each other traffic toward D; in this case they adopt the DF
relaying technique [1].

The nodes operate on the same frequency channel and
transmit at the same power level. We assume free space prop-
agation and that the received signal is corrupted by additive
white Gaussian noise with the same variance at every receiver.
For simplicity of notation, we defineγ as the signal-to-noise
(SNR) ratio observed at a receiving node located at distance
d = 1 from the transmitter. It follows that the SNRs observed
at D when nodes 1 and 2 transmit are given, respectively, by
γ1 = γ/d2

1D and γ2 = γ/d2
2D. In the following, we focus

on the case whereγ1 < γ2, i.e., z1 > 0; the extension to
the opposite case is however straightforward. Also, note that,
when the distanced2D is close to zero,γ2 may become very
large and the free space propagation model might not hold any
longer.

Since nodes 1 and 2 operate in half-duplex mode, each of
them has two operational states: transmit (t) and receive (r). D
instead is always in receiving mode. We define the operational
state of the network,σ, as the vector of the states of nodes
1, 2, D, respectively. Since we are interested in studying the
nodes achievable rate, we only consider the following states:

σ1 = [t, r, r], σ2 = [r, t, r], σ3 = [t, t, r] ,

i.e., we neglect the state where all nodes are receiving as this
would imply that no data transfer occurs in the network.



2

III. C OOPERATIVE RELAYING STRATEGY

We propose a communication strategy for the network
described in Sec. II. We describe the scheme by taking node
2 to act as a relay for node 1; the symmetric case where node
1 acts as a relay for node 2 can be easily derived from there.
Instead, the case where nodes 1 and 2 relay each other’s traffic
would lead to a totally different analysis and is out of the scope
of this work.

Since nodes operate in half-duplex mode, we consider a
time-division approach where transmissions occur over a two-
slot frame, with slots of equal duration. We assume that in Slot
1 the network is in stateσ1, while in Slot 2 the network is in
stateσ3. In other words, according to the proposed scheme
node 1 always transmits while node 2 receives in Slot 1 and
transmits in Slot 2.

More precisely, assume that node 1 has two independent
messages to send to D, denoted byW11 andW12, respectively,
while node 2 has a single message,W2, (independent ofW11

andW12) to be delivered to D. The messagesW11, W12, and
W2 are encoded into the complex signals1 x11, x12, andx2, by
using codebooks of rateR11, R12, andR2, respectively. We
assume that these signals have zero mean and unit variance.
Then, our relaying strategy works as follows.

Slot 1.The network is in stateσ1 and node 1 transmitsx11.
Denoting the signal and the noise at the receiverk ∈ {2, D}
in slot j ∈ {1, 2} by y

(j)
k andn

(j)
k , respectively, we can write

the signals received at node 2 and D as,y
(1)
2 =

√
γx11 +n

(1)
2

and y
(1)
D =

√
γ1x11 + n

(1)
D . By processingy(1)

2 , node 2 can
successfully decode the signalx11 and retrieve the message
W11 if

R11 ≤ C(γ) (1)

where the functionC(·) is defined asC(x) = log2(1 + x) and
γ is the SNR associated toy(1)

2 .
Slot 2. The network is in stateσ3: node 1 transmits a

linear combination of the signalsx11 and x12, while node
2 transmits a linear combination of the signalsx11 and x2.
Note thatx11 is available at node 2 if the constraint in (1)
is satisfied. Thus, the signal received at D is given byy

(2)
D =√

αγ1x11+
√

(1 − α)γ1x12+
√

βγ2x11+
√

(1 − β)γ2x2+n
(2)
D

where the parametersα, β ∈ [0, 1] represent the transmit
power share that nodes 1 and 2, respectively, devote to the
transmission ofx11.

The signalsy
(1)
D and y

(2)
D can be rewritten as2 yD =

Hx + nD, where yD = [y
(1)
D , y

(2)
D ]T, nD = [n

(1)
D , n

(2)
D ]T,

x = [x11, x12, x2]
T, and

H =

[ √
γ1 0 0√

βγ2 +
√

αγ1

√
(1 − α)γ1

√
(1 − β)γ2

]
. (2)

Hence, givenz1, z2, α, andβ, the instantaneous rates achiev-
able by the source nodes are limited by the following con-

1Although a signal can be represented by a sequence ofN random symbols,
x[n], n = 1, . . . , N , wheren is the symbol time index, for simplicity, we
consider a symbol-by-symbol transmission and drop the index n.

2Bold lowercase and uppercase letters denote vectors and matrices, respec-
tively. Vectors are column vectors, the conjugate transpose operator is denoted
by (·)H, and the identity matrix is denoted byI.

straints [1]:

R11 ≤ C(‖h1‖2) (3a)

R12 ≤ C(‖h2‖2) (3b)

R2 ≤ C(‖h3‖2) (3c)

R11 + R12 ≤ C
(
H3H3

H
)

(3d)

R11 + R2 ≤ C
(
H2H2

H
)

(3e)

R12 + R2 ≤ C
(
H1H1

H
)

(3f)

R11 + R12 + R2 ≤ C
(
HHH

)
(3g)

where H = [h1,h2,h3] and Hk is obtained fromH by
removing itsk-th column,k = 1, 2, 3. Also, for a generic
matrix X, we definedC(X) = log2 det(I + X).

Next, we denote byR1 the overall instantaneous rate of
node 1, i.e.,R1 = R11 + R12. Prior work on cooperative
relaying has been focused mainly on maximizing the sum
rate of the source nodes, i.e.,R1 + R2. However, such a
maximization does not guarantee fairness between the traffic
requirements of the source nodes. In order to solve this
problem, we impose the additional fairness constraints:

R1 = R; R2 = ρR (4)

and aim at maximizingR. In (4), ρ ∈ [0, +∞) is the ratio
between the nodes traffic requirements and is assumed to be
known. We also stress that forρ = 0 (i.e., R2 = 0) the
problem reduces to maximizing the rate of the pure relay
channel, as done for example in [2].

By using the expression ofR1 and (4), we can rewrite the
constrains (3a)–(3g) as functions ofR andR11 only, i.e.,

R11 ≤ C(‖h1‖2) (5a)

R11 ≥ R− C(‖h2‖2) (5b)

R ≤ C(‖h3‖2)/ρ (5c)

R ≤ C
(
H3H3

H
)

(5d)

R11 ≤ −ρR + C
(
H2H2

H
)

(5e)

R11 ≥ (1 + ρ)R− C
(
H1H1

H
)

(5f)

R ≤ C
(
HHH

)
/(1 + ρ) (5g)

whereR11 ≤ R. Equations (1) and (5a) can be compactly
rewritten as (6a), whereC11 = min{C(γ), C(‖h1‖2)}. Also,
(5c), (5d) and (5g) can be rewritten as (6b)

R11 ≤ C11 (6a)

R ≤ C0 (6b)

wereC0=min{C(‖h3‖2)/ρ, C
(
H3H3

H
)
, C

(
HHH

)
/(1+ρ)}.

Next, we are interested in finding the maximum rateR
for which there exists at least a solution to the system of
inequalities given by (5b), (5e), (5f), (6a), and (6b). By looking
at (6a) and (5b), it is straightforward to see that a solution
for R11 exists if the term on the right hand side of (5b)
is lower than the term on the right hand side of (6a), i.e.,
R−C(‖h2‖2) ≤ C11. Then, by solving with respect toR, we
obtain that the rate is limited by

R ≤ C1 = C11 + C(‖h2‖2). (7)
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Similarly, considering the pairs of equations: (6a) and (5f), (5e)
and (5b), (5e) and (5f),R11 ≤ R and (5f), we obtain:

R ≤ C2 = (C11 + C(‖H1‖2))/(1 + ρ) (8)

R ≤ C3 = (C(‖h2‖2) + C(‖H2‖2)/(1 + ρ) (9)

R ≤ C4 = (C(‖H1‖2) + C(‖H2‖2)/(1 + 2ρ) (10)

R ≤ C5 = C(‖H1‖2)/ρ . (11)

Note that we do not compare equationsR11 ≤ R and (5b)
because the solution turns out to be independent ofR and
C(‖h2‖2) ≥ 0. In conclusion, given the parametersγ, z1, z2,
andρ, the rateR is limited by

R ≤ C∗ = max
α,β∈[0,1]

min
i=0,...,5

{Ci} (12)

where the maximization is over the power share parameters
α and β. From (12), it also follows that the achievable rate
(averaged over the two-slot frame) is limited by

R ≤ C∗/2 (13)

where the factor1/2 takes into account that the transmission
is organized over two time slots of the same duration.

IV. CUT-SET UPPER BOUND

In order to assess the performance of the proposed strategy,
we compare it to the cut-set upper bound for the network
under study. We derive the bound using the notation introduced
in [10, chapter 10.2] and by following the approach in [6].

We denote byT = {1, 2, D} the set of nodes and assume
that nodes 1 and 2 generate two independent messages,W1

and W2 with ratesR1 = R and R2 = ρR, respectively,
as defined in (4). Estimates of these messages are obtained
at node D.X1 and X2 represent the signals transmitted by
nodes 1 and 2, respectively, whileY1, Y2, andYD the signals
received at nodes 1, 2, and D, respectively. The signalsX1 and
X2 are assumed to have zero mean and unit variance and have
joint distribution pX1,X2

. We also denote byN1, N2, ND ∼
NC(0, 1) the independent noise terms at the receivers. Finally,
let Ŵ1 andŴ2 be the estimates of the messagesW1 andW2

obtained at node D.
We then consider the cuts of the network,Si, i = 1, 2, 3

(see Fig. 1 (right)) and their complement,Sc
i = T \ Si,

which separate some of the messages from their corresponding
estimates. Following [10, chapter 10.2] the cut-set upper bound
to the achievable rateR is given by

C ≤ max
ζ∈[0,1]

t1,t2,t3≥0
t1+t2+t3=1

min






3∑

j=1

tjI1j ,

3∑

j=1

tj
I2j

ρ
,

3∑

j=1

tj
I3j

1 + ρ






(14)
whereIij = I(XSi

; YSc

i
|XSc

i
, σj), XSi

= {Xk|k ∈ Si} is the
set of outputs from the nodes inSi, XSc

i
= {Xk|k ∈ Sc

i } is the
set of outputs from the nodes inSc

i , andYSc

i
= {Yk|k ∈ Sc

i } is
the set of inputs to the nodes inSc

i . The variabletj , j = 1, 2, 3
in (14) represents the time fraction the network operates in
stateσj , with t1 + t2 + t3 = 1. The maximization in (14)
is also performed overζ = |E[X1X

∗
2 ]|, i.e., the correlation
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Fig. 2. Comparison between the average rates achievable by our relay strategy
and the upper bounds asz1 varies, forz2=0, γ=0 dB andρ=1.

between the (assumed Gaussian) inputsX1 amdX2 (see [10,
chapter 10.2] for details).

As the last step, we compute the mutual informationIij ’s
that appear in the expression of the cut-set bound in (14). To
do so, we analyze each network state, separately.

1) In stateσ1 (only node 1 transmits), the signals received
at nodes 2 and D are given byY2 =

√
γX1 + N2 andYD =√

γ1X1 + ND, respectively. Thus,I11 = C(γ + γ1) andI31 =
C(γ1). Also, I21 = 0 since node 2 does not transmit.

2) In stateσ2 (only node 2 transmits), the received signals
areY1 =

√
γX2 + N1 andYD =

√
γ2X2 + ND, and we can

write the mutual informations asI12 = 0, I22 = C(γ + γ2)
andI32 = C(γ2).

3) In stateσ3 (both nodes 1 and 2 transmit), the signal
received at D is given byYD =

√
γ1X1 +

√
γ2X2 + ND,

and, by considering thatX1 and X2 are correlated with
correlation coefficientζ, the mutual informations are given
by I13 = C(γ1 − γ1ζ

2), I23 = C(γ2 − γ2ζ
2), and I33 =

C(γ1 + γ2 + 2ζ
√

γ1γ2).

V. RESULTS

We now show the performance of our strategy in terms of
achievable rate, and compare it to the bound derived in Sec. IV.
In particular, we evaluate the rates obtained when:

• node 2 acts as a relay for node 1. This is the situation
described in Sec. III, hereinafter referred to as “Relay-2”.
We recall that in this case the network operates in states
σ1 andσ3, with t1 = t3 = 1/2;

• node 1 acts as a relay for node 2 (i.e., nodes 1 and 2
swap their roles with respect to the Relay-2 case). This
situation is referred to as “Relay-1”, and corresponds to
letting the network operate in statesσ2 and σ3, with
t2 = t3 = 1/2.

Fig. 2 shows the results asz1 varies, forz2 = 0, γ = 0 dB
andρ = 1. In the plot, the bullets labeled “1” and “2” on the
x-axis represent the position of the nodes 1 and 2, respectively,
while z1 represents the position of the destination. The curve
labeled by “Bound” is obtained by evaluating (14), while
the curves labeled by “Bound-2” and “Bound-1” represent
the bounds obtained from (14) where, instead of maximizing
over t1, t2 and t3, we set (t1, t2, t3) = (1/2, 0, 1/2) and
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Fig. 4. Comparison between the average rates achievable by our relay strategy
and the upper bounds asz1 varies, forz2=0, γ=0 dB andρ=0.

(t1, t2, t3) = (0, 1/2, 1/2), respectively. These latter two
are upper bounds to the rates achievable by communication
strategies employing only two network states (out of three),
and for the same amount of time.

As expected, the Relay-2 strategy outperforms the Relay-1
scheme. Indeed,ρ = 1 corresponds to an equal traffic demand
at the two nodes andz1 > 0 implies that D is closer to node 2
than to node 1. It is important to note, however, that the results
obtained through Relay-2 are very close to the corresponding
bound (Bound-2).This is true for anyz1 > 0.75; when instead
the destination is very close to the nodes, a relaying strategy
becomes less effective than the multiple access channel where
both nodes simultaneously transmit toward D.

In Fig. 3, the average achievable rates and the bounds are
plotted for z2 = 0, γ = 0 dB andρ = 5 (i.e., R2 = 5R1).
Interestingly, although D is closer to node 2, Relay-1 (which
uses node 1 as a relay) outperforms Relay-2 for anyz1 > 0.8.
This is due to the fact that, since now node 2 requires a much
higher rate than node 1, its traffic load is already very high and
using node 2 as a relay (thus further increasing its load) is not
beneficial. Finally, we observe that the curve corresponding to
Relay-1 (resp. Relay-2) overlaps with the curve representing
Bound-1 (resp. Bound-2), for almost any value ofz1.

Fig. 4 refers to the casez2 = 0, γ = 0 dB andρ = 0. Here
node 2 is not a source and can only act as a relay for node 1.

Thus, in the plot we only show the rates achieved by Relay-
2 and compare them to Bound and Bound-2. Additionally,
the curve labeled by “Nabar” shows the performance of the
strategy named “Protocol I” by Nabar et al. in [2]. This
strategy corresponds to settingα = 0 andβ = 1 in (2), and it
is outperformed by our Relay-2 scheme whenz1 > 1.5.

VI. CONCLUSION AND FUTURE WORK

We studied cooperative relaying in a three-node wireless
network, where nodes use the same frequency channel, are half
duplex and can act as both sources and relays. We proposed
a transmission strategy and characterized the corresponding
achievable rate when a fair rate allocation is provided. We
then derived a cut-set upper bound in our network scenario,
and showed that the rate achievable by the proposed strategy
closely approximates such a bound. The results also showed
that our strategy outperforms that presented in [2].

This work can be extended along several directions: i)
given an achievable rate, we can minimize the node energy
consumption through an efficient power allocation policy, ii)
the study can be extended to fading channels to assess the
diversity gains, and iii) the assumption on equally-sized slots
can be relaxed in order to maximize the achievable rate with
respect to the slot duration.
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