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Abstract

Key distribution and renewing in wireless local area networks is a crucial issue to guarantee that unauthorized

users are prevented from accessing the network. In this paper, we propose a technique for allowing an automatic

bootstrap and periodic renewing of the network key by exploiting physical layer security principles, that is, the inherent

differences among transmission channels. The proposed technique is based on scrambling of groups of consecutive

packets and does not need the use of an initial authentication nor automatic repeat request protocols. We present

a modification of the scrambling circuits included in the IEEE 802.11g standard which allows for a suitable error

propagation at the unauthorized receiver, thus achieving physical layer security.
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I. I NTRODUCTION

An increasing interest is being devoted to physical layer security, which exploits the inherent randomness of the

wireless channel to obtain information security or, at least, to reduce the complexity of cryptographic techniques

at higher layers.

The technique proposed in [1] exploits physical layer security and automatic repeat request protocols to period-

ically renew the secret key in IEEE 802.11 wireless local area networks (WLANs). Such a solution requires that

the authorized user has already been authenticated by the access point (AP). So, it does not solve the problem of

automatically bootstrapping the network, that is, automatically generating the first key and distributing it only to

the authorized users.
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The IEEE 802.11 standard includes the Wi-Fi Protected Setup(WPS) protocol, which has been introduced in

2007 for simplifying the network bootstrap and does not exploit physical layer security. WPS, however, has some

well-known weaknesses [2], which make its use insecure.

In this paper, we propose an alternative solution, based on physical layer security, which aims at creating a secure

area around the AP, within which the network key can be safelybroadcast to the authorized users. This allows

them to automatically acquire the network key by simply entering the secure area. Unauthorized users must be kept

out of such area, whose size can be fixed by a suitable choice ofthe design parameters. In the proposed protocol,

a new key is obtained starting from the output of a linear feedback shift register (LFSR), whose internal state is

known only to authorized users. The LFSR output can be used tocompute the key for higher layer cryptographic

protocols, like the Wired Equivalent Privacy and Wi-Fi Protected Access protocols. The proposed algorithm works

as follows:

• The AP encodes the current state of the LFSR into a set ofm consecutive packets and broadcasts them, without

allowing requests for retransmissions. All users know the encoding technique, which is described next.

• If a user correctly receives the whole set ofm packets, he is able to decode the LFSR seed, from which he

obtains the current key and gets access to the network.

• If a user fails to receive one or more of them packets, he is unable to get any information on the current key,

and has no access to the network.

After having acquired the LFSR seed, the authorized receiver (Bob) can exit the secure area, but he will continue

to access the network while staying within the coverage region of the AP, having its data protected by the higher

level cryptographic protocol.

We suppose that Bob and the eavesdropper (Eve) use similar devices. The former, by coming close to the AP,

experiences a smaller path loss and a larger signal-to-noise ratio than the latter. So, Bob has a high probability of

receiving the whole set ofm packets without errors, while it is very likely that Eve willreceive at least one of

them packets in error. Actually, Eve could gain some advantage byusing more powerful receivers, e.g., exploiting

diversity techniques. This would affect the design of the system parameters and, hence, the size of the secure area,

but the approach remains valid.

The main issue of the proposed protocol is to find a suitable encoding of the secret seed intom packets such that

even a single error prevents Eve from getting any information on it. This condition is also known asavalanche effect

in cryptography, and we have recently shown that it can be achieved by suitable scrambling operations [3]–[5]. The

most favorable condition is represented by the “perfect scrambler”, for which a single residual bit error is sufficient

to ensure that half of the information bits are in error afterdescrambling, with randomly distributed error positions.

We have shown that the perfect scrambler can be easily approached by a well-designed matrix scrambler. The latter

is appropriate in the case of packets with fixed size, while, according to the IEEE 802.11 standard [6], the packet

size is variable. The standard already includes a scrambler, aimed at avoiding long runs of symbols 0 or 1, that may

be responsible for an incorrect synchronization. So, we first assess if this component is also suitable for physical

layer security. We show that the IEEE 802.11g scrambler has no error propagation ability; so, we propose a simple
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Fig. 1. IEEE 802.11g-a scrambler/descrambler circuit.

modification of it, which is able to reach the same error propagation properties of the perfect scrambler.

The paper is organized as follows. In Section II, we study thescrambler and descrambler used in 802.11g under

the physical layer security viewpoint. In Section III, we describe the new proposal and its performance in terms

of error propagation ability. In Section IV, we provide an example of performance for the whole scheme. Finally,

Section V concludes the paper.

II. SCRAMBLERS IN 802.11G

The IEEE 802.11g standard includes two types of scramblers.The first one is shown in Fig. 1, and is used when

the 802.11g device is operating in 802.11a mode. From the figure, we see that this scrambler consists of an LFSR,

described by the polynomialG(X) = X7 +X4 + 1. Since this polynomial is primitive, the LFSR has maximum

period, equal to127. The output of the LFSR is added (EX-OR) to the input data, producing the output scrambled

data. At the receiver side, the same LFSR is used for descrambling, thus reobtaining the original information

sequence. The initial seed is randomly chosen by the transmitter but, obviously, it must be communicated to the

receiver. For such purpose, the first7 bits of the Service field in the ERP-OFDM packet (details on the frame

structure can be found in the standard [6]) are zero; hence, the seed is transmitted in clear and the receiver can

recover it (in the absence of errors due to the channel).

The second type of scrambler is shown in Fig. 2, and is used when the 802.11g device is operating in 802.11b

mode. In this case, the scrambler and descrambler circuits are distinct, because of a more involved structure with

respect to the configuration shown in Fig. 1, where the input bits do not influence the contents of the LFSR.

Moreover, the initial seed is no longer chosen randomly by the transmitter, but fixed.

As discussed in Section I, we are interested in evaluating the error propagation properties of these scramblers.

Actually, this is very simple, as the scramblers’ structuremakes their behavior highly predictable. In particular, itis

immediate to verify that a single error in the sequences at the input of the descrambler in Fig. 1 produces a single

error at the output. The situation is very different, and indeed close to the desired behavior from the physical layer

security viewpoint, only if the error affects one of the bitsin the seed. This circumstance, however, has a small

probability to occur, and cannot be considered significant for the intended security purposes.

Similarly, it is also immediate to check that any combination of errors at the input of the descrambler in Fig.

2 produces an error pattern at the output having three times the same weight. So, also in this case, the error
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Fig. 2. IEEE 802.11g-b scrambler (top) and descrambler (bottom) circuits.

propagation effect is very limited. Hence, neither the descrambler used in 802.11g-a nor that used in 802.11g-b are

able to adequately propagate the errors at their input. So, they are ineffective in the proposed physical layer security

scheme. In the next section, a new proposal is presented that, starting from the structures in Fig. 2, modifies them

in such a way as to obtain the desired properties.

III. PROPOSED SCRAMBLER

Let us remind that the goal of the descrambler, in the proposed physical layer security scheme, is to propagate

the residual errors, in such a way that even with a single error at its input, about half of the bits at the output are

in error. This result cannot be achieved starting from the IEEE 802.11g-a scrambler/descrambler, while the circuits

used in the IEEE 802.11g-b standard can reach this target, through a suitable modification. The proposed solution

is shown in Fig. 3. The main changes, discussed next, are the following:

• scrambler and descrambler are interchanged;

• scrambling and descrambling are realized in two steps;

• the 7-cell LFSR is replaced by one with 32 cells.

Scrambler/descrambler interchange:The main reason why the 802.11g-b descrambler has no abilityto propagate

the errors is that it does not include any feedback link able to bring an error back into the LFSR after crossing the

seven cells it consists of. On the contrary, as evident in Fig. 2, such property is present in the scrambler circuit.

So, the error propagation ability can be improved by interchanging the role of the two circuits. It is possible to

verify that this does not alter the behavior from the synchronization standpoint, hence the standard requirement

is not affected by this change. However, since the standard circuit works on its input in a sequential way, it is

able to propagate the errors only on the bits which are input after the first erred one. This is shown in Fig. 4,

where a 1000-bit sequence has been given as input to the 802.11g-b scrambler, with a single erred bit in a variable

position. When the input error is in the initial positions, the scrambler has a good error propagation characteristic;

this performance, however, disappears when the error occurs later.
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Fig. 3. Proposed scrambler (top) and descrambler (bottom) circuits.
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Fig. 4. Number of output errors versus the position of a single input error, for the IEEE 802.11g-b scrambler with a 1000-bit input sequence

(standard 7-cell LFSR).

Two-steps scrambling/descrambling:A simple way to overcome the above limit consists in performing the

scrambling and descrambling operations in two steps, first entering the scrambler (descrambler) according to the

input order and then in the reverse order. Looking at Fig. 3, the switch stays in position 1 for the time necessary

to enter the input sequence. The output of the LFSR is stored in the last-in first-out (LIFO) buffer. Then the switch

is moved to position 2, and the contents of the buffer are input again to the LFSR. This way, an error occupying

a late position in the first step translates into an early position in the second step, and vice versa. If we use the

standard 7-cell LFSR in the circuit of Fig. 3, with a 1000-bitinput sequence, we obtain a number of output errors
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Fig. 5. Number of output errors versus the position of a single input error, for a two-steps descrambler with 7-cell LFSR and 1000-bit input

sequence.

as shown in Fig. 5: in spite of a small dispersion, dependent on the input error position, the target of having an

average number of errors at the output close to half the inputsize is reached with good approximation. This result

is further improved next.

32-cell LFSR:Fig. 5 shows that there are some “unlucky” positions where a single error at the descrambler input

produces a number of errors at the output significantly smaller than half the input size. These positions are multiple

of 127, i.e., the standard LFSR period, and are due to the device structure. The way to eliminate such singular

points consists in exploiting longer LFSRs. Taking into account the need to transmit long sequences, which we will

discuss afterward, we propose to adopt a 32-cell LFSR, withG(X) = X32 +X22 +X2 +X + 1. The simulated

distribution of the output errors for the circuits shown in Fig. 3 is reported in Fig. 6: the probability density function

(p.d.f.) is centered at500, as expected, and exhibits a limited dispersion around the mean. We have verified that

such behavior is independent of the input error position andit is maintained also in the case of multiple errors at

the descrambler input.

IV. PROBABILITY OF CORRECT RECEPTION

Once having demonstrated that the new descrambler is able toproperly propagate the errors, we need to verify

that the error rate due to the channel is sufficiently high to ensure that the probability of information interception

by Eve is very low in practical operation conditions. For such purpose, the traffic through the channel must be

characterized. Experimental and simulated results can be used for this purpose.

First of all, by capturing and analyzing the traffic of a real WLAN through common tools like Kismet [7] and

Wireshark [8], we have evaluated the burstiness level of thepacket errors, through the approach presented in [9].

It exploits a metric, calledβ and defined asβ = [KW (I)−KW (E)] /KW (I), whereKW is the Kantorovich-

Wasserstein distance, that is used to measure how close a conditional packet delivery function (CPDF) is to that
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Fig. 6. Number of output errors distribution for the new scrambler.

of the ideal bursty link.E is the CPDF of the empirical link, whileI is the CPDF of an independent link with

the same packet reception ratio. A highβ means the link is very bursty, while aβ close to zero means the link is

independent. Further details can be found in [9]. It is knownthat many but not all link layers observe burstiness.

In our experiments, performed in a common indoor environment, with no retransmissions allowed, we have found

β ≈ 0.16, which permits us to consider the errors almost uncorrelated.

Denoting byP the channel packet error rate, the probability that a block of m packets is received without errors,

under the hypothesis of an independent channel, is

Q = (1− P )m. (1)

The value ofQ also depends on the transmitted powerST . Based on the path loss model presented in [10, Eq. (2)]

and the values ofP reported in [11] [where packets withL = 200 bytes of application data andST = 12 dBm

are considered] we have used (1) to obtain a set of curves ofQ as a function of the distance from the AP. These

curves are shown in Fig. 7, for the case of a54 Mbps data rate,ST = 6 dBm and several values ofm. Similar

behaviors can be obtained for the other data rates of the standard. These curves can be used for either Bob or Eve:

for the former, the distance should be sufficiently small to have a largeQ (higher than a prefixed thresholdQB);

for the latter, the distance should be sufficiently large to have a smallQ (lower than a given thresholdQE). For the

considered example, in particular, we see that by assumingm = 125, the unauthorized user hasQ < QE = 10−30

for a distance of10.5 m or more. A relevant point, emerging from the figure, is that the slope of the curves can

be made very steep for values ofm sufficiently large; this means that the transition from the secure region to the

zone where Eve can stand without endangering security can bemade very sharp, thus reaching the target of the

proposed physical layer system. We remark that, for this purpose, them packets must be scrambled consecutively,

without resetting the scrambler (and descrambler) at the beginning of each of them.

An apparent drawback of the proposed system is the time required for key acquisition, i.e., the secure WLAN
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Fig. 7. Probability of correct reception, as a function of the distance, in a54 Mbps WLAN with 200 data bytes packets andST = 6 dBm.

bootstrap time (TB). This can be expressed as

TB = (mL/Rb + Tr)/Q, (2)

whereRb is the bit rate andTr the repetition period for the key transmission. Because of the high value ofRb

(e.g.,Rb = 54 Mbps in Fig. 7) the first contribution is always negligible and TB ≈ Tr/Q. Thus, by assuming,

as an example,QB = 10−1 and Tr = 1 s, TB is in the order of10 s. This value is not negligible; however, it

should be noted that the network bootstrap must be done only once for each session, so that, in relative terms, the

bootstrap time is quite acceptable.

V. CONCLUSION

We have proposed a physical layer security technique to implement the automatic bootstrap and renewing of the

network key in IEEE 802.11g WLANs. The proposed solution exploits a suitable scrambler/descrambler apparatus,

which is able to approach the error propagation performanceof a perfect scrambler, while preserving the flexibility

and simplicity of the original IEEE 802.11 standard circuits. So, it opens the possibility to implement, at a very

limited cost, effective mechanisms of physical layer security in worldwide used wireless networks.
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