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Abstract—In this letter, we study the ergodic capacity of a to implement. Instead, one can focus on asymptotic analysis
maximum ratio combining (MRC) Rician fading channel with  that can give a better understanding of the capacity and this

full channel state information (CSI) at the transmitter and at the ; i [P
receiver. We focus on the low Signal-to-Noise Ratio (SNR) gime relies on the continuity and the smoothness of the capatity i

and we show that the capacity scales as% SNRxlog(<L-), where function of SNR. Only recently, the low-SNR regime capacity

Q is the expected channel gain per branchK is the Rician fading Of @ Multiple-Input Multiple-Output (MIMO) Rician channel
factor, and L is the number of diversity branches. We show that has been looked at inl[6].[[7], but assuming no CSI-T or just
one-bit CSI feedback at the transmitter is enough to achievéhis mean CSI, respectively.

O B e ey g e, we focis o & Sinle-{nput Multple-Outpu
regarding the fading-channels capacity cha?lacterizationin the (SIMO) R'C'ar.] _fadlng ch_annel where Fhe receer perf_orms
low-SNR regime. a MRC combining technique and provide the asymptotically
Index Terms—Ergodic capacity, MRC, Rician fading channel, low-SNR characterization of the capacity. As shown below,
On-off signaling. our results in this paper extend in a non-trivial manner the
ones for the Single-Input Single-Output (SISO) Rician rfadi
|. INTRODUCTION channel in[[I0] to a SIMO channel. We also propose an on-

Tremendous forts inside the informatigtommunication off scheme that does not require perfect CSI-T and show that
theory communities have been conducted in order to bettare bit feedback is enough to achieve the asymptotic capacit
understand performance limits of wireless communicatians This justifies our "possibly imperfect CSI-T” assumption.
the low power regime. In this letter, we study the capacity
of point-to-point fading channels with full channel state i II. System MopeL
formation at both the transmitter and the receiver (CSIsTR) We consider an i.i.d. flat Rician fading channel described
as a performance limit at low SNR. Indeed, many wireless
systems should operate at low-SNR (equivalently at low-
power), and hence the interest of deriving performancetdimi

of communication at low-SNR_[1]=[8]. . wherex is a complex random variable (RV) that represents the
For fading channels with perfect CSI at the receiver (CS¢hannel inputy is anL-dimensional complex random vector
R), a low SNR framework has been investigatedlin [1], [4lhat represents the channel outpuis anL-dimension vector
[6]. A study of the éect of channel coherence on the capacityf complex random variables that represents the additivieewh
and energy #iciency of non-coherent fading channels withsaussian noise (AWGN) with a zero mean and a variawige
perfect CSI-TR at low SNR has been conducted.in [1], [8fhat isv ~ CN(0, Np). In (@), h is anL-dimensional complex

In [3], Borade and Zheng have shown that the capacity géctor that represents the Rician fading channel gain and ca
the Rayleigh flat fading channel at low SNR essentially alge modeled by

as SNRIog(1SNR) natgsymbol. Motivated by these results,

we propose to investigate the capacity of an independent K — 1

identically distributed (i.i.d.) flat MRC Rician fading chael h= T g Vi @
with perfect CSI-R, and possibly imperfect CSI at the trans- : - : . .
mitter (CSI-T). The ergodic capacity of this channel hasrbeg\’hereK >01s the Rician faf:torl,_ is the number of dlver5|t¥
widely investigated in the literature in order to derives#d branchesh € C* is a normalized constant vector representing
form expressions ardr accurate approximations] [9]. But, thethe line of sight component, ant,, is an L-dimensional
exact capacity expression involves a Lagrange multiphiet t circularly symmetric complex Gaussian vector with mean 0
depends on the transmit power constraint (defined as SNRajpd covariance matrix_ (O denotes the zero vector and

this letter) [2]. It is a priori not clear how does the Lagrangdenotes thé x L identity matrix). We assume perfect CSI-R
multiplier scales with SNR. We need to perform more s@nd possibly imperfect CSI-T. The source is constrainecto a
phisticated computer simulations to numerically evaluhge average poweEyp [|x|2] < Payg. We have normalized the noise
capacity. Moreover, numerical techniques do not provide tfiNo = 1), without loss of generality, so th&,y can be seen
whole picture about the capacity and require extensive p@s the average transmit SNR. As the transmitter knows fully
rameterized simulations that are time-consuming affiicdlt the CSI, we average over the distribution of x conditioned on

y = hx+v, (1)
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h. We mainly focus on asymptotically low SNR regime. In th&Jsing this fact, we use the series expansionlgfi(x) at
remalnm? of this letter, we defing(x) ~ g(x) if and only if (x/2)-"1+2p
Ilmxﬁo 1. We denote byP() the instantaneous optimalNfinity [13]: 1103 = Z plL+p-1!’

f);r\:\é%rrfu\?;rt:gglsnd by Prob)(the probability of a continuous ;, 4o expression of the PDF given i (4) yields
) Kp(K+L)p+L

and substituting it

(L+K)><

lll. Low-SNR Capacity With Perrect CSI-TR f,(x) ~ g K Z ' | LHp-lam s (20)
A. A General Capacity Results pi(L+p-1)
Having perfect CSI, the receiver performs a MRC angdubstituting [(ID) m[(]?) and16), we can then write
converts the channel into a SISO channel as > K+L)p+L
= H = H H A C A) ~ —K f I ()_() L+p l — (LrOx d
z=h"y = h"hx + hty (3) C)=~e Zp'(L+p o |, sl 2 dy,

The MRC combining diversity provides the hlghest output
SNR and the instantaneous power of channel gain after per-

Iy /lL [ (K+L L-2 (2L 3)(K+L L-3 ( 1 )]

forming MRC is then equal tgy = Ih"h| = ||hl2. It can be vee ® (L-1)122 * (L-1)28 2
shown that the probability density function (PDF) pfis a (K+L L2
noncentral Chi-square distribution with. 2legree of freedom ~eK - L2 (11)
and noncentrality paramet%ﬁ—L which is given by [[11] (L-1)!
L+K 5 wkx g 4K(K + L)x © KP(KiLyprl  perg g L
X —| e I — (4 ~ekN el Iyl e
nes ( ) (K) Ll[ o)) SNRee pZ;)p!(L+p—1)!f [ x]x ¢t ax,
where Q = @ is the expected value of the channel gain K| (K2 1
per branch and,_;(.) is the modified Bessel function of the ree - 1),/13 + O(F)}’
first kind and orderl( — 1). The instantaneous optimal power e K(KeLyL2
P(y) satisfying the average power constraint with equality N (e o5 L3 (12)
Pag = SNR=E, [P(y)] is _obtaineql by solving the Karl_Js_h- ~ (L - 1)! )
Kuhn-Tucker (KKT) equation and is given by the Water-flllngq_ [I2) is of the formy = xe* and its solution depends on
policy [12] )
the value ofL as follows:
3 1 1] . If L = 3, then a solution of EqEC,LZ) can be found by
PO = A(SNR)_; ’ ©) . . e (|_ ) Ky
) o ] . solving the equation: SNR ——=2~ 1 We can
whereA(SNR) is the Lagrange multiplier. Let us define 9‘[ this then write
point the functionG(x) over (Q o) asG(x) = E, H% 1 , (K+3 ~K
Y A(SNR) ~ [ . 13
so that SNR)~> ®+3) 09( 2SNR ] (13)
G(A(SNR)) = Payg = SNR (6) +K oK
The ergodic capacity is then obtained by averaging, || < 3, then a solution of EqEC,LZ) can Ibe expressed
log(1+ P(y)y) over (2) yielding using the principal branch of the Lambert function and is
given by
C(A(SNR)) = f Iog( ) f,(X) dx. (7) .
A(SNR) LO@E- L) 1\
ASNR)» —=\Wy|a (—) . (14)
Theorem 1: For an i.i.d. flat Rician fading channel de- K+L SNR
scribed by [(1L), with perfect CSI at both the transmitter and N
the receiver, the low-SNR capacity is given by 1 e*K(%) ¥t
with ¢ = —— | ———
LO(3-L) SNRW, (( )ﬁ) if L<3, 3-L| (L-21)
K+L SNR _ . If L >3, Eq. [12) can be solved using the lower branch
C(SNR)~ { 2% SNR log(stx)- if L=3, (8) of the Lambert function yields
LOB-L = .
o SNRW.; (_(ﬁR)u)’ =3 ASNR)~ F2G =Dy L) (15)
LQ 1 © TTKR+L MY \sNR) )
YK+l SNR/’

Note that the argument in_{1L5) should be greater than
whereWp(.) andW_1(.) are the principal branch and the lower (—%). That is, we can get valid values a{SNR) that

branch of the Lambert function, respectively. g a\-3
Proof: Using Lemma 1 in [[5]. the functiorG() is satisfies[() only for values of SNR less thag) ~ [14].

continuous, positive definite, and strictly monotonlcaﬁy On the other hand, using EqB. [11) ahdl(12), we can write
creasing. Thus, we can showl [5] that Im(SNR) C(SNR) ~ SNR A(SNR) (16)



To complete the proof of{8), we use ldgital rule to show C. On-Off Power Control |s Asymptotically Optimal

that for anys > 0, x> 0 andy < 0 we havel[5] In this subsection, we use the insight gained from our
o WoBx) Wy analytical result (Theorem 1) in order to design a practical
lim =1 andyﬂg@ =1

o0 Wo(¥) W1 () scheme that is asymptotically capacity-achieving. Letars- ¢
Thus, Egs.[(T4) and(15) simplify to sider an On-@ power control scheme that transmits whenever
. v = A(SNR) and remains silent otherwise. Th&$y) is given
- 3L
ASNR)~ F2E Dy (L) an
K+L SNR SNR it > USNR
P()’) — J Probg=1(SNR))’ my= ( )’ (24)
and 0, otherwise,
_LoEB-1) 1\ where A(SNR) satisfies [[12). The rate achievable by this
A(SNR)~ K+ L W- [_(SNR) ] (18) scheme is given by
respectively. As shown i [5], we can approximate the LambeR(SNR) = E, [log(1+ P(y)y)], (25)
function by a familiar function (log)) since IimWO(X) =1 - ” log(1+t SNR f,(t) dt
WLa(y) ==log(y) A(SNR) Probfy > A(SNR))/ 7™
and Iim;y =1, for x> 0 andy < 0, and using the fact SNR

y—0-log(-y) > fm lo (1+/lSNR\ )f t) dt,
that /l(SNF% -’00 as SNR— 0 we can get immediately the A(SNR) 9 ( "Probfy > A(SNR)) 0

simpler result given in[{9). oal1 A(SNR)SNR
=log|1l+
B. Special Cases And Remarks g( Probfy > A(SNR))

We use the results derived in the previous subsection @h the other hand, we have:
treat some interesting and non-trivial special cases asultal

)Prob(y > A(SNR))(26)

2
compute the energyfieciency at low SNR: 3 K - \/ 1
1) WhenK tends to infinity, the flat Rician fading channeIPrOb(y > ASNR)) = Pro 1+ Kh + 1+K ho| = A(SNR)|,
becomes equivalent to dnrbranch AWGN channel and
the PDF fjp(X) — 6(x — LQ), whered(.) is the Dirac- ~ Prob(|lh,|* > (1 + K) A(SNR)), (27)
delta function. Hence, the capacity simplifies to F(L (K+1)A(SNR))
o + -\ e J (28)
C(SNR)= f Iog(1+ i 1] t) §(t — LQ) dt, (19) (L-1)!
0 a ((K+l)/l(SNR)))|-_1 PREVEL
O N T L (20) v . ; (29)
- g /1 LQ l (L - 1)
1 171 whereTI(.,.) is the incomplete gamma function. Eq.127) is
~ [} Lo LQ=LQSNR (21) " gue to the fact that the line of sight compone{/tigﬁ is

neglected as SNR» 0 sinced — 0. Eq. [29) is derived from

2) By letting L tends toward infinity in Eq.[{9), it can be @8) using the fact thaxt lifi(s, ) ~ x5-1e X, Thus,

seen that the capacity scales linearly wlitlasL Q SNR

at asymptotically low SNR. This result can be retrieved Lo
using a similar reasoning than the one above. ASNR)SNR ok L8 (K + '—) e (30)
3) The energy ficiency of a flat Rician fading channel at  Probfy > 1(SNR)) K+1\K+1 b
low SNR can be characterized, given Hd. (9), by = 0. (31)
En  SNR e E - - -
- ) (22) Ea. (31) applies from Eq[{B0) sinde> 1. Then, using[(26)

o C(SNR) log () and the asymptotic approximation log¢ 1) ~ x, we can

] ) ) . deduce that the achievable rate of the dhszcheme is equal
whereE, is the transmitted energy in Joules per inforyg j(SNR) SNR. Note that given Ef{12) and EGI(28)y)
mation nats andry is the noise variance. Equatidl [22}0es to zero as SNR» 0, in agreement with EGX5) which
states that communicating one nat of information reliablyjso goes to zero as goes to infinity. Note also that only
requires a very low energy when in addition to CSI-Ry _pjt feedback of CSI-T in each fading realization is enough
CSI-T is also available. Moreover, Eq.{22) shows thg achieve the asymptotic capacity. This bit contains tiselte

dependence of the energyfieiency on the number of of the outcome of the comparison betweeand A(SNR).
diversity branched. and the Rician factoK. Note that

when only CSIR is available, the energytieiency is IV. NuMERICAL RESULTS
equal to: In this section, some selected numerical results are pedvid
En SNR 1 1 to show the accuracy of our characterization. We have plotte

o2 z Eflog(1+ SNR7)] ~ Eh]  LQ’ (23) in Figs.[1 and2, the ergodic capacity of an i.i.d. MRC Rician
fading channel in nats per channel use (hpcu) with perfect
a constant regardless of the SNR value. CSI-TR for (LK) equal to (31) and (22), respectively.



The non-asymptotic curves have been obtained using sthnc
optimization methods, whereas the asymptotic ones repires
the low SNR characterizations given by (8) aind (9) in Theore

In both figures, we can see that the curves depicting t

charactenzatlons in Theorem 1 follow the same shape as 3

(np

curve obtained by simulations. In Figl 1, we can see that t
shape of the asymptotic results change for SNR-4 dB
and this is because the slope of SNRIOGENR) changes
at SNR = e! and becomes negative, independently of tr
value of L and K. At low SNR regime which is the focus
of this letter, and more specifically for SNR —4 dB, our

Capacity

characterization is very accurate as shown in Fig. 1. In Fi gl ‘ ‘ ‘

[, the asymptotic characterizatiofi$ (8) ahH (9) are the sar
sinceL = 3. Note that our asymptotic characterizations are

accurate for small values df. Intuitively, asK — oo, the Flgure 1OI

channel tends to be an AWGN channel and the capacﬁy sce
only proportionally with SNR, a known result that still caa b
retrieved by our framework, as discussed in B.1). In Higs.
and[2, we have also plotted the asymptotic capacity asK

— oo given by [21). Furthermore, the orff@chievable rate _

is also depicted in Fig$l 1 arid 2, where it can be seen tIg0"

it is in fact the closest curve to the capacity suggesting trz

this suboptimal scheme is worth implementing in the low-SN £ o

regime.

V. CONCLUSION 107

We have analyzed the capacity of an i.i.d. MRC Ricia

fading channel at low SNR for perfect CSI-TR and we hav 1*

shown that it scales proportionally as SNR lgh). An on-aof
power control that exploits the available CSI at the trattemi
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has been shown to be asymptotically optimal.Furthermbee, tfigure 2. LOWSNR capacity in nats per channel use (npclgueeBNR for

energy #ficiency at low-SNR regime has been also characte

ized in terms of SNR, the number of diversity branches

and the Rician factoK. Finally, numerical results have beer

provided to show the accuracy of our characterization.
REFERENCES

(1]
(2]

S. Verdu, “Spectral #iciency in the wideband regimelEEE Transac-
tions Information Theory, vol. 48, no. 6, pp. 1319-1343, Sept. 2006.
V. Bhaskar, “Spectral feiciency evaluation for MRC diversity schemes
over generalized Rician fading channeldfiternational Journal of
Wireless Information Networks, vol. 14, pp. 209-223, 2007.

S. Borade and L. Zheng, “Wideband fading channels witbdfack,”
IEEE Transactions on Information Theory, vol. 56, no. 12, pp. 6058
—6065, Dec. 2010.

A. Lozano, A. Tulino, and S. Verdu, “Multiple-antennapeity in the
low-power regime,”|EEE Transactions on Information Theory, vol. 49,
no. 10, pp. 2527 — 2544, Oct. 2003.

Z. Rezki and M.-S. Alouini, “On the capacity of Nakagami-fading
channels with full channel state information at low SNREEE Wireless
Communications Letters, no. 3, pp. 253 —256, June 2012.

C. Zhong, S. Jin, K.-K. Wong, M.-S. Alouini, and T. Ratag@h, “Low
SNR capacity for MIMO Rician and Rayleigh-product fadingaohels
with single co-channel interferer and noisdEEE Transactions on
Communications, vol. 58, no. 9, pp. 2549 —2560, Sept. 2010.

S. Jin, M. McKay, K.-K. Wong, and X. Li, “Low-SNR capacitpf
multiple-antenna systems with statistical channel-stafermation,”
IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2874
—2884, July 2010.

L. Zheng, D. N. C. Tse, and M. Medard, “Channel coherentehie
low-SNR regime,”|EEE Transactions on Information Theory, vol. 53,
no. 3, pp. 976 —997, Mar. 2007.

S. Khatalin and J. Fonseka, “On the channel capacity iciaRi and
Hoyt fading environments with MRC diversityfEEE Transactions on
\ehicular Technology, vol. 55, no. 1, pp. 137 — 141, Jan. 2006.

Z. Rezki and M.-S. Alouini, “On the capacity of Riciandiag chan-
nels with full channel state information at low SNRProc. |EEE
International Workshop on Energy Efficiency in Wireless Networks and
Wireless Networks for Energy Efficiency (E2Nets) in conjunction with
|EEE International Conference on Communications (ICC' 2012).

Energy efficiency,

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

10° b

n

E /d?
A\

10

[12]
[13]
[14] A. Tall, Z. Rezki, and M.-S. Alouini,

=2 andK =

— Exact Energy efficiency with CSI-T only

-8-Asymptotic Energy efficiency with perfect CSI-R only at low SNR
-©-Asymptotic Energy efficiency with perfect CSI-TR at low SNR
— Exact Energy efficiency with perfect CSI-TR

-20

2 1 1
-70 -60 -50

-40 -30 -10 0
SNR (dB)

Figure 3. Energy ficiency versus SNR fot = 3 andK = 1.

[11] J. Sun and I. Reed, “Mobile radio multi-link analysigj’ Proc. of IEEE

52nd \ehicular Technology Conference (VTS-Fall VTC 2000), Boston,
MA, USA, Sept. 2000.

D. Tse and P. Viswanathrundamentals of Wreless Communication.
New York, NY, USA: Cambridge University Press, 2005.

I. S. Gradshteyn and I. M. RyzhikTable of Integrals, Series, and
Products, 7th ed. ElsevigAcademic Press, Amsterdam, 2007.
“MIMO channel capiy with full
CSlI at low snr,"IEEE Wireless Communications Letters, vol. 1, no. 5,
pp. 488 —491, October 2012.



	I Introduction
	II System Model
	III Low-SNR Capacity With Perfect CSI-TR
	III-A A General Capacity Results
	III-B Special Cases And Remarks
	III-C On-Off Power Control Is Asymptotically Optimal

	IV Numerical Results
	V Conclusion
	References

