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Abstract—In this letter, we study the ergodic capacity of a
maximum ratio combining (MRC) Rician fading channel with
full channel state information (CSI) at the transmitter and at the
receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime
and we show that the capacity scales asLΩK+L SNR×log( 1

SNR), where
Ω is the expected channel gain per branch,K is the Rician fading
factor, and L is the number of diversity branches. We show that
one-bit CSI feedback at the transmitter is enough to achievethis
capacity using an on-off power control scheme. Our framework
can be seen as a generalization of recently established results
regarding the fading-channels capacity characterizationin the
low-SNR regime.

Index Terms—Ergodic capacity, MRC, Rician fading channel,
On-off signaling.

I. Introduction

Tremendous efforts inside the information/communication
theory communities have been conducted in order to better
understand performance limits of wireless communicationsin
the low power regime. In this letter, we study the capacity
of point-to-point fading channels with full channel state in-
formation at both the transmitter and the receiver (CSI-TR),
as a performance limit at low SNR. Indeed, many wireless
systems should operate at low-SNR (equivalently at low-
power), and hence the interest of deriving performance limits
of communication at low-SNR [1]–[8].

For fading channels with perfect CSI at the receiver (CSI-
R), a low SNR framework has been investigated in [1], [4],
[6]. A study of the effect of channel coherence on the capacity
and energy efficiency of non-coherent fading channels with
perfect CSI-TR at low SNR has been conducted in [1], [8].
In [3], Borade and Zheng have shown that the capacity of
the Rayleigh flat fading channel at low SNR essentially scales
as SNR log(1/SNR) nats/symbol. Motivated by these results,
we propose to investigate the capacity of an independent
identically distributed (i.i.d.) flat MRC Rician fading channel
with perfect CSI-R, and possibly imperfect CSI at the trans-
mitter (CSI-T). The ergodic capacity of this channel has been
widely investigated in the literature in order to derive closed
form expressions and/or accurate approximations, [9]. But, the
exact capacity expression involves a Lagrange multiplier that
depends on the transmit power constraint (defined as SNR in
this letter) [2]. It is a priori not clear how does the Lagrange
multiplier scales with SNR. We need to perform more so-
phisticated computer simulations to numerically evaluatethe
capacity. Moreover, numerical techniques do not provide the
whole picture about the capacity and require extensive pa-
rameterized simulations that are time-consuming and difficult

to implement. Instead, one can focus on asymptotic analysis
that can give a better understanding of the capacity and this
relies on the continuity and the smoothness of the capacity in
function of SNR. Only recently, the low-SNR regime capacity
of a Multiple-Input Multiple-Output (MIMO) Rician channel
has been looked at in [6], [7], but assuming no CSI-T or just
mean CSI, respectively.

In this letter, we focus on a Single-Input Multiple-Output
(SIMO) Rician fading channel where the receiver performs
a MRC combining technique and provide the asymptotically
low-SNR characterization of the capacity. As shown below,
our results in this paper extend in a non-trivial manner the
ones for the Single-Input Single-Output (SISO) Rician fading
channel in [10] to a SIMO channel. We also propose an on-
off scheme that does not require perfect CSI-T and show that
one bit feedback is enough to achieve the asymptotic capacity.
This justifies our ”possibly imperfect CSI-T” assumption.

II. System Model

We consider an i.i.d. flat Rician fading channel described
as

y = hx + v, (1)

wherex is a complex random variable (RV) that represents the
channel input,y is an L-dimensional complex random vector
that represents the channel output,v is anL-dimension vector
of complex random variables that represents the additive white
Gaussian noise (AWGN) with a zero mean and a varianceN0,
that is v ∼ CN(0,N0). In (1), h is an L-dimensional complex
vector that represents the Rician fading channel gain and can
be modeled by

h =

√

K
1+ K

h +

√

1
1+ K

hω, (2)

whereK > 0 is the Rician factor,L is the number of diversity
branches,h ∈ CL is a normalized constant vector representing
the line of sight component, andhω is an L-dimensional
circularly symmetric complex Gaussian vector with mean 0L
and covariance matrixIL (0L denotes the zero vector andIL
denotes theL × L identity matrix). We assume perfect CSI-R
and possibly imperfect CSI-T. The source is constrained to an
average powerEx|h

[

|x|2
]

≤ Pavg. We have normalized the noise
(N0 = 1), without loss of generality, so thatPavg can be seen
as the average transmit SNR. As the transmitter knows fully
the CSI, we average over the distribution of x conditioned on
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h. We mainly focus on asymptotically low SNR regime. In the
remaining of this letter, we definef (x) ≈ g(x) if and only if
lim x→0

f (x)
g(x) = 1. We denote byP(.) the instantaneous optimal

power function and by Prob(.) the probability of a continuous
random variable.

III. L ow-SNR CapacityWith Perfect CSI-TR

A. A General Capacity Results

Having perfect CSI, the receiver performs a MRC and
converts the channel into a SISO channel as

z = hH y = hH hx + hHv. (3)

The MRC combining diversity provides the highest output
SNR and the instantaneous power of channel gain after per-
forming MRC is then equal toγ = |hH h| = ‖h‖2. It can be
shown that the probability density function (PDF) ofγ, is a
noncentral Chi-square distribution with 2L degree of freedom
and noncentrality parameterKK+L which is given by [11]

fγ(x) =
(L + K

LΩ

)

L+1
2

( x
K

)
L−1

2

e−
(L+K)x

LΩ −K IL−1















√

4K(K + L)x
LΩ















(4)

whereΩ = E[γ]
L is the expected value of the channel gain

per branch andIL−1(.) is the modified Bessel function of the
first kind and order (L − 1). The instantaneous optimal power
P(γ) satisfying the average power constraint with equality
Pavg = SNR= Eγ

[

P(γ)
]

is obtained by solving the Karush-
Kuhn-Tucker (KKT) equation and is given by the water-filling
policy [12]

P(γ) =

[

1
λ(SNR)

−
1
γ

]+

, (5)

whereλ(SNR) is the Lagrange multiplier. Let us define at this

point the functionG(x) over (0,∞) asG(x) = Eγ

[[

1
x
−

1
γ

]+]

,

so that

G(λ(SNR))= Pavg = SNR. (6)

The ergodic capacity is then obtained by averaging
log(1+ P(γ)γ) over (4) yielding

C(λ(SNR))=
∫ ∞

λ

log

(

x
λ(SNR)

)

fγ(x) dx. (7)

Theorem 1: For an i.i.d. flat Rician fading channel de-
scribed by (1), with perfect CSI at both the transmitter and
the receiver, the low-SNR capacity is given by

C(SNR)≈



































LΩ(3−L)
K+L SNRW0

(

(

1
SNR

)
1

3−L

)

, if L < 3,
3Ω

K+3 S NR log
(

1
SNR

)

, if L = 3,
LΩ(3−L)

K+L SNRW−1

(

−
(

1
SNR

)
1

3−L

)

, if L > 3,

(8)

≈
LΩ

K + L
SNR log

(

1
SNR

)

, (9)

whereW0(.) andW−1(.) are the principal branch and the lower
branch of the Lambert function, respectively.

Proof: Using Lemma 1 in [5], the functionG(.) is
continuous, positive definite, and strictly monotonicallyin-
creasing. Thus, we can show [5] that lim

SNR→0
λ(SNR) = +∞.

Using this fact, we use the series expansion ofIL−1(x) at

infinity [13]: IL−1(x) =
∞
∑

p=0

(x/2)L−1+2p

p!(L + p − 1)!
, and substituting it

in the expression of the PDF given in (4) yields

fγ(x) ≈ e−K
∞
∑

p=0

Kp( K+L
LΩ )p+L

p!(L + p − 1)!
xL+p−1e−

(L+K)x
LΩ . (10)

Substituting (10) in (7) and (6), we can then write

C(λ) ≈ e−K
∞
∑

p=0

Kp( K+L
LΩ )p+L

p!(L + p − 1)!

∫ ∞

λ

log
( x
λ

)

xL+p−1e−
(L+K)x

LΩ dx,

≈ e−Ke−
(L+K)λ

LΩ λL ×













( K+L
LΩ )L−2

(L − 1)!λ2
+

(2L − 3)(K+L
LΩ )L−3

(L − 1)!λ3
+ o

(

1
λ4

)












,

≈ e−K
( K+L

LΩ )L−2

(L − 1)!
e−

(L+K)λ
LΩ λL−2, (11)

SNR≈ e−K
∞
∑

p=0

Kp( K+L
LΩ )p+L

p!(L + p − 1)!

∫ ∞

λ

[

1
λ
−

1
x

]

xL+p−1e−
(L+K)x

LΩ dx,

≈ e−Ke−
(L+K)λ

LΩ λL













( K+L
LΩ )L−2

(L − 1)!λ3
+ o

(

1
λ4

)











,

≈
e−K( K+L

LΩ )L−2

(L − 1)!
e−

(L+K)
LΩ λλL−3. (12)

Eq. (12) is of the formy = xex and its solution depends on
the value ofL as follows:
• If L = 3, then a solution of Eq. (12) can be found by

solving the equation: SNR≈
e−K( K+3

LΩ )

2
e−

(K+3)
LΩ λ. We can

then write

λ(SNR)≈
LΩ

(K + 3)
log













( K+3
LΩ )e−K

2S NR













. (13)

Note that Eq. (13) is valid only for SNR≤
L + K
2LΩ

e−K .
• If L < 3, then a solution of Eq. (12) can be expressed

using the principal branch of the Lambert function and is
given by

λ(SNR)≈
LΩ(3− L)

K + L
W0

















α

(

1
SNR

)
1

3−L

















, (14)

with α =
1

3− L

















e−K
(

K+L
LΩ

)

(L − 1)!

















1
3−L

.

• If L > 3, Eq. (12) can be solved using the lower branch
of the Lambert function yields

λ(SNR)≈
LΩ(3− L)

K + L
W−1

















α

(

1
SNR

)
1

3−L

















. (15)

Note that the argument in (15) should be greater than
(− 1

e ). That is, we can get valid values ofλ(SNR) that

satisfies (6) only for values of SNR less than
(

−α
e

)L−3
[14].

On the other hand, using Eqs. (11) and (12), we can write

C(SNR)≈ SNRλ(SNR). (16)



To complete the proof of (8), we use l’Hˆopital rule to show
that for anyβ > 0, x > 0 andy < 0 we have [5]

lim
x→∞

W0(βx)
W0(x) = 1 and lim

y→0−
W−1(βy)
W−1(y) = 1.

Thus, Eqs. (14) and (15) simplify to

λ(SNR)≈
LΩ(3− L)

K + L
W0

















(

1
SNR

)
1

3−L

















, (17)

and

λ(SNR)≈
LΩ(3− L)

K + L
W−1

















−

(

1
SNR

)
1

3−L

















, (18)

respectively. As shown in [5], we can approximate the Lambert

function by a familiar function (log(.)) since lim
x→∞

W0(x)
log(x)

= 1

and lim
y→0−

W−1(y)
log(−y)

= 1, for x > 0 andy < 0, and using the fact

that λ(SNR)→ ∞ as SNR→ 0 we can get immediately the
simpler result given in (9).

B. Special Cases And Remarks

We use the results derived in the previous subsection to
treat some interesting and non-trivial special cases and also to
compute the energy efficiency at low SNR:
1) WhenK tends to infinity, the flat Rician fading channel

becomes equivalent to anL-branch AWGN channel and
the PDF f‖h‖2(x)→ δ(x − LΩ), whereδ(.) is the Dirac-
delta function. Hence, the capacity simplifies to

C(SNR)=
∫ ∞

0
log

(

1+

[

1
λ
−

1
t

]+

t

)

δ(t − LΩ) dt, (19)

= log

(

1+

[

1
λ
−

1
LΩ

]+

LΩ

)

, (20)

≈

[

1
λ
−

1
LΩ

]+

L Ω = L Ω SNR. (21)

2) By letting L tends toward infinity in Eq. (9), it can be
seen that the capacity scales linearly withL asL Ω SNR
at asymptotically low SNR. This result can be retrieved
using a similar reasoning than the one above.

3) The energy efficiency of a flat Rician fading channel at
low SNR can be characterized, given Eq. (9), by

En

σ2
v
=

SNR
C(SNR)

≈

K+L
LΩ

log
(

1
SNR

) . (22)

where En is the transmitted energy in Joules per infor-
mation nats andσ2

v is the noise variance. Equation (22)
states that communicating one nat of information reliably
requires a very low energy when in addition to CSI-R,
CSI-T is also available. Moreover, Eq. (22) shows the
dependence of the energy efficiency on the number of
diversity branchesL and the Rician factorK. Note that
when only CSIR is available, the energy efficiency is
equal to:

En

σ2
v
≈

SNR
E[log(1+ SNRγ)]

≈
1

E[γ]
=

1
LΩ
, (23)

a constant regardless of the SNR value.

C. On-Off Power Control Is Asymptotically Optimal

In this subsection, we use the insight gained from our
analytical result (Theorem 1) in order to design a practical
scheme that is asymptotically capacity-achieving. Let us con-
sider an On-Off power control scheme that transmits whenever
γ ≥ λ(SNR) and remains silent otherwise. Thus,P(γ) is given
by

P(γ) =











SNR
Prob(γ≥λ(SNR)), if γ ≥ λ(SNR),

0, otherwise,
(24)

where λ(SNR) satisfies (12). The rate achievable by this
scheme is given by

R(SNR)= Eγ
[

log(1+ P(γ)γ)
]

, (25)

=

∫ ∞

λ(SNR)
log

(

1+ t
SNR

Prob(γ ≥ λ(SNR))

)

fγ(t) dt,

≥

∫ ∞

λ(SNR)
log

(

1+ λ(SNR)
SNR

Prob(γ ≥ λ(SNR))

)

fγ(t) dt,

= log

(

1+
λ(SNR)SNR

Prob(γ ≥ λ(SNR))

)

Prob(γ ≥ λ(SNR)).(26)

On the other hand, we have:

Prob(γ ≥ λ(SNR))= Prob



















∥

∥

∥

∥

∥

∥

∥

√

K
1+ K

h +

√

1
1+ K

hω

∥

∥

∥

∥

∥

∥

∥

2

≥ λ(SNR)



















,

≈ Prob
(

‖hω‖2 ≥ (1+ K) λ(SNR)
)

, (27)

=
Γ
(

L, (K+1)λ(SNR)
LΩ

)

(L − 1)!
, (28)

≈

(

(K+1)λ(SNR))
LΩ

)L−1
e−

(K+1)λ(SNR)
LΩ

(L − 1)!
, (29)

whereΓ(., .) is the incomplete gamma function. Eq. (27) is

due to the fact that the line of sight component
√

K
K+1h is

neglected as SNR→ 0 sinceλ→ ∞. Eq. (29) is derived from
(28) using the fact that lim

x→∞
Γ(s, x) ≈ xs−1e−x. Thus,

λ(SNR)SNR
Prob(γ ≥ λ(SNR))

≈ e−K LΩ
K + 1

(K + L
K + 1

)L−2 e−
(L−1)λ

LΩ

λ
,(30)

→
λ→∞

0. (31)

Eq. (31) applies from Eq. (30) sinceL ≥ 1. Then, using (26)
and the asymptotic approximation log(x + 1) ≈ x, we can
deduce that the achievable rate of the on-off scheme is equal
to λ(SNR) SNR. Note that given Eq.(12) and Eq.(29),P(γ)
goes to zero as SNR→ 0, in agreement with Eq.(5) which
also goes to zero asλ goes to infinity. Note also that only
1-bit feedback of CSI-T in each fading realization is enough
to achieve the asymptotic capacity. This bit contains the result
of the outcome of the comparison betweenγ andλ(SNR).

IV. Numerical Results

In this section, some selected numerical results are provided
to show the accuracy of our characterization. We have plotted
in Figs. 1 and 2, the ergodic capacity of an i.i.d. MRC Rician
fading channel in nats per channel use (npcu) with perfect
CSI-TR for (L,K) equal to (3, 1) and (2, 2), respectively.



The non-asymptotic curves have been obtained using standard
optimization methods, whereas the asymptotic ones represent
the low SNR characterizations given by (8) and (9) in Theorem
1. In both figures, we can see that the curves depicting the
characterizations in Theorem 1 follow the same shape as the
curve obtained by simulations. In Fig. 1, we can see that the
shape of the asymptotic results change for SNR≥ −4 dB
and this is because the slope of SNR log(1/SNR) changes
at SNR = e−1 and becomes negative, independently of the
value of L and K. At low SNR regime which is the focus
of this letter, and more specifically for SNR≤ −4 dB, our
characterization is very accurate as shown in Fig. 1. In Fig.
1, the asymptotic characterizations (8) and (9) are the same,
since L = 3. Note that our asymptotic characterizations are
accurate for small values ofK. Intuitively, as K → ∞, the
channel tends to be an AWGN channel and the capacity scales
only proportionally with SNR, a known result that still can be
retrieved by our framework, as discussed in B.1). In Figs. 1
and 2, we have also plotted the asymptotic capacity asL or K
→ ∞ given by (21). Furthermore, the on-off achievable rate
is also depicted in Figs. 1 and 2, where it can be seen that
it is in fact the closest curve to the capacity suggesting that
this suboptimal scheme is worth implementing in the low-SNR
regime.

V. Conclusion
We have analyzed the capacity of an i.i.d. MRC Rician

fading channel at low SNR for perfect CSI-TR and we have
shown that it scales proportionally as SNR log(1

SNR). An on-off
power control that exploits the available CSI at the transmitter
has been shown to be asymptotically optimal.Furthermore, the
energy efficiency at low-SNR regime has been also character-
ized in terms of SNR, the number of diversity branchesL
and the Rician factorK. Finally, numerical results have been
provided to show the accuracy of our characterization.
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L = 3 andK = 1.
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Figure 2. Low-SNR capacity in nats per channel use (npcu) versus SNR for
L = 2 andK = 2.
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