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Abstract—Distributed-Multiple Input Multiple Output (D-
MIMO) networks is a promising enabler to address the challenges
of high traffic demand in future wireless networks. A limitin g
factor that is directly related to the performance of these systems
is the overhead signaling required for distributing data and
control information among the network elements. In this paper,
the concept of orthogonal partitioning is extended to D-MIMO
networks employing joint multi-user beamforming, aiming to
maximize the effective sum-rate, i.e., the actual transmitted
information data. Furthermore, in order to comply with prac tical
requirements, the overhead subframe size is considered to be
constrained. In this context, a novel formulation of constrained
orthogonal partitioning is introduced as an elegant Knapsack
optimization problem, which allows the derivation of quick and
accurate solutions. Several numerical results give insight into the
capabilities of D-MIMO networks and the actual sum-rate scaling
under overhead constraints.

Index Terms—Distributed MIMO, effective sum-rate, Knap-
sack optimization, network partitioning, overhead reduction.

I. I NTRODUCTION

Distributed-Multiple Input Multiple Output (D-MIMO) net-
works (also known as network MIMO) have attracted great
research interest for their potential to satisfy very high data
rates requirements of future wireless networks [1]. The generic
system model comprises a number of distributed access points
(AP)s, communicating with a number of clients, forming a
virtual MIMO array. Depending on the ratio between the
number of APs and clients, as well as the kind of information
that is shared among the network elements, several different
techniques have been proposed, which aim at the interference
mitigation, including interference alignment (IA), dirtypaper
coding and joint multi-user beamforming (JMB), each with
different performance in terms of sum-rate [2].

The data overhead significantly increases with the number of
APs and clients, due to the substantial amount of information
that must be shared among the network elements for perform-
ing various operations, e.g., channel state information (CSI)
estimation, time/frequency synchronization, data sharing, [3],
[4]. In this sense, the effective sum-rate, i.e., the volume
of the actual transmitted information bits, is reduced by a
non-negligible factor as compared to the information-theoretic
sum-rate [3]. In this context, the overhead reduction of D-
MIMO networks gained much research interest, with the
efforts focusing on the selection (scheduling) of the APs
involved in the network MIMO, [5], [6], the reduction of CSI
exchanges among the network [7] and inter-cluster interference
mitigation techniques [8].

More recently a novel concept has been introduced, where
a D-MIMO network employing IA is partitioned into smaller
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orthogonal D-MIMO groups (i.e., in a time division multiple
access (TDMA) fashion) eliminating in this way any kind
of interference [3]. It was shown that when IA is employed
in the full network, the effective sum-rate diminishes as the
number of users increases, whilst the performance improves
when orthogonal partitioning is employed. The partitioning
algorithms in [3] target at the maximization of the effective
sum-rate, assuming that the size of the overhead subframe
within the entire frame can change dynamically. Although, this
is the optimal strategy in terms of sum-rate maximization, it
may not be the case for several practical systems, where onlya
predetermined portion of the frame is available (e.g., in Long
Term Evolution networks) [9].

In this paper, we apply the partitioning concept to D-
MIMO networks employing JMB, which does not require the
network channel matrices to be known at both the transmitter
and receiver sides. Furthermore, extending the scenario where
the overhead size within the frame is unconstrained, we
consider for the first time the case where the overhead size
is constrained, in order to comply with potential requirements
of practical telecommunication systems, e.g., [9], [10]. In this
context, the partitioning optimization problem is formulated
as an elegant Knapsack problem and its exact solution is
computed. Our motivation is to provide the network designer
the opportunity to compare the optimal performance of an
unconstrained D-MIMO network, with the performance of
a D-MIMO network where the overhead subframe size is
constrained by the system frame structure.

II. SYSTEM MODEL

The downlink of a D-MIMO network is considered, where
K distributed APs (transmitters) communicate withM = K
spatially distributed single-antenna clients (users) through a
time-varying fading channel. In this context and towards an
interference-free communication scenario, the JMB concept
is employed, [7], assuming accurate CSI available at the
transmitters as well as a high capacity backhaul link, similar
to [3], [6], [8]. Let sk,hk,wk, Pk denote the data symbol,
the channel gain (amplitudes and phases) vector (complex
row), the beamforming column vector and the transmit power
allocated to userk. In this context, the beamforming weights
(W = [w1,w2, . . . ,wK]) are appropriately selected in order
to satisfy the zero-interference condition, i.e.,hkwj = 0
for k 6= j. The zero-interference can be obtained using the
pseudoinverse of the channel gain matrix as weights, so that
the received signal can be written as [11]

yk =
(

√

Pkhkwk

)

sk

+
∑

j 6=k

(

√

Pjhkwj

)

sj + zk, k = 1, . . . ,K
(1)
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Fig. 1. Network MIMO is partitioned into orthogonal groups,each with a
reduced MIMO size and hence reduced overhead.

wherezk is the additive white Gaussian noise at thekth user,
while yk is the received signal by thekth user. By adopting
the zero forcing beamforming (ZFBF), the sum term in (1)
is considered to be zero. Furthermore, for a given D-MIMO
network of sizeK, the sum-rate of the ZFBF is given by [11]

RZFBF =

K
∑

i=1

log2 (1 + Pi) . (2)

The optimalPi can be obtained asPi = (µγi − 1)
+, with x+

denotingmax(x, 0), andµ satisfying
K
∑

i=1

(

µ−
1

γi

)

= KP. (3)

In (3), γi is the effective channel gain to theith user [11],
defined asγi = 1/||wi||

2, where|| · || denotes the two-norm
operation andP represents the power constraint for a single
input single output (SISO) transmission.
A. Frame Structure

Following the system model in [3], the communication is
divided into frames ofT symbols duration, with each frame
consisting of two parts. The first part is devoted to overhead,
which includes symbols required for training, feedback, syn-
chronization etc, while the second part is utilized for data
transmissions. It has been shown that the length of the first
part of the frame is a function of the network MIMO size and
equals toα = min [L(K)/T, 1], whereL(K) is the overhead
scaling function with respect to the network MIMO size,K.
The frame duration is assumed to be less than or equal to the
channel coherence time (CCT). In our analysis, the effective
sum-rate is also defined as the information-theoretic sum-rate
(or simply denoted as sum-rate) reduced by the factor of 1-α,
i.e., (1 − α)RZFBF .

III. N ETWORK PARTITIONING OPTIMIZATION

Towards maximizing the effective sum-rate, the partitioning
of the D-MIMO network into orthogonal (e.g., in terms
of TDMA) JMB groups, each with a reduced MIMO size,
has been proved a promising approach (see Fig. 1). Using
orthogonal groups decreases the MIMO size, and hence the re-
quired overhead per partition, but also decreases the spectrum
utilization, resulting in an interesting trade-off. Considering a
network withD partitions andKd

1 APs and clients, the over-

1For conciseness of presentation, subscriptd will denote the MIMO size,
e.g.,RZFBF,d will denote the sum-rate ofdth size MIMO with ZFBF.

head scaling function is an exponentially increasing function
equal toL(Kd) = Kr

d, wherer > 0 denotes the exponential
growth. More specifically, following the approach proposedin
[3], [12], the clients sendFd bits to all the APs, in order to
construct the corresponding beamforming weightswi. Hence,
a total ofKFd is broadcast by each client and thus each AP
receives a total ofK2Fd feedback bits from all the clients
(i.e., for the case considered in this paperr = 2).

A. Optimal Partitioning

Considering the overhead model in [3] and clients that are
partitioned inD index sets,1 ≤D≤ K with Kd clients in the
dth group, the optimal solution aims to find the partitioning
combination that maximizes the total effective sum-rate, i.e.,

maximize
K
∑

d=1

Nd αdRZFBF,d subject to
K
∑

d=1

NdKd = K.

(4)
In (4), αd andαd represent the portion of the frame of thedth
type partition used only for data and overhead, respectively,
(

i.e., αd = 1− αd = 1

D
−

Kr
d

T

)

and Nd represents the total
number ofdth type partitions that have been generated, with
1 ≤ Nd ≤ K. For example, whenK = 4, the optimization in
(4) will aim to find the maximum effective sum-rate among
the partitioning combinations [(4x4), (3x3, 1x1), (2x2, 2x2),
(2x2, 1x1, 1x1), (1x1, 1x1, 1x1, 1x1)]. We solve this problem
by exhaustive search among these combinations. The results
serve as a benchmark for the suboptimal overhead constrained
partitioning, presented in the next subsection.

B. Constrained Partitioning and the Knapsack Algorithm

In this section, we investigate the more realistic case, where
a maximum allowed overhead size is considered.

1) Initial Problem: The overhead portion of the frame,
is less than or equal to a predefined thresholdαth, i.e.,
∑K

d=1
Ndαd ≤ αth (with αth ∈ [0, 1]), yielding the following

optimization problem

maximize
K
∑

d=1

Nd αdRZFBF,d

subject to
K
∑

d=1

NdKd = K and
K
∑

d=1

Ndαd ≤ αth.

(5)

The optimization problem appearing in (5) is known as the
bounded Knapsack problem (BKP) [13], whereRZFBF,d

denotes the profit,αd the weight andαth the capacity of
the optimization problem. In this problem the target is the
selection of a numberNd (d = 1, . . . ,K) of partitions of each
type, so as to maximize the effective throughput, subject toa
maximum allowed overhead size, i.e.,

∑K

d=1
Ndαd ≤ αth.

2) BKP Transformation: The BKP is a generalized for-
mulation of the zero-one Knapsack problem and can be
simplified to the latter using the Algorithms1 and2. Following
Algorithm 1, our BKP is transformed to

maximize
n̂
∑

i=1

p̂iyi

subject to
n̂
∑

i=1

ŵiyi ≤ αth and

n̂
∑

i=1

m̂iyi = K

(6)
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Algorithm 1: BKP to Zero-One Transformation
input: the total number of APs,n = K,
the sum-rate of thejth partition,pj = RZFBF,j , bj = ⌊K

j
⌋1,

the overhead factor (yth order MIMO,xth partition), ŵx,y = 1

x
− yr

T

n̂ := 0; v := 1
1: for j := 1 to n do % Find the different basic MIMO elements
2: k := 0
3: repeat
4: n̂ := n̂+ 1
5: p̂n̂ := (k + 1)pj % Sum-rate of̂nth basic MIMO elements
6: k := k + 1
7: m̂n̂ := kj % Number of APs in̂nth basic MIMO elements
8:q̂n̂ := k

9: r̂n̂ := j

10: until k = bj
11: end
1⌊•⌋ is the floor function.

Algorithm 2: Sum-Rates and Overhead of Basic MIMO Elements
I := {I1, I2, . . . , IK}, with Ii ∈ N∗, Ii 6= Ij ∀ i, j ∈ K, Ii ≤ K

% Find the maximum number of different partitions

R := max
∣

∣

∣
sum (I1, I2, . . . , IK)

∣

∣

∣

Ii 6=Ij

= K

i := 1
1: repeat
% For all previously derived basic MIMO elements
2: for ℓ1, ℓ2, . . . , ℓi := 1 to n̂ do
% Check if the combination is a valid network partition
3: if m̂ℓ1 + m̂ℓ2 + · · ·+ m̂ℓi

= K
ℓ1 6=ℓ2 6=···6=ℓi

4: pv :=
∑i

q=1
ŵλ2,r̂ℓq

p̂ℓq % Sum-rate of thevth partition

5: wv := ŵλ,r̂ℓ1
+

∑i
q=2

q̂ℓq ŵλ,r̂ℓq
% Overhead of thevth partition

6: v := v + 1
7: end
8: end
9: i := i+ 1
10: until i = R+ 1
output: v, pi, wi
2λ =

∑i
h=1

ℓh. N∗ denotes the set of natural numbers excluding zero.

wherep̂i andŵi represent the sum-rate and the overhead of the
ith MIMO basic element, respectively,̂n is the total number
of the MIMO basic elements,yi ∈ [0, 1] andm̂i is the number
of AP in the ith MIMO basic element.

The functionality of Algorithm1 can be better explained
with an example as follows. AssumingK = 4, using Algo-
rithm 1 and (6), BKP is transformed to the following problem:
find the network partitioning combination that maximizes the
effective sum-rate, using8 different MIMO basic elements,
namely [1x1,2∗(1x1), 3∗(1x1), 4∗(1x1), 2x2,2∗(2x2), 3x3,
4x4], (each characterized by a different sum-rate and overhead,
computed using Algorithm1) subject to a predefined threshold
for the maximum allowed overhead.

The second step for transforming BKP to a zero-one
Knapsack problem is made by employing Algorithm2. In
this algorithm all potential combinations of the MIMO basic
elements are determined (taking into account the total number
of APs in the network). Specifically, the outcomes of this
algorithm are:

• the total number of different partitioning combinationsv
[e.g., forK = 4, v = 5, i.e., (4x4), (3x3,1x1),2 ∗ (2x2),
(2x2, 2 ∗ (1x1)), 4 ∗ (1x1)]

• the corresponding performances in terms of the effective

sum-rate and overheadpi, wi, respectively, withi ∈ [1, v].
3) Final Knapsack Solution: Following these two algo-

rithms, the initial BKP has been finally transformed to the
following simplified zero-one Knapsack problem

maximize
v

∑

i=1

pizi subject to
v

∑

i=1

wizi ≤ αth (7)

wherezi ∈ [0, 1]. The exact optimal solution to this zero-one
Knapsack problem is a straight-forward procedure and it co-
incides with the one provided via the Greedy-Split algorithm.
Specifically, the following steps are followed:

• pi (i ∈ v) are sorted on descending order, i.e.,p1 =
max(pi)

• examiningpi, wi in ascending order
• if wi ≤ αth

• solution→ pi, wi.
The maximum number of searches is proportional to the
number of different possible partitions, given by thepartition
function [14, §24.2.2] (e.g., 42 for a10x10 D-MIMO system)
hence the complexity of the proposed approach is low.

IV. PERFORMANCERESULTS AND DISCUSSION

For the performance evaluation results presented in this
section, the parameters considered in all cases are: randomly
deployed single-antenna APs and clients, independent and
identically distributed (i.i.d.) Rayleigh fading channels2, while
for TDMA, overhead is assumed to scale linearly with the
number of users. The benefits of partitioning a D-MIMO
network into orthogonal groups, each employing multi-user
beamforming, are illustrated in Fig. 2, where the normalized
sum-rate (NSR) is plotted as a function of the CCT. It can
be observed that partitioning improves the effective sum-
rate of the network as the coherence time decreases, while
the NSR gains become more pronounced for larger MIMO
networks. As the coherence time increases employing multi-
user beamforming for the whole MIMO network becomes
more efficient.

2Assuming non i.i.d. fading greatly increases the searchingcomplexity,
since the possible partitioning combinations significantly increase. Generating
the channels i.i.d. gives insight into the best possible performance [3].
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In Fig. 3, the NSR is plotted as a function of the number
of the APs for various values of SNR and CCT. The NSR
has been evaluated for both cases of maximum achievable
sum-rate (ideal case without considering the overhead) and
effective sum-rate (with optimal partitioning). It is depicted
that the performance improves as the SNR or the number of
APs increases. For the effective NSR case, it is important to
note that the linear scaling of the sum-rate is not maintained as
the number of APs increases, due to the overhead, whilst the
performance considerably improves for high values of CCT. It
should be also mentioned that the partition types change as the
CCT increases, as it is depicted at the top axis of this figure.
For example, the notation3x3+2∗(1x1) denotes that the5x5
MIMO network is partitioned into one partition employing a
3x3 MIMO and 2 partitions with a1x1 SISO scheme.

Finally, Fig. 4 depicts the sum-rate of the constrained
suboptimal partitioning as a percentage of the corresponding
one with optimal partitioning, as a function of the number of
APs and for various values of the maximum allowed overhead
(MAO). In this figure, the optimal and suboptimal partitioning
schemes proposed in Section III are compared, in order to
highlight the performance degradation due to the constrained

overhead length within the frame. It is depicted that for low
values of the MAO, the overhead-constrained sum-rate is
relatively small compared to the unconstrained one. As MAO
increases, the relative performance between these two metrics
also increases. Finally, it is noted that for small networks
dimensions, the performance of the constrained sum-rate is
approaching that of the optimal partitioning.

V. CONCLUSIONS

In this letter, the optimal effective sum-rate of D-MIMO is
investigated for the cases where the overhead subframe size
can either change dynamically or must be fixed. For the first
approach, exhaustive search is employed, while for the second
one, the partitioning problem is formulated for the first time
as an elegant Knapsack optimization problem. Performance
evaluation results show that linear scaling of the effective
sum-rate is not always maintained as the number of APs
increases, due to the overhead required. Finally, relaxingthe
assumptions for the orthogonality among the partitions opens
up an interesting investigation field that will be included in
our future research activities.
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